In Vitro Analysis of Marginal Sealing Using Light Curing Techniques on Aged and Unaged Composite Resins

Authors

  • Julia Medina Unidad de Investigación, Innovación y Emprendimiento, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Perú. Author https://orcid.org/0000-0002-7176-4417
  • Lucia Quispe-Tasayco Unidad de Investigación, Innovación y Emprendimiento, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Perú. Author https://orcid.org/0000-0002-0594-5834
  • Hector Orellana-Arauco Unidad de Investigación, Innovación y Emprendimiento, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Perú. Author https://orcid.org/0000-0001-6261-7629
  • Willy Muñoz Unidad de Investigación, Innovación y Emprendimiento, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Perú. Author https://orcid.org/0009-0006-1731-8332
  • Fran Espinoza-Carhuancho Grupo de Bibliometría, Evaluación de Evidencia y Revisiones Sistemáticas (BEERS), Facultad de Medicina, Universidad Científica del Sur, Lima, Perú. Author https://orcid.org/0009-0000-4692-942X
  • Frank Mayta-Tovalino Unidad de Investigación, Innovación y Emprendimiento, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Perú. Author https://orcid.org/0000-0002-3280-0024

DOI:

https://doi.org/10.15517/ijds.2025.65321

Keywords:

Marginal sealing; Light curing; Thermocycling.

Abstract

To evaluate the marginal sealing of resin composite restorations subjected to various light-curing protocols, both with and without artificial aging through thermocycling.  A comparative, longitudinal in vitro experimental study was performed with 120 bovine teeth distributed across 8 groups. The teeth were treated with different light intensities (650-1200 mW/cm², 800 mW/cm², 1200 mW/cm², 2500-2800 mW/cm²) along with different curing times (15", 20", 10", 3"), as described in the ISO 11405-2015 standard. Thermocycling comprised of 10,000 cycles to replicate one year of intraoral conditions, and microleakage was measured with dye penetration and the Khera and Chan scale (0-3). The majority of samples (41.7%) displayed dye penetration in the middle third of the interface (grade 2). Significant differences were detected among samples with and without thermocycling in the specific groups (p=0.027 and p=0.013), confirming a possible effect of artificial aging. For the highest light intensities (2500-2800 mW/cm²), no significant differences were present (p=0.527), indicating a possible lower effect of thermocycling at these intensities. The results demonstrate that marginal sealing varies by curing protocols and aging processes. Thermocycling affected microleakage with moderate light intensity, while higher intensities and shorter curing times had a reduced effect. These results point to the need for optimizing the curing protocols to provide better long-term durability for the restoration. Further work should examine other variables that may alter marginal sealing.

References

Shawkey M.D., D'Alba L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos Trans R Soc Lond B Biol Sci. 2017; 372 (1724): 20160536. DOI: https://doi.org/10.1098/rstb.2016.0536

Grewal N., Seth R. Comparative in vivo evaluation of restoring severely mutilated primary anterior teeth with biological post and crown preparation and reinforced composite restoration. J Indian Soc Pedod Prev Dent. 2008; 26 (4): 141-8. DOI: https://doi.org/10.4103/0970-4388.44028

Opdam N.J., van de Sande F.H., Bronkhorst E., Cenci M.S., Bottenberg P., Pallesen U., Gaengler P., Lindberg A., Huysmans M.C., van Dijken J.W. Longevity of posterior composite restorations: a systematic review and meta-analysis. J Dent Res. 2014; 93 (10): 943-9. DOI: https://doi.org/10.1177/0022034514544217

Ástvaldsdóttir Á., Dagerhamn J., van Dijken J.W., Naimi-Akbar A., Sandborgh-Englund G., Tranæus S., Nilsson M. Longevity of posterior resin composite restorations in adults-A systematic review. J Dent. 2015; 43 (8): 934-54. DOI: https://doi.org/10.1016/j.jdent.2015.05.001

Worthington H.V., Khangura S., Seal K., Mierzwinski-Urban M., Veitz-Keenan A., Sahrmann P., Schmidlin P.R., Davis D., Iheozor-Ejiofor Z., Rasines Alcaraz M.G. Direct composite resin fillings versus amalgam fillings for permanent posterior teeth. Cochrane Database Syst Rev. 2021; 8 (8): CD005620. DOI: https://doi.org/10.1002/14651858.CD005620.pub3

Santos A.P., Moreira I.K., Scarpelli A.C., Pordeus I.A., Paiva S.M., Martins C.C. Survival of Adhesive Restorations for Primary Molars: A Systematic Review and Metaanalysis of Clinical Trials. Pediatr Dent. 2016; 38 (5): 370-378.

Chisini L.A., Collares K., Cademartori M.G., de Oliveira L.J.C., Conde M.C.M., Demarco F.F., Corrêa M.B. Restorations in primary teeth: a systematic review on survival and reasons for failures. Int J Paediatr Dent. 2018; 28 (2): 123-139. DOI: https://doi.org/10.1111/ipd.12346

Koppolu M., Gogala D., Mathew V.B., Thangala V., Deepthi M., Sasidhar N. Effect of saliva and blood contamination on the bond strength of self-etching adhesive system- An in vitro study. J Conserv Dent. 2012; 15 (3): 270-3. DOI: https://doi.org/10.4103/0972-0707.97956

Cajazeira M.R., De Sabóia T.M., Maia L.C. Influence of the operatory field isolation technique on tooth-colored direct dental restorations. Am J Dent. 2014; 27 (3): 155-9.

Buchalla W., Attin T., Hilgers R.D., Hellwig E. The effect of water storage and light exposure on the color and translucency of a hybrid and a microfilled composite. J Prosthet Dent. 2002 ; 87 (3): 264-70. DOI: https://doi.org/10.1067/mpr.2002.121743

Unsal K.A., Karaman E. Effect of Additional Light Curing on Colour Stability of Composite Resins. Int Dent J. 2022 Jun; 72 (3): 346-352. DOI: https://doi.org/10.1016/j.identj.2021.06.006

Demarco F.F., Corrêa M.B., Cenci M.S., Moraes R.R., Opdam N.J. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012; 28 (1): 87-101. DOI: https://doi.org/10.1016/j.dental.2011.09.003

Van Ende A., De Munck J., Lise D.P., Van Meerbeek B. Bulk-Fill Composites: A Review of the Current Literature. J Adhes Dent. 2017; 19 (2): 95-109.

Jadhav S., Hegde V., Aher G., Fajandar N. Influence of light curing units on failure of directcomposite restorations. J Conserv Dent. 2011; 14 (3): 225-7. DOI: https://doi.org/10.4103/0972-0707.85793

Rueggeberg F.A., Giannini M., Arrais C.A.G., Price R.B.T. Light curing in dentistry and clinical implications: a literature review. Braz Oral Res. 2017 Aug 28; 31 (suppl 1): e61. DOI: https://doi.org/10.1590/1807-3107bor-2017.vol31.0061

Maktabi H., Ibrahim M., Alkhubaizi Q., Weir M., Xu H., Strassler H., Fugolin A.P.P., Pfeifer C.S., Melo M.A.S. Underperforming light curing procedures trigger detrimental irradiance-dependent biofilm response on incrementally placed dental composites. J Dent. 2019; 88: 103110. DOI: https://doi.org/10.1016/j.jdent.2019.04.003

Ding L., He D., Zheng S., Zhou X., Li H., Xi Y., Wang X., Sun X. In-vitro and in-vivo comparative studies of treatment effects on enamel demineralization during orthodontic therapy: implications for clinical early-intervention strategy. Clin Oral Investig. 2024; 28 (10): 545. DOI: https://doi.org/10.1007/s00784-024-05944-4

Jablonski-Momeni A., Lentz J., Jablonski B., Kiesow A., Morawietz M. A comparison between in vitro and randomized in situ models for remineralization of artificial enamel lesions. Sci Rep. 2024; 14 (1): 25295. DOI: https://doi.org/10.1038/s41598-024-76387-w

Greenlaw R., Way D.C., Galil K.A. An in vitro evaluation of a visible light-cured resin as an alternative to conventional resin bonding systems. Am J Orthod Dentofacial Orthop. 1989; 96 (3): 214-20. DOI: https://doi.org/10.1016/0889-5406(89)90458-7

Mavropoulos A., Staudt C.B., Kiliaridis S., Krejci I. Light curing time reduction: in vitro evaluation of new intensive light-emitting diode curing units. Eur J Orthod. 2005; 27 (4): 408-12. DOI: https://doi.org/10.1093/ejo/cji021

Uusitalo E., Varrela J., Lassila L., Vallittu P.K. Transmission of Curing Light through Moist, Air-Dried, and EDTA Treated Dentine and Enamel. Biomed Res Int. 2016; 2016: 5713962. DOI: https://doi.org/10.1155/2016/5713962

Pirca K., Balbín-Sedano G., Romero-Tapia P., Alvitez-Temoche D., Robles G., Mayta-Tovalino F. Remineralizing Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Sodium Fluoride on Artificial Tooth Enamel Erosion: An In Vitro Study. J Contemp Dent Pract. 2019; 20 (11): 1254-1259. DOI: https://doi.org/10.5005/jp-journals-10024-2710

Caceres S., Ayala G., Alvítez-Temoche D., Suarez D., Watanabe R., Mayta-Tovalino F. Bond Strength to Microtraction and Nanofiltration Using Ethanol Wet Bonding Technique in Fresh Extracted Teeth: An Ex Vivo Study. J Int Soc Prev Community Dent. 2020; 10 (4): 466-472. DOI: https://doi.org/10.4103/jispcd.JISPCD_378_19

Published

2025-08-27