Protective Effect of Quinoa Extract on Periodontium and Serum YKL-40 Levels of Albino Rat Depression Model
DOI:
https://doi.org/10.15517/6vyxfq08Keywords:
Depression; Periodontium; YKL-40; Quinoa extract.Abstract
The research was done to explore the influence of quinoa extract on periodontium, and to assess serum YKL-40 level in a depression rat model. An overall number of 30 male albino rats weighing170-180 g were used. Animals were grouped into three categories; group I: control group, group II: depressed group, group III: depressed group treated with 600 mg/kg body weight quinoa extract. The experimental duration extended to a period of 21 days. Blood samples obtained from the heart were transported to biochemistry tubes for ELISA analysis following euthanization. Mandibular molar region specimens were subjected to decalcification for histological evaluation. Quinoa extract ameliorated the degenerative changes of periodontium in the experimental depression model, increased body weight and serum serotonin level, and decreased serum cortisol and YKL-40 levels. Quinoa extract may be utilized as a preventative measure against the periodontal damage brought on by depression.
Downloads
References
Remes, O., Mendes, J. F., & Templeton, P. (2021). Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain sciences, 11 (12), 1633.
Maj, M., Stein, D. J., Parker, G., Zimmerman, M., Fava, G. A., De Hert, M., Demyttenaere, K., McIntyre, R. S., Widiger, T., & Wittchen, H. U. (2020). The clinical characterization of the adult patient with depression aimed at personalization of management. World psychiatry: official journal of the World Psychiatric Association (WPA), 19 (3), 269-293.
Kulkarni S.K., Dhir A., Akula K.K. Potentials of curcumin as an antidepressant. The Scientific World Journal. 2009; 9: 1233-41.
Gonda, X., Fountoulakis, K. N., Kaprinis, G., &Rihmer, Z. (2007). Prediction and prevention of suicide in patients with unipolar depression and anxiety. Annals of general psychiatry, 6, 23.
Greenberg, P. E., Fournier, A. A., Sisitsky, T., Simes, M., Berman, R., Koenigsberg, S. H., & Kessler, R. C. (2021). The Economic Burden of Adults with Major Depressive Disorder in the United States (2010 and 2018). Pharmaco Economics, 39 (6), 653-665.
Oke, B., Aslim, C., Ozturk, S., Altundag, G. (2009). Essential oil composition, antimicrobial and antioxidant activities of Saturejacuneifolia Ten. Food Chem. 2009; 112: 874e879.
Rota, M.C., Herrera, A., Martinez, R.M., Sotomayor, J.A., Jordan, M.J.(2008) Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control. 2008; 19: 681e687.
Widodo, H., Sismindari, S., Asmara, W., & Rohman, A. (2019). Antioxidant activity, total phenolic and flavonoid contents of selected medicinal plants used for liver diseases and its classification with chemometrics. Journal of Applied Pharmaceutical Science, 9(6), 99-105.
Wahba, H. M. A., Mahmoud, M. H., & El- Mehiry, H. F. (2019). Effect of quinoa seeds against cisplatin toxicity in female rats. Journal of Advanced Pharmacy Education & Research, 9 (3), 47.
Al- Qabba, M. M., El- Mowafy, M. A., Althwab, S. A., Alfheeaid, H. A., Aljutaily, T., & Barakat, H. (2020). Phenolic profile, antioxidant activity, and ameliorating efficacy of chenopodium quinoa sprouts against CCl4- induced oxidative stress in rats. Nutrients, 12 (10), 2904.
Abdel- Wahhab, K. G., Mannaa, F. A., Ashry, M., Khaled, D. M., Hassan, L. K., & Gomaa, H. F. (2021). Chenopodium quinoa ethanolic extract ameliorates cyclophosphamide®- induced hepatotoxicity in male rats. Comparative Clinical Pathology, 30, 267-276.
Fan, S., Li, J., & Bai, B. (2019). Purification, structural elucidation and in vivo immunity- enhancing activity of polysaccharides from quinoa (Chenopodium quinoa Willd.) seeds. Bioscience, Biotechnology, and Biochemistry, 83 (12), 2334-2344.
Capraro, J., De Benedetti, S., Di Dio, M., Bona, E., Abate, A., Corsetto, P. A., &Scarafoni, A. (2020). Characterization of chenopodin isoforms from quinoa seeds and assessment of their potential anti- inflammatory activity in caco- 2 cells. Biomolecules, 10 (5), 795.
Kazakova, M., Batalov, A., Deneva, T., Mateva, N., Kolarov, Z., Sarafian, V. (2013) Relationship between sonographic parameters and YKL-40 levels in rheumatoid arthritis. Rheumatol Int. 2013; 33 (2): 341-6.
Kastrup, J. (2012) Can YKL-40 be a new inflammatory biomarker in cardiovascular disease? Immunobiology. 2012; 217 (5): 483-91.
Johansen, J.S., Williamson, M.K., Rice, J.S., Price, P.A. (1992). Identification of proteins secreted by human osteoblastic cells in culture. J Bone Min Res. 1992; 7 (5): 501-12.
De Ceuninck, F., Gaufillier, S., Bonnaud, A., Sabatini, M., Lesur, C., Pastoureau, P. (2001). YKL-40 (cartilage gp-39) induces proliferative events in cultured chondrocytes and synoviocytes and increases glycosaminoglycan synthesis in chondrocytes. BiochemBiophys Res Commun. 2001; 285 (4): 926-31.
Johansen, J.S., Jensen, B.V., Roslind, A., Nielsen, D., Price, P.A. (2006). Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomarkers Prev. 2006;15 (2): 194-202.
Rathcke, C.N. (2006). Vestergaard H. YKL-40, a new inflammatory marker with relation to insulin resistance and with a role in endothelial dysfunction and atherosclerosis. Inflamm Res. 2006; 55 (6): 221-7.
Keles, Z.P., Keles, G.C., Avci, B., Cetinkaya, B.O., Emingil, G. (2014). Analysis of YKL-40 acute-phase protein and interleukin-6 levels in periodontal disease. J Periodontol. 2014; 85 (9): 1240-6.
Keles, Y.Z.P., Keles, G.C., Avci, B., Cetinkaya, B.O.(2020). Nonsurgical periodontal therapy reduces salivary and gingival crevicular fluid YKL-40 and IL-6 levels in chronic periodontitis. Oral Health Prev Dent. 2020; 18 (1): 815-22.
Abd-elmonsif, N.M., Gamal, S. (2024). The implications of atorvastatin administration and the potential protective role of omega-3 on the submandibular salivary gland of albino rats (Histological, Histochemical, Ultrastructure, and Biochemical Study). Journal of Stomatology, Oral and Maxillofacial Surgery, 102097.
Sentari, M., Harahap, U., Sapiie, T. W. A., &Ritarwan, K. (2019). Blood Cortisol Level and Blood Serotonin Level in Depression Mice with Basil Leaf Essential Oil Treatment. Open access Macedonian journal of medical sciences, 7 (16), 2652-2655.
Arshad, M., Kousar, S., Din, A., Afzaal, M., Faisal, M. N., Sharif, M. K., Rasheed, H., Saeed, F., Akram, N., Ahmed, F., & Khan, M. R. (2024). Hepatoprotective efficacy of quinoa seed extract against CCl4- induced acute liver toxicity in rat model. Food Science & Nutrition, 12, 5007-5018.
Manhold J.H., Doyle J.L., Weisinger E.H. (1971). Effects of social stress on oral and other bodily tissues. II. Results offering substance to a hypothesis for the mechanism of formation of periodontal pathology. J Periodontol. 42:109-11.
José Jaime, H. P., Venus, B. C., Graciela, J. R., Tania, H. H., & Lucía, M. M. (2016). Young-Adult Male Rats' Vulnerability to Chronic Mild Stress Is Reflected by Anxious-Like instead of Depressive-Like Behaviors. Neuroscience journal, 2016, 5317242.
Abd-Elmonsif, N. M., El-Zainy, M. A., Rabea, A. A., & Fathy Mohamed, I. A. (2022). The Prospective Effect of Cinnamon and Chia on Submandibular Salivary Glands After Ciprofloxacin Administration in Albino Rats (Histological, Histochemical, and Ultrastructural Study). Microscopy and microanalysis: the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 1-18. Advance online publication.
Kortam, M.A., Ali, B.M., & Fathy, N. (2021). The deleterious effect of stress-induced depression on rat liver: Protective role of resveratrol and dimethyl fumarate via inhibiting the MAPK/ERK/JNK pathway. J Biochem Mol Toxicol. 35: e22627.
Wogu, E. U., & ¹Edibamode, E. I. (2024). Curcumin mitigates stress induced depression and hippocampal damage through upregulation of BDNF expression and adult neurogenesis. Scientia Africana. 23; 389-402.
Almohaimeed, H.M., Albadawi, E.A., Mohammedsaleh, Z.M., Alghabban, H.M., Seleem, H.S., Ramadan, O.I., &Ayuob, N.N. (2021). Brain-derived Neurotropic factor (BDNF) mediates the protective effect of Cucurbita pepo L. on salivary glands of rats exposed to chronic stress evident by structural, biochemical and molecular study. J Appl Oral Sci. 29: e20201080.
Garca, M.F., Kavak, S., Gecit, I., Meral, I., Demir, H., Turan, M., Çeğin, B., Bektas, H. & Çankaya, H. (2014). Effects of shock waves on oxidative stress in parotid gland of rat. Toxicology and industrial health, 30; 454-458.
El-ghazawy, Y., El-Zainy, M., Hassan, R. (2020). Histological and Immunohistochemical Analysis of Green Coffee Aqueous Extract Effect on Parotid Salivary Gland in Streptozotocin Induced Diabetic Albino Rats. Egyptian Journal of Histology, 43(3), 748-762.
Yi Ng, C. & Wang, M. (2021). The functional ingredients of quinoa (Chenopodiumquinoa) and physiological effects of consuming quinoa: A review. Food Frontiers. 2:329–356.
Putra, S.T. (2011). PsikoneuroimunologiKedokteran. Edition 2. Surabaya: Airlangga University Press, 2011.
van Donkelaar, E.L., Vaessen, K.R., Pawluski, J.L., Sierksma, A.S., Blokland, A., Cañete, R., Steinbusch, H.W.(2014) Long-term corticosterone exposure decreases insulin sensitivity and induces depressive-like behaviour in the C57BL/6NCrl mouse. PLoS One. 2014; 9 (10): e106960.
Carciochi, R.A., Manrique, G.D., Dimitrov, K.(2014). Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.) Int. Food Res. J. 2014; 21: 767-773.
Carciochi, R.A., Galván-D’Alessandro, L., Vandendriessche, P., Chollet, S. (2016). Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds. Plant Foods Hum. Nutr. 2016; 71: 361-367.
Paśko, P., Bartoń, H., Zagrodzki, P., Gorinstein, S., Fołta, M., Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 2009; 115: 994-998.
Abd-elmonsif, N.M., Gamal, S., Barsoom, S.A.(2025) Chronic stress and depression impact on tongue and major sublingual gland histology and the potential protective role of Thymus vulgaris: An animal study. Archives of Oral Biology, 2025; 172 (106182), ISSN 0003-9969.
Della Porta, M., Maier, J. A., & Cazzola, R. (2023). Effects of Withaniasomnifera on Cortisol Levels in Stressed Human Subjects: A Systematic Review. Nutrients, 15 (24), 5015.
Published
Issue
Section
License
Copyright (c) 2025 Nehad M. Abd-elmonsif, Sherif Gamal, Mona El Deeb.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
ODOVTOS - Int. J. Dent. Sc. endorses CC BY-NC-SA
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms. CC BY-NC-SA includes the following elements:
BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
SA: Adaptations must be shared under the same terms.



