Analysis of Exosomal Biomarkers in Oral Fluids of Periodontal Patients

Authors

DOI:

https://doi.org/10.15517/b4hgf082

Keywords:

Periodontitis; Exosomes; Biomarkers; Interleukin-1beta; Saliva; Gingival crevicular fluid.

Abstract

Exosomes, small extracellular vesicles enriched with markers such as CD63, play essential roles in cell communication and inflammatory regulation. In periodontal disease, salivary and gingival crevicular fluid (GCF) exosomes may act as carriers of inflammatory mediators like interleukin-1 beta (IL-1β), a key factor in periodontal tissue destruction. Evaluating these exosomal biomarkers may support non-invasive assessment of periodontal disease activity. A total of 20 subjects were enrolled and categorized into two groups: 10 periodontally healthy individuals and 10 with chronic periodontitis. Saliva and GCF samples were collected and processed for extracellular vesicle (EV) isolation using ultracentrifugation. The size distribution of exosomes was assessed using Dynamic Light Scattering (DLS). Western blotting was performed to detect the exosomal marker CD63, and IL-1β expression was quantified via RT-PCR. Correlation analyses between exosome sizes in saliva and GCF were conducted. Salivary exosome size was significantly larger in the periodontitis group (419.21±181.95 nm) than in the healthy controls (285.24±76.95 nm; p<0.001). GCF exosome size showed no significant difference between the groups. Salivary IL-1β expression, measured by 2^(–∆∆Ct), was significantly higher in the periodontitis group (5.22±2.42) compared to healthy controls (1.11±0.53; p=0.017). A strong positive correlation (r=0.967, p<0.001) was found between salivary and GCF exosome sizes in the periodontitis group. Western blot confirmed CD63-positive exosomes in all samples, with stronger bands observed in the disease group. Exosomalprofiling of saliva, particularly IL-1β expression and CD63 detection, presents a promising, non-invasive approach for diagnosing and monitoring periodontitis. These findings highlight the potential of salivary exosomes as surrogate indicators of periodontal inflammation and emphasize the need for further research to improve diagnostic accuracy. Results should be interpreted cautiously due to the pilot nature and small sample size.

Downloads

Download data is not yet available.

References

Schwartz Z., Goultschin J., Dean D.D., Boyan B.D. Mechanisms of alveolar bone destruction in periodontitis. Periodontol 2000. 1997 Jun; 14: 158-72. doi: 10.1111/j.1600-0757.1997.tb00196.x. PMID: 9567970.

Han, Y. W., Shi, W., Huang, G. T. J., et al. (2007). Interactions between periodontal bacteria and human oral epithelial cells: Focusing on adhesion and invasion. Trends in Microbiology, 15 (2), 57-63.

Théry C., Zitvogel L., Amigorena S. (2002). Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2 (8): 569-579.

Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013 Feb 18; 200 (4): 373-83. doi: 10.1083/jcb.201211138. PMID: 23420871; PMCID: PMC3575529.

Kowal J., Tkach M., Théry C. (2014). Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 29: 116-125.

Pegtel D.M., Gould S.J. (2019). Exosomes. Annu Rev Biochem. 88: 487-514.

Simons M., Raposo G. (2009). Exosomes – vesicular carriers for intercellular communication. Curr Opin Cell Biol. 21 (4): 575-581.

Pols M.S., Klumperman J. Trafficking and function of the tetraspanin CD63. Exp Cell Res. 2009; 315 (9): 1584-1592.

Logozzi M., De Milito A., Lugini L., Borghi M., Calabrò L., Spada M., et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One. 2009; 4 (4): e5219.

Cañas J.A., Rodrigo-Muñoz J.M., García-Cerdañ C., Sastre B., Gil-Martínez M., Redondo N., et al. Exosomes in immune regulation of allergic diseases and asthma. Front Immunol. 2021; 12: 672744. doi:10.3389/fimmu.2021.672744

Kawai T., Matsuyama T., Hosokawa Y., Makihira S., Seki M., Karimbux N., et al. Bacterial endotoxin stimulates RANKL expression in osteoblasts through Toll-like receptor 4, NF-κB, and MAPK pathways. J Bone Miner Res. 2006; 21 (7): 1177-1187. doi:10.1359/jbmr.060412

Newman M.G., Takei H., Klokkevold P.R., Carranza F.A. Carranza's Clinical Periodontology. 12th ed. St. Louis: Elsevier Saunders; 2015.

Giannobile W.V. Salivary diagnostics for periodontal diseases. J Am Dent Assoc. 2012; 143 (10 Suppl): 6S-11S. doi:10.14219/jada.archive.2012.0344

Théry C., Witwer K.W., Aikawa E., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement. J Extracell Vesicles. 2018; 7 (1): 1535750. doi:10.1080/20013078.2018.1535750

Li P., Kaslan M., Lee S.H., Yao J., Gao Z. Progress in exosome isolation techniques. Theranostics. 2017; 7 (3): 789-804. doi:10.7150/thno.18133

Qiagen. QIAamp DNA Mini and Blood Mini Handbook. Qiagen, Hilden, Germany; 2023. Available from: https://www.qiagen.com/us/resources/resourcedetail?id=62a200d6-faf4-469b-b50f-2b59cf738962&lang=en

Ismah N., Bachtiar E.W., Purwanegara M.K., Tanti I., Mardiati E. Evaluation of IL-1β and CRP mRNA expression levels by RT-PCR in postorthodontic treatment patients with temporomandibular joint disorders: a cross-sectional Study. J Int Soc Prev Community Dent. 2024 Apr 29; 14 (2): 98-104. doi: 10.4103/jispcd.jispcd_197_23. PMID: 38827355; PMCID: PMC11141896.

Papapanou, P. N., Sanz, M., Buduneli, N., et al. (2018). Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri‑Implant Diseases and Conditions. Journal of Periodontology, 89 (Suppl 1), S173-S182.

Graves, D. T., Li, J., & Cochran, D. L. (2011). Inflammation and uncoupling as mechanisms of periodontal bone loss. *Journal of Dental Research, 90*(2), 143-153. https://doi.org/10.1177/0022034510385236

Royo F., Cossío U., Ruiz de Angulo A., et al. Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. Nanoscale. 2019; 11 (4): 1531-37. doi:10.1039/C8NR08692F

Jiang L., Gu Y., Du Y., Liu J. Exosomes: Diagnostic Biomarkers and Therapeutic Delivery Vehicles for Cancer. Mol Pharm. 2019 Aug 5;16(8):3333-3349. doi: 10.1021/acs.molpharmaceut.9b00409. Epub 2019 Jul 10. PMID: 31241965.

Han P., Bartold P.M., Salomon C., Ivanovski S. Salivary Small Extracellular Vesicles Associated miRNAs in Periodontal Status-A Pilot Study. Int J Mol Sci. 2020 Apr 17; 21 (8): 2809. doi: 10.3390/ijms21082809. PMID: 32316600; PMCID: PMC7215885.

Chaparro Padilla A., Weber Aracena L., Realini Fuentes O., Albers Busquetts D., Hernández Ríos M., Ramírez Lobos V., Pascual La Rocca A., Nart Molina J., Beltrán Varas V., Acuña-Gallardo S., Sanz Ruiz A. Molecular signatures of extracellular vesicles in oral fluids of periodontitis patients. Oral Dis. 2020 Sep; 26 (6): 1318-1325. doi: 10.1111/odi.13338. Epub 2020 Apr 22. PMID: 32232928.

Théry C., Ostrowski M., Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009 Aug; 9 (8): 581-93. doi: 10.1038/nri2567. Epub 2009 Jun 5. PMID: 19498381.

Al-Musawi M.A., Omar, Ali H. Assessment of Salivary Interleukin-1b Levels in Patients with Gingivitis and Periodontitis: An Analytical Cross-Sectional Study. Dent Hypotheses 2023;14: 3-6.

Tan A., Gürbüz N., Özbalci FI, Ko _ şkan Ö, Yetkin Ay Z. Increase in serum and salivary neutrophil gelatinase-associated lipocalin levels with increased periodontal inflammation. J Appl Oral Sci 2020;28: e20200276.

Liukkonen J., Gürsoy U.K., Pussinen P.J., Suominen A.L., Könönen E. Salivary Concentrations of Interleukin (IL)-1β, IL-17A, and IL-23 Vary in Relation to Periodontal Status. J Periodontol. 2016 Dec; 87 (12): 1484-1491. doi: 10.1902/jop.2016.160146. Epub 2016 Aug 19. PMID: 27541079.

Teles R.P., Likhari V., Socransky S.S., Haffajee A.D. Salivary cytokine levels in subjects with chronic periodontitis and in periodontally healthy individuals: a cross-sectional study. J Periodontal Res. 2009 Jun; 44 (3): 411-7. doi: 10.1111/j.1600-0765.2008.01119.x. Epub 2009 Feb 6. PMID: 19210336; PMCID: PMC2712869.

Published

2025-12-15