Influence of Thermal Treatment on Fracture Due to Cyclic Fatigue of Rotary Files

Authors

DOI:

https://doi.org/10.15517/ijds.2025.65254

Keywords:

Austenite; Martensite; Cyclic fatigue; HyFlexTM EDM; ZenFlexTM; Protaper GoldTM.

Abstract

The objective of this study aimed to assess the cyclic fatigue fracture of ZenFlexTM, ProTaper GoldTM, and HyFlexTM. EDM rotary files in simulated curved canals, along with evaluating their physicochemical properties and thermal behavior. A total of 69 instruments from three different NiTi rotary file systems were utilized: ProTaper GoldTM (08/25), HyflexTM EDM (08/25), and ZenflexTM (06/25). The analysis consisted of four phases: Phase 1 involved SEM observation to detect manufacturing defects; Phase 2 focused on cyclic fatigue-induced fracture in a curved canal with a 60° radius of curvature of 2 mm and a diameter of 1.5 mm; Phase 3 encompassed SEM observation of the fractured fragment and obtaining a fractographic study; Phase 4 included physicochemical characterization, such as equiatomic relationships by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), phase transformation by DSC, crystalline structure by X-ray diffraction, and morphological analysis by SEM.  Microcracks and defects were observed on cutting edges of ZenFlexTM and ProTaper GoldTM files. The mean cycles to fracture were 2814.50±161.58, 2649.94±120.93, and 1362.89±88.33 for HyFlexTM, ZenFlexTM, and ProTaper GoldTM, respectively. Moreover, different phase transition temperatures were noted, with ZenFlexTM in the austenite phase, ProTaper GoldTM in martensite, and HyFlexTM in the R phase at room temperature, as corroborated by X-ray diffraction. Additionally, a quasi-equimolar relationship was observed for the different systems, with ZenFlexTM exhibiting a reduced helical angle, followed by HyFlexTM and ProTaper GoldTM. ZenFlexTM files demonstrated greater resistance to cyclic fatigue, which appeared to be attributed to their physicochemical properties, heat treatment, and design.

References

Walia H.M., Brantley W.A., Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod 1988; 14 (7): 346-51. doi: 10.1016/s0099-2399(88)80196-1. PMID: 3251996. DOI: https://doi.org/10.1016/S0099-2399(88)80196-1

Schäfer E., Schulz-Bongert U., Tulus G. Comparison of hand stainless steel and nickel titanium rotary instrumentation: a clinical study. J Endod 2004; 30 (6): 432-5. doi: 10.1097/00004770-200406000-00014. PMID: 15167474. DOI: https://doi.org/10.1097/00004770-200406000-00014

Esposito P.T., Cunningham C.J. A comparison of canal preparation with nickel-titanium and stainless steel instruments. J Endod 1995; 21 (4): 173-6. doi: 10.1016/S0099-2399(06)80560-1. PMID: 7673815. DOI: https://doi.org/10.1016/S0099-2399(06)80560-1

Himel V.T., Ahmed K.M., Wood D.M., Alhadainy H.A. An evaluation of nitinol and stainless steel files used by dental students during a laboratory proficiency exam. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995; 79 (2): 232-7. doi: 10.1016/s1079-2104(05)80289-6. PMID: 7614188. DOI: https://doi.org/10.1016/S1079-2104(05)80289-6

Ashkar I., Sanz J.L., Forner L. Cyclic Fatigue Resistance of Glide Path Rotary Files: A Systematic Review of in Vitro Studies. Materials (Basel) 2022; 15 (19): 6662. doi: 10.3390/ma15196662. PMID: 36234003; PMCID: PMC9571085. DOI: https://doi.org/10.3390/ma15196662

Świec P., Zubko M., Stróż D., Lekston Z. Martensitic transformation in nanostructured NiTi alloy studied by X-ray diffraction in-situ heating. Mater Trans 2019; 60 (5). https://doi.org/10.2320/matertrans.MC201808. DOI: https://doi.org/10.2320/matertrans.MC201808

Honarvar M., Konh B., Podder T.K., Dicker A.P., Yu Y., Hutapea P. X-ray Diffraction Investigations of Shape Memory NiTi Wire. J Mater Eng Perform 2015; 24 (8). doi: 10.1007/s11665-015-1574-2 DOI: https://doi.org/10.1007/s11665-015-1574-2

Santos Lde A., Resende P.D., Bahia M.G., Buono V.T. Effects of R-Phase on Mechanical Responses of a Nickel-Titanium Endodontic Instrument: Structural Characterization and Finite Element Analysis. ScientificWorldJournal 2016; 7617493. doi: 10.1155/2016/7617493. Epub 2016 May 22. PMID: 27314059; PMCID: PMC4893430. DOI: https://doi.org/10.1155/2016/7617493

Wang X.B., Verlinden B., Van Humbeeck J. R-phase transformation in NiTi alloys. Materials Science and Technology (United Kingdom) 2014; 30 (13): 1517-29. doi:10.1179/1743284714Y.0000000590 DOI: https://doi.org/10.1179/1743284714Y.0000000590

Zhu J., Wu H.H., Wu Y., Wang H., Zhang T., Xiao H., et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation. Acta Mater. 2021; 207 (February): 116665. doi.org/10.1016/j.actamat.2021.116665 DOI: https://doi.org/10.1016/j.actamat.2021.116665

Ruiz-Sánchez C., Faus-Llácer V., Faus-Matoses I., Zubizarreta-Macho Á., Sauro S., Faus-Matoses V. The Influence of NiTi Alloy on the Cyclic Fatigue Resistance of Endodontic Files. J Clin Med 2020; 9 (11): 3755. doi: 10.3390/jcm9113755. PMID: 33233442; PMCID: PMC7700305. DOI: https://doi.org/10.3390/jcm9113755

Lo Savio F., La Rosa G., Bonfanti M., Alizzio D., Rapisarda E., Pedullà E. Novel Cyclic Fatigue Testing Machine for Endodontic Files. Exp Tech 2020; 44 (5). doi.org/10.1016/j.joen.2011.09.028 DOI: https://doi.org/10.1007/s40799-020-00386-5

Hülsmann M., Donnermeyer D., Schäfer E. A critical appraisal of studies on cyclic fatigue resistance of engine-driven endodontic instruments. Int Endod J 2019; 52 (10): 1427-1445. doi: 10.1111/iej.13182. Epub 2019 Jul 25. PMID: 31267579. DOI: https://doi.org/10.1111/iej.13182

Ferreira F., Adeodato C., Barbosa I., Aboud L., Scelza P., Zaccaro Scelza M. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review. Int Endod J 2017; 50 (2): 143-52. doi: 10.1111/iej.12613. Epub 2016 Feb 26. PMID: 26825427. DOI: https://doi.org/10.1111/iej.12613

Martins J.N.R., Silva E.J.N.L., Marques D., Ajuz N., Rito Pereira M., Pereira da Costa R., Braz Fernandes F.M., Versiani M.A. Characterization of the file-specific heat-treated ProTaper Ultimate rotary system. Int Endod J 2023; 56 (4): 530-542. doi: 10.1111/iej.13880. Epub 2022 Dec 21. PMID: 36508297. DOI: https://doi.org/10.1111/iej.13880

Gaitán-Fonseca C., Lara-Alvarado E., Flores-Reyes H., Pozos-Guillén A., Méndez-González V. Automatic Electronic Device Used for the Evaluation of Cyclic-Fatigue Resistance of Nickel-Titanium Instruments. Odovtos - International Journal of Dental Sciences 2017; 19 (1). doi.org/10.15517/ijds.v19i1.27288 DOI: https://doi.org/10.15517/ijds.v0i0.27288

Pedullà E., Lo Savio F., Boninelli S., Plotino G., Grande N.M., Rapisarda E., La Rosa G. Influence of cyclic torsional preloading on cyclic fatigue resistance of nickel - titanium instruments. Int Endod J 2015; 48 (11): 1043-50. doi: 10.1111/iej.12400. Epub 2014 Nov 18. PMID: 25353957. DOI: https://doi.org/10.1111/iej.12400

Ruiz-Sánchez C., Faus-Matoses V., Alegre-Domingo T., Faus-Matoses I., Faus-Llácer V.J. An in vitro cyclic fatigue resistance comparison of conventional and new generation nickel-titanium rotary files. J Clin Exp Dent 2018;10(8):e805-e809. doi: 10.4317/jced.55091. PMID: 30305880; PMCID: PMC6174015.

Uygun A.D., Kol E., Topcu M.K., Seckin F., Ersoy I., Tanriver M. Variations in cyclic fatigue resistance among ProTaper Gold, ProTaper Next and ProTaper Universal instruments at different levels. Int Endod J 2016; 49 (5): 494-9. doi: 10.1111/iej.12471. Epub 2015 Jun 5. PMID: 26011308. DOI: https://doi.org/10.1111/iej.12471

Tripi T.R., Bonaccorso A., Condorelli G.G. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 102 (4): e106-14. doi: 10.1016/j.tripleo.2005.12.012. Epub 2006 Jul 14. PMID: 16997084. DOI: https://doi.org/10.1016/j.tripleo.2005.12.012

Lopes H.P., Elias C.N., Vieira M.V., Vieira V.T., de Souza L.C., Dos Santos A.L. Influence of Surface Roughness on the Fatigue Life of Nickel-Titanium Rotary Endodontic Instruments. J Endod 2016; 42 (6): 965-8. doi: 10.1016/j.joen.2016.03.001. Epub 2016 Apr 12. PMID: 27080117. DOI: https://doi.org/10.1016/j.joen.2016.03.001

Uygun A.D., Unal M., Falakaloglu S., Guven Y. Comparison of the cyclic fatigue resistance of hyflex EDM, vortex blue, protaper gold, and onecurve nickel-Titanium instruments. Niger J Clin Pract 2020; 23 (1): 41-45. doi: 10.4103/njcp.njcp_343_19. PMID: 31929205.

Gündoğar M., Özyürek T. Cyclic Fatigue Resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue Nickel-titanium Instruments. J Endod 2017; 43 (7): 1192-1196. doi: 10.1016/j.joen.2017.03.009. Epub 2017 May 17. PMID: 28527845.

Cheung G.S., Zhang E.W., Zheng Y.F. A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments. Int Endod J 2011; 44 (4): 357-61. doi: 10.1111/j.1365-2591.2010.01838.x. Epub 2011 Jan 10. PMID: 21219364. DOI: https://doi.org/10.1111/j.1365-2591.2010.01838.x

Capar I.D., Kaval M.E., Ertas H., Sen B.H. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod 2015; 41 (4): 535-8. doi: 10.1016/j.joen.2014.11.008. Epub 2014 Dec 12. PMID: 25510316. DOI: https://doi.org/10.1016/j.joen.2014.11.008

Ruiz-Sánchez C., Faus-Matoses V., Alegre-Domingo T., Faus-Matoses I., Faus-Llácer V.J. An in vitro cyclic fatigue resistance comparison of conventional and new generation nickel-titanium rotary files. J Clin Exp Dent 2018; 10 (8): e805-e809. doi: 10.4317/jced.55091. PMID: 30305880; PMCID: PMC6174015. DOI: https://doi.org/10.4317/jced.55091

Zupanc J., Vahdat-Pajouh N., Schäfer E. New thermomechanically treated NiTi alloys - a review. Int Endod J 2018; 51 (10):1088-1103. doi: 10.1111/iej.12924. Epub 2018 Apr 19. PMID: 29574784. DOI: https://doi.org/10.1111/iej.12924

Uygun A.D., Unal M., Falakaloglu S., Guven Y. Comparison of the cyclic fatigue resistance of hyflex EDM, vortex blue, protaper gold, and onecurve nickel-Titanium instruments. Niger J Clin Pract 2020; 23 (1): 41-5. doi: 10.4103/njcp.njcp_343_19. PMID: 31929205. DOI: https://doi.org/10.4103/njcp.njcp_343_19

Kaval M.E., Capar I.D., Ertas H. Evaluation of the Cyclic Fatigue and Torsional Resistance of Novel Nickel-Titanium Rotary Files with Various Alloy Properties. J Endod 2016; 42 (12): 1840-3. doi: 10.1016/j.joen.2016.07.015. Epub 2016 Oct 21. PMID: 27776878. DOI: https://doi.org/10.1016/j.joen.2016.07.015

Zanza A., Seracchiani M., Reda R., Miccoli G., Testarelli L., Di Nardo D. Metallurgical Tests in Endodontics: A Narrative Review. Bioengineering (Basel) 2022; 9 (1): 30. doi: 10.3390/bioengineering9010030. PMID: 35049739; PMCID: PMC8773015. DOI: https://doi.org/10.3390/bioengineering9010030

Wang X., Kustov S., Verlinden B., Van Humbeeck J. Fundamental Development on Utilizing the R-phase Transformation in NiTi Shape Memory Alloys. Shape Memory and Superelasticity 2015; 1 (2). doi:10.1007/s40830-015-0007-2 DOI: https://doi.org/10.1007/s40830-015-0007-2

Zanza A., Russo P., Reda R., Di Matteo P., Donfrancesco O., Ausiello P., Testarelli L. Mechanical and Metallurgical Evaluation of 3 Different Nickel-Titanium Rotary Instruments: An In Vitro and In Laboratory Study. Bioengineering (Basel) 2022; 9 (5): 221. doi: 10.3390/bioengineering9050221. PMID: 35621499; PMCID: PMC9137481. DOI: https://doi.org/10.3390/bioengineering9050221

Frenzel J., George E.P., Dlouhy A., Somsen C., Wagner M.F.X., Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 2010 May; 58 (9): 3444-58. doi.org/10.1016/j.actamat.2010.02.019 DOI: https://doi.org/10.1016/j.actamat.2010.02.019

Capar I.D., Ertas H., Arslan H. Comparison of cyclic fatigue resistance of novel nickel-titanium rotary instruments. Aust Endod J 2015; 41 (1): 24-8. doi: 10.1111/aej.12067. Epub 2014 Apr 2. PMID: 24697976. DOI: https://doi.org/10.1111/aej.12067

Thu M., Ebihara A., Maki K., Miki N., Okiji T. Cyclic Fatigue Resistance of Rotary and Reciprocating Nickel-Titanium Instruments Subjected to Static and Dynamic Tests. J Endod 2020; 46 (11): 1752-1757. doi: 10.1016/j.joen.2020.08.006. Epub 2020 Aug 17. PMID: 32818563. DOI: https://doi.org/10.1016/j.joen.2020.08.006

Pedullà E., Lo Savio F., Boninelli S., Plotino G., Grande N.M., La Rosa G, Rapisarda E. Torsional and Cyclic Fatigue Resistance of a New Nickel-Titanium Instrument Manufactured by Electrical Discharge Machining. J Endod 2016; 42 (1): 156-9. doi: 10.1016/j.joen.2015.10.004. Epub 2015 Nov 14. PMID: 26586518. DOI: https://doi.org/10.1016/j.joen.2015.10.004

Gündoğar M., Özyürek T. Cyclic Fatigue Resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue Nickel-titanium Instruments. J Endod 2017; 43 (7): 1192-6. doi: 10.1016/j.joen.2017.03.009. Epub 2017 May 17. PMID: 28527845. DOI: https://doi.org/10.1016/j.joen.2017.03.009

Published

2025-08-27