Agronomía Mesoamericana

Artículo científico

Volumen 36: Artículo 3v3jz593, 2025 e-ISSN 2215-3608, https://doi.org/10.15517/3v3jz593

Jamón de pato criollo (Cairina moschata) ultra-bajo en grasa con harina de albedo de toronja (*Citrus x paradisi* L.)*

Ultra-low-fat Muscovy duck (Cairina moschata) ham with grapefruit (Citrus x paradisi L.) albedo flour

Jorge Ruperto Velásquez-Rivera¹, Raúl Díaz-Torres²

- Recepción: 17 de febrero, 2025. Aceptación: 21 de abril, 2025. Este trabajo formó parte del proyecto "Obtención de harina de albedo de toronja como fuente de fibra para jamón de pato", financiado por la Universidad Católica de Santiago de Guayaquil.
- Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador. jorge.velasquez02@cu.ucsg.edu.ec (autor para correspondencia; https:// orcid.org/0000-0002-3500-8403).
- Universidad de la Habana, La Habana, Cuba; Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador, rauldiaztor@yahoo.com (https://orcid.org/0000-0001-9023-4481).

Resumen O Introducción. Los embutidos, productos de consumo mundial, permiten aprovechar diferentes tipos de carne y materias primas subutilizadas, como el albedo de toronja (Citrus x paradisi L.), un subproducto de la industria citrícola que posee fibra y sustancias antioxidantes importantes para la salud humana. Objetivo. Evaluar el efecto de la adición de harina desamargada de albedo de toronja (HDAT), sobre las características fisico-químicas, sensoriales y microbiológicas del jamón de pato ultra bajo en grasa. Materiales y métodos. El estudio se realizó en la Facultad de Educación Técnica para el Desarrollo, de la Universidad Católica de Santiago de Guayaquil, Ecuador, entre septiembre de 2022 y agosto de 2023. Se formularon cuatro tratamientos, con adición del 0, 2, 4 o 6 % de harina de albedo. En los jamones se evaluaron parámetros físico-químicos (pH, acidez titulable, contenido de humedad, ceniza, proteína, fibra, grasa, fenoles totales y capacidad antioxidante); propiedades tecnológicas (estabilidad de la emulsión, rendimiento, capacidad de retención de agua); sanitarios (recuento de microorganismos aerobios mesófilos, Escherichia coli, Staphylococcus aureus y Salmonella); análisis de perfil de textura y análisis sensorial (prueba de aceptación, intención de compra y marcar todo lo que aplique) con 41 consumidores Resultados. Los productos elaborados cumplen las normas sanitarias y de composición establecidas. La capacidad antioxidante, contenido de fibra y capacidad de retención de agua se incrementaron con la adición de harina. Todos los productos fueron evaluados con una puntuación equivalente a "Me gusta moderadamente", y la dureza y elasticidad disminuyeron con el aumento de la harina, pero sin afectar la aceptación de la textura. Conclusiones. Es posible elaborar jamones a partir de carne de pato, con la incorporación de hasta 6 % de HDAT, con buena aceptación, mayor contenido de fibra y capacidad antioxidante.

Palabras clave: fibra, capacidad antioxidante, evaluación sensorial, perfil de textura, capacidad de retención de agua.

Abstract

Introduction. Sausages are products that are consumed worldwide and that allow the use of not only this type of meat but of other underused raw materials, such as the case of grapefruit (Citrus x paradisi L.) albedo, which is a subproduct of the citrus industry that has fiber and antioxidants that are important for human health. **Objective.** To evaluate the effect of adding debittered grapefruit albedo flour on the physicochemical, sensory, and microbiological characteristics of ultra-low-fat duck ham. Materials and methods. The study was conducted at the Faculty of Technical Education for Development at the Catholic University of Santiago de Guayaquil, Ecuador, between September 2022 and August 2023. Four treatments were formulated, with the addition of 0 %, 2 %, 4 %, or 6 % grapefruit albedo flour. The hams were evaluated for physical-chemical parameters (pH, titratable acidity, moisture content, ash, protein, fiber, fat, total phenols, and antioxidant capacity); technological properties (emulsion stability, yield, water-holding capacity); sanitary aspects (aerobic mesophilic microorganism count, Escherichia coli, Staphylococcus aureus, and Salmonella); texture profile analysis; sensory evaluation (acceptance test, purchase intention, check all that apply) with 41 consumers. Results. The produced products met sanitary and compositional standards. The addition of grapefruit albedo flour increased antioxidant capacity, fiber content, and water-holding capacity. All products received a rating equivalent to "Moderately Liked." Although hardness and elasticity decreased with increased flour content, texture acceptance was not affected. Conclusions. It is possible to produce duck hams by incorporating up to 6 % debittered grapefruit albedo flour, resulting in good acceptance, higher fiber content, and enhanced antioxidant capacity.

Keywords: fiber, antioxidant capacity, sensory evaluation, texture profile, water-holding capacity.

Introducción

La industria alimentaria busca complacer a los consumidores (Azanedo et al., 2020; Tigga et al., 2024). El consumo de carne ha encontrado barreras relacionadas con la salud, sabor, medio ambiente, bienestar animal, precio o relación calidad-precio, hábitos o la mera búsqueda de variedad (Dagevos & Verbeke, 2022), pero, aun así, ha aumentado en los últimos veinte años (Skwarek & Karwowska, 2023). Para ello, la industria cárnica mejora el valor nutricional de sus productos, con el empleo de materias primas ricas en componentes bioactivos (probióticos, antioxidantes, fibras dietéticas) (Karwowska et al., 2021), productos cárnicos ultra bajos en grasa (menor a 5 %) (Chappalwar et al., 2021), etc.

Desarrollar nuevos productos cárnicos implica mantener su valor nutricional y aceptabilidad (Kim et al., 2017), sin descuidar factores negativos como la presencia de grasa y aditivos químicos (de Araújo et al., 2022). La carne de pato es una alternativa viable a la de pollo para estos productos (Biswas et al., 2019), pero posee propiedades tecnológicas inferiores. La oxidación lipídica por la presencia de hierro hemo, puede provocar sabor desagradable, pérdida de ácidos grasos y vitaminas, durante el procesamiento y almacenamiento (Skwarek & Karwowska, 2023). Es usual emplear sustancias antioxidantes, generalmente sintéticas, para evitarlo, sin embargo, el empleo de subproductos de origen vegetal, con capacidad antioxidante, es prometedor (Hadidi et al., 2022).

Procesar frutas genera muchos residuos. Añadirlos a los alimentos es tanto una solución económica viable, como un beneficio para la salud por su valor nutricional y funcional (Skwarek & Karwowska, 2023). La industria cárnica los utiliza sobre todo para elaborar productos más saludables con vida útil mejorada (Nieto et al., 2021). Incorporar fibra en la formulación es valioso por su uso tecnológico y beneficios para la salud humana (Kausar et al., 2019). Una fuente de fibra es la cáscara (flavedo y albedo) de las frutas cítricas (Czech et al., 2021), que posee compuestos bioactivos con propiedades antioxidantes y antimicrobianas, útiles para el desarrollo de productos cárnicos más saludables y sostenibles (Velásquez-Rivera & Díaz-Torres, 2024).

La producción de carne de pato creció en los últimos años (Shin, Yune et al., 2023) y es especialmente popular en Asia (Onk et al., 2019). Aunque todavía pequeño, el mercado está creciendo porque es nutritiva, con alto contenido de ácidos grasos poliinsaturados y aminoácidos esenciales. En particular, el pato criollo (*Cairina moschata*), rinde en canal hasta el 74 % y en pechuga hasta el 26 %; su carne presenta alto contenido proteínico (18,6 a 20,8 %) y ácidos grasos poliinsaturados (20 a 40 % de los ácidos grasos totales) y bajo contenido de grasa intramuscular (2,7 a 8,2 %), por tanto, es una opción alternativa sobre otras carnes (da Silva Costa et al., 2023).

La carne de pato se clasifica como carne roja por su mayor contenido de fibra muscular roja comparada con la de pollo o pavo (Shin, Yune et al., 2023). La diferencia se debe a los niveles de mioglobina, hemoglobina y otros componentes, como proteínas, grasas, vitamina B12 y flavinas. Es muy susceptible a la oxidación debido al alto contenido de ácidos grasos poliinsaturados y aminoácidos esenciales. La oxidación de lípidos provoca rancidez, se relaciona con la oxidación de proteínas y puede producir sabores desagradables y olores rancios durante el almacenamiento (Jin et al., 2021).

Por sus características organolépticas, la carne de pato se emplea principalmente para productos enlatados, salchichas, carnes ahumadas, y albóndigas, entre otras (da Silva Costa et al., 2023) y en elaborar jamón reestructurado (Chen et al., 2023). Una investigación reciente, analizó 6 marcas de jamones de pato ahumados. La mayor aceptación general, correspondió a productos con contenido alto de proteínas y bajo de grasa, esto sugiere a la composición química, como un indicador importante de su calidad sensorial, donde la apariencia y el sabor, fueron determinantes (Ahn et al., 2023).

Para mejorar la calidad de los productos cárnicos, se emplean factores tecnológicos como añadir nuevos ingredientes (Shim et al., 2018), que afectan su composición final y propiedades tecno-funcionales y se reflejan en su aceptación (Kim et al., 2017). Para el jamón de pato, se señalan añadir la piel (Kim et al., 2017), pre emulsificación, proporción grasa/carne (Shim et al., 2018), añadir hidrocoloides (Kim et al., 2018), sustituir parcialmente cloruro de sodio con otra sal (Chen et al., 2023) y la fórmula empleada (Ahn et al., 2023). El objetivo de esta investigación fue evaluar el efecto de la adición de HDAT, sobre las características físico-químicas, sensoriales y microbiológicas del jamón de pato ultra bajo en grasa.

Materiales y métodos

Sitio de estudio e insumos utilizados

El estudio tuvo lugar en la Planta de Industrias Cárnicas de la Universidad Católica de Santiago de Guayaquil (UCSG), Ecuador, entre septiembre de 2022 y agosto de 2023. Todas las materias primas fueron adquiridas en el mercado local. A las canales de pato (*Cairina moschata*), se les realizó el deshuese en dicha planta y la carne se conservó en refrigeración entre 0 y 4 °C, por menos de 48 horas, hasta su empleo en la preparación de los jamones. Las toronjas (*Citrus x paradisi* L.) cumplían las siguientes características: apariencia esférica, uniformidad de textura en la cáscara, color amarillo como indicador de madurez, diámetro mayor de 10 cm, ausencia de lesiones o infestaciones visibles.

Las frutas se lavaron, desinfectaron y secaron, y se obtuvo el albedo, con la ayuda de un cuchillo de acero inoxidable. El desamargado se realizó de acuerdo con Ben Zid et al. (2015), para lo cual se procesó el albedo en agua a 121 °C por 15 min y se dejó refrescar hasta 50 °C. Posteriormente se deshidrató en estufa, a 50 °C durante 48 h; una vez seco, se trituró en un molino manual, hasta obtener un polvo fino de color blanco amarillento, con 3,13 % de humedad, pH 5,5, 0,63 °Brix y 38,07 % de fibra cruda y un contenido de flavonoides totales de 37,8 mg/g y 14,7 mg/g de fenoles totales, que fue envasado al vacío en funda de polietileno y conservado entre 0 y 4 °C hasta el momento de su uso.

Elaboración de los jamones

Se elaboraron prototipos para obtener jamón de carne de pato (*Cairina moschata*) ultra bajo en grasa. Para ello, a partir de una fórmula patrón previamente establecida, con las características sensoriales deseadas y, buen comportamiento tecnológico, se elaboraron formulaciones enriquecidas con la presencia de fibra dietética y compuestos bioactivos. Las formulaciones empleadas se muestran en el Cuadro 1.

Cuadro 1. Formulaciones utilizadas en la elaboración de jamón de pato (*Cairina moschata*). Facultad de Educación Técnica para el Desarrollo. Universidad Católica de Santiago de Guayaquil. Guayaquil, Ecuador. 2023.

Table 1. Formulations used in the production of duck (*Cairina moschata*) ham. Faculty of Technical Education for Development. Catholic University of Santiago de Guayaquil. Guayaquil, Ecuador. 2023.

Inquadientes		Formu	ılaciones	
Ingredientes —	T0	T2	T4	Т6
Carne de pato (%)*	65	65	65	65
Proteína de soya (%)*	5	5	5	5
Hielo (%)*	25	25	25	25
Condimentos y aditivos (%)*	5	5	5	5
HDAT (%) ^a	0	2	4	6

^{*}Los valores expresados como porcentaje del total. / a porcentaje añadido, calculado sobre el 100 %. / *The values expressed as a percentage of the total. / a added percentage, calculated on 100%.

Para su empleo, la carne fue molida mediante un molino a través de una placa de orificio de 8 mm, se pesaron los ingredientes en una balanza con capacidad de 1000 g, y se prepararon las formulaciones utilizando un mezclador de cuchillas. El embutido se realizó de forma mecánica, en tripa sintética de poliamida calibre 50 mm. La cocción se realizó en una olla con agua a 80 °C hasta alcanzar una temperatura interna de 70 °C (50 min). Una vez terminada la cocción, los jamones se enfriaron de manera inmediata con agua helada y fueron colocados en refrigeración para su conservación entre 2 y 4 °C.

Análisis físico-químicos de los jamones

El porcentaje de humedad se determinó por gravimetría utilizando el procedimiento descrito en AOAC 950.46 (Association of Official Analytical Chemists [AOAC], 2023a). La determinación de pH se realizó con el uso de un pHmetro de mesa de acuerdo a la norma INEN-783:1985 (Instituto Ecuatoriano de Normalización [INEN], 1985). La acidez valorable, expresada como ácido láctico, establecida como porcentaje, mediante titulación potenciométrica y la determinación de cenizas, mediante combustión a 550 °C durante 12 h en una mufla (Pérez Chabela & Ponce Alquicira, 2013).

La fibra se determinó de acuerdo el método descrito por la AOAC (2023b), mientras que la proteína se calculó a partir de la determinación de nitrógeno total (N x 6.25) por el método de Kjeldahl, bajo el método descrito por la AOAC (2023c), y la grasa siguiendo el procedimiento recomendado por la AOAC (2023d). Los resultados fueron expresados en porcentaje. Todas las determinaciones se realizaron por triplicado.

La determinación de fenoles totales se realizó mediante reacción en medio básico de los compuestos fenólicos con el reactivo de Folin-Ciocalteu (Roa Acosta et al., 2022). La lectura se realizó en un espectrofotómetro a 765

nm después de 2 h de reacción en condiciones de oscuridad, con el empleo de ácido gálico como sustancia de referencia. La capacidad antioxidante fue medida por ensayo in vitro mediante la reacción de reducción del radical libre estable 2,2-difenil-1-picrilhidracilo (DPPH). La lectura se realizó en un espectrofotómetro a una longitud de 517 nm (Abdel-Naeem et al., 2022). Estos análisis fueron realizados en el Laboratorio de soluciones experimentales Labsolex de la ciudad de Guayaquil.

Propiedades tecnológicas de los jamones

La estabilidad de la emulsión de los jamones se determinó por triplicado, según lo establecido por Pereira et al. (2019), con ligeras modificaciones. Se pesaron 50 g de masa y se colocaron dentro de tubos de centrífuga de 80 mL, los cuales se centrifugaron a 1000 g durante 3 min a 4 °C, para eliminar las burbujas de aire. Posteriormente, los tubos se calentaron en baño María, hasta alcanzar los 80 °C y se mantuvieron a esa temperatura, durante 30 min. Después, se enfriaron a temperatura ambiente y el líquido liberado se transfirió a crisoles, previamente pesados. Los crisoles con fluido se secaron a 105 °C durante 16 h, para medir el volumen de liberación total de fluido (LTF) y la pérdida de grasa (PG) a través de las ecuaciones 1 y 2.

$$LTF (\%) = \frac{LTF}{Peso \ inicial \ de \ muestra} \ (100) \qquad \text{(ecuación 1)}$$

$$PG (\%) = \frac{(Peso \ del \ crisol + sobrenadante \ seco) - Peso \ del \ crisol \ vacío}{LTF} \ (100) \qquad \text{(ecuación 2)}$$

El rendimiento de cocción (RC) y la retención de humedad (RH) de las muestras de jamón se determinaron según la metodología seguida por Pereira et al. (2019), con algunas modificaciones. Se pesaron 40 g de muestra, los cuales se colocaron dentro de tubos de centrífuga y se colocaron en baño María a 80 °C durante 30 min. Luego, el líquido liberado se eliminó por completo después de enfriar las muestras a temperatura ambiente y se pesó nuevamente. Los valores RC y RH, se determinaron utilizando las ecuaciones 3 y 4 respectivamente.

$$RC (\%) = \frac{Peso \ de \ muestra \ cocida}{Peso \ de \ muestra \ cruda} (100)$$
 (ecuación 3)
$$RH (\%) = \frac{RC (100) \ x \ Humedad \ de \ la \ muestra \ cocida (100)}{100}$$
 (ecuación 4)

La determinación de la capacidad de retención de agua (CRA) fue realizado de acuerdo a lo reportado por Ming-Min & Ismail-Fitry (2023). Se pesaron 5 g de masa cruda, la cual se mezcló con 32 mL de agua destilada durante 1 min en un tubo de centrífuga, pesado previamente. La mezcla se dejó reposar 10 min antes de centrifugar a 2900 g durante 25 min. Luego, se pesó el sobrenadante que fue separado de la masa. La masa se secó en la estufa a 50 °C durante 20 min con el tubo de centrífuga invertido e inclinado hacia abajo 10–20° respecto a la vertical. Se determinó el sedimento seco y se calculó CRA con la ecuación:

$$CRA$$
 (%) = $\frac{[(b-a)-(c-a)]}{(b-a)}$ (100) (ecuación 4)

Donde,

a = peso del tubo de centrífuga vacío.

b = peso del tubo de centrífuga con sobrenadante.

c = peso del tubo de centrífuga seco.

Evaluación microbiológica de los jamones

Se realizaron los análisis establecidos en la norma (Instituto Ecuatoriano de Normalización [INEN], 2012). La determinación de microorganismos aerobios mesófilos se realizó bajo el procedimiento recomendado por Maturin & Peeler (2021), para el recuento en placa. La determinación de *Escherichia coli* se realizó en base al procedimiento establecido por Feng et al. (2020). Para la determinación de *Staphylococcus aureus* se trabajó con el procedimiento establecido por la AOAC (2023e). En el caso de la *Salmonella*, el análisis se efectuó siguiendo la metodología establecida por Andrews et al. (2023). Los análisis fueron realizados en el Laboratorio de soluciones experimentales Labsolex de la ciudad de Guayaquil.

Análisis de la textura de los jamones

El análisis del perfil de textura (APT) se realizó por triplicado con un analizador de textura Modelo TVT 6700. Antes de la evaluación, las muestras fueron equilibradas a temperatura de 23 ± 1 °C, peladas y cortadas en forma cilíndrica (15 mm de largo). Los dos ciclos de trabajo se realizaron de forma perpendicular al eje, con compresión hasta un 50 %, a una velocidad de 2 mm/s. Se realizaron siete lecturas para cada tratamiento. Los parámetros evaluados del perfil de textura fueron: dureza, elasticidad, cohesividad, gomosidad y masticabilidad, determinados como lo describieron Jonkers et al. (2021). Este análisis fue realizado en los laboratorios de Granotec-Guayaquil.

Análisis sensorial de los jamones

Se empleó un panel de evaluación compuesto por 41 jueces (estudiantes y miembros del personal académico), que recibieron las cuatro muestras de forma aleatoria, balanceada mediante un cuadrado latino de William para equilibrar los efectos de posición de presentación. A los jueces se les proporcionó agua potable para enjuagar su boca antes y después de la prueba de cada muestra. Se utilizó una escala hedónica de 9 puntos (1= me disgusta extremadamente; 5 = ni me gusta ni disgusta: 9 = me gusta extremadamente), conforme con lo descrito por Fu et al. (2022). Se evaluaron los atributos aspecto, color, olor, sabor y textura.

Para conocer la intención de compra, se utilizó una escala del 1 (nunca) al 5 (seguramente), con base al procedimiento realizado por Coelho et al. (2019). Además, se definió un índice de calidad sensorial (ICS) como el promedio de las evaluaciones de los cinco atributos sensoriales evaluados, bajo el procedimiento descrito por Yimenu et al. (2019), con modificaciones. Se consideraron respuestas negativas las calificaciones con valores menores a 5, respuestas neutrales las calificaciones con valores entre 5 y 6 y respuestas positivas, las calificaciones con valores mayores a 6.

Además, se utilizó una prueba *Check-All-That-Apply* (CATA), donde los panelistas seleccionaban de veintiún atributos, los que considerasen adecuados para describir cada formulación. Los atributos fueron seleccionados según experiencias previas, análisis bibliográfico y características del producto. Los descriptores se emplearon para caracterizar la apariencia (aspecto homogéneo, aspecto característico, brilloso, color rosado, muy pálido), olor (olor característico, rancio, ahumado), sabor (sabor característico, desabrido, ácido, salado, amargo, rancio) y textura (duro, elástico, seco, grasoso, arenoso, blando y fibroso) de los productos. Se obtuvo el porcentaje de selección global de cada atributo (se considera 100 % el total de respuestas posibles) para verificar el comportamiento de los jueces frente a los atributos, y el número de selecciones de cada atributo para cada muestra.

Análisis estadístico

Los resultados se presentan como la media de un mínimo de tres observaciones independientes y los valores se expresaron como media \pm desviación estándar (DE). Las diferencias entre los grupos se consideraron significativas a p < 0.05. Los resultados fueron analizados mediante análisis de varianza (ANDEVA) unidireccional seguido de la prueba posthoc LSD Fisher para comparación múltiple. El análisis estadístico se realizó con los programas Statgraphics Centurion Plus versión 5.0 e InfoStat versión 2020.

Resultados

Análisis de composición de los jamones

Las cuatro formulaciones empleadas no mostraron diferencias significativas en cuanto a la acidez o el pH. La determinación del pH es crucial para evaluar la calidad tecnológica de los productos cárnicos, debido a su estrecha relación con el valor de CRA. Los cambios observados en el resto de las variables reportadas en el Cuadro 2, se deben a la naturaleza de la HDAT añadida (baja en proteína, grasa y humedad; rica en fibra y sustancias antioxidantes).

Cuadro 2. Caracterización física y química de los jamones. Facultad de Educación Técnica para el Desarrollo. Universidad Católica de Santiago de Guayaquil y Laboratorio LABSOLEX. Guayaquil, Ecuador. 2023.

Table 2. Physical and chemical characterization of the hams. Faculty of Technical Education for Development. Catholic University of Santiago de Guayaquil and LABSOLEX Laboratory. Guayaquil, Ecuador. 2023.

Tratamiento	T0	T2	T4	Т6
Acidez	$0,252 \pm 0,01^{a}$	$0,225 \pm 0,01^{a}$	$0,234 \pm 0,01^{a}$	$0,225 \pm 0,01^{a}$
pН	$6,47 \pm 0,06^{ab}$	$6,50 \pm 0,01^{ab}$	$6,46 \pm 0,00^{ab}$	$6,43 \pm 0,02^{a}$
Humedad %	$73,35 \pm 0,27^{\circ}$	$72,18 \pm 0,09^{b}$	$71,41 \pm 0,15^{a}$	$71,19 \pm 0,08^{a}$
Ceniza %	$2,67 \pm 0,04^{a}$	$3,16 \pm 0,06^{b}$	$3,50 \pm 0,32^{b}$	$3,54 \pm 0,37^{b}$
Proteína %	$18,98 \pm 0,02^{d}$	$18,58 \pm 0,03^{\circ}$	$18,23 \pm 0,03^{b}$	$17,72 \pm 0,20^{a}$
Grasa %	$3,45 \pm 0,13^{\circ}$	$3,3 \pm 0,03^{b}$	$3,25 \pm 0,04^{ab}$	$3,16 \pm 0,02^{a}$
Fibra %	0.3 ± 0.01^{a}	$1,17 \pm 0,02^{b}$	$2,27 \pm 0,01^{\circ}$	$3,45 \pm 0,09^{d}$
DPPH ± % inhibición	$0,480 \pm 0,035^{a}$	$0,844 \pm 0,001^{b}$	$0,949 \pm 0,006^{\circ}$	$0,980 \pm 0,008^{c}$
Fenoles ± mg ácido gálico/100 ml extracto	$0,242 \pm 0,001^{a}$	$0,444 \pm 0,003^{b}$	$0,495 \pm 0,002^{\circ}$	$0,583 \pm 0,009^{d}$

Valores promedios de tres determinaciones \pm desviación estándar. / Mean values of three determinations \pm standard deviation. Letras diferentes en la misma fila, indican diferencia significativa ($p \le 0.05$). / Different letters in the same row lead to significant differences at $p \le 0.05$.

Propiedades tecnológicas de los jamones

En los jamones elaborados, se observa que al incrementar el contenido de HDAT, disminuye la cantidad de fluido liberado (LTF) y, en consecuencia, como tendencia, se incrementan la retención de humedad y el valor CRA (Cuadro 3), lo cual se debe probablemente al incremento del porcentaje de fibra producido, pues la fibra contribuye

Agron. Mesoam. 36: Artículo 3v3jz593, 2025 ISSN 2215-3608 https://doi.org/10.15517/3v3jz593

Cuadro 3. Caracterización de las propiedades tecnológicas de los jamones. Facultad de Educación Técnica para el Desarrollo. Universidad Católica de Santiago de Guayaquil. Guayaquil, Ecuador. 2023.

Table 3. Characterization of the technological properties of the hams. Faculty of Technical Education for Development. Catholic University of Santiago de Guayaquil, Ecuador. 2023.

TRAT	LTF %	PG %	Rendimiento de cocción %	Retención Humedad	CRA %
ТО	$17,06 \pm 0,13^{b}$	$10,50 \pm 0,28^{\rm b}$	$91,35 \pm 0,78^{ab}$	$66,54 \pm 1,39^{a}$	$12,65 \pm 0,62^{a}$
T2	$11,88 \pm 0,5^{a}$	$10,22 \pm 0,13^{ab}$	$90,36 \pm 0,23^{a}$	$66,12 \pm 1,75^{a}$	$13,38 \pm 0,73^{ab}$
T4	$11,12 \pm 0,68^{a}$	$11,24 \pm 0,33^{\circ}$	$92,37 \pm 0,16^{b}$	$66,73 \pm 0,81^{a}$	$14,28 \pm 0,15$ ^{bc}
Т6	$11,65 \pm 0,52^{a}$	$9,69 \pm 0,48^{a}$	$91,70 \pm 1,13^{b}$	$68,17 \pm 0,59^{\text{b}}$	$15,20 \pm 0,31^{\circ}$

TRAT: Formulación; **LTF:** volumen de liberación total de fluido; **PG:** pérdida de grasa; **CRA:** capacidad de retención de agua. / **TRAT:** Treatment; **LTF:** Total fluid release volume; **PG:** Fat loss; **WHC:** Water holding capacity.

Valores promedios de tres determinaciones ± desviación estándar. / Mean values of three determinations ± standard deviation.

Letras diferentes en la misma columna, indican diferencia significativa ($p \le 0.05$). / Different letters in the same column, lead to significant differences at $p \le 0.05$.

a retener agua y estabilizar la emulsión. Respecto a la retención de grasa, no se halló un patrón definido, aunque es probablemente debido a que se trata de un producto bajo en grasa. Algo similar ocurrió con el rendimiento de cocción, donde no se observa una tendencia definida y las variaciones pueden atribuirse al error experimental que se produce al trabajar en una escala de planta piloto.

Evaluación microbiológica de los jamones

La evaluación sanitaria de los productos cárnicos, permite identificar y cuantificar microorganismos (patógenos o no) que podrían causar el deterioro de los mismos o provocar enfermedades en el consumidor. Los resultados de la evaluación microbiológica evidencian que se emplearon buenas prácticas de manufactura en la elaboración de los jamones. Todos los jamones presentaron las características sanitarias exigidas por la normativa ecuatoriana (Cuadro 4).

Cuadro 4. Caracterización microbiológica de los jamones. Laboratorio Labsolex. Guayaquil, Ecuador. 2023.

Table 4. Microbiological characterization of the hams. Labsolex Laboratory. Guayaquil, Ecuador. 2023.

TRAT	Aerobios mesófilos (log ufc/g)	Escherichia coli (log ufc/g)	Staphylococcus aureus (log ufc/g)	Salmonella spp. (log ufc/25 g)
Т0	$1 \pm 0,1^{a}$	<1	<1	Ausencia
T2	<1ª	<1	<1	Ausencia
T4	<1a	<1	<1	Ausencia
T6	<1 ^a	<1	<1	Ausencia

ufc: Unidades formadoras de colonias. / ufc: Colony forming units.

Ensayos por triplicado empleando las diluciones seriadas de 1: 100, 1: 1000, 1: 10000 / Triplicate tests using serial dilutions of 1: 100, 1: 1000, 1: 10000

Letras diferentes en la misma columna, indican diferencia significativa ($p \le 0.05$). / Different letters in the same column, lead to significant differences at $p \le 0.05$.

Análisis de perfil de textura (APT) de los jamones

Al añadir HDAT cambian los parámetros del APT (Cuadro 5). La dureza se redujo significativamente respecto a la formulación original. La elasticidad aumentó, pero no se halló una tendencia clara para la relación con la cohesividad de los jamones, que mostró un comportamiento irregular, pues después de un pequeño aumento disminuyó al seguir incrementando el porcentaje añadido. La gomosidad tiende a disminuir al aumentar el porcentaje de HDAT indicando que la disminución de la dureza es la causa principal de su variación. El valor de la masticabilidad no fue afectado significativamente por el porcentaje de HDAT. Como este valor se relaciona con la cohesividad y elasticidad, su comportamiento es derivado de la variación de dichos parámetros.

Cuadro 5. Resultados del Análisis de Perfil de Textura de los jamones. Laboratorios GRANOTEC. Guayaquil, Ecuador. 2023.

Table 5. Results of the Texture Profile Analysis of the hams. GRANOTEC Laboratory. Guayaquil, Ecuador. 2023.

Trat.	Dureza (kg)	Elasticidad	Cohesividad	Gomosidad (kg)	Masticabilidad (kg)
ТО	$12,037 \pm 0,15^{b}$	$1,197 \pm 0,14^{a}$	$0,70 \pm 0,01^{\rm b}$	8,409 ± 0,13°	$10,065 \pm 1,20^{a}$
T2	$11,616 \pm 0,17^{a}$	$1,203 \pm 0,15^a$	$0,75 \pm 0,01^{\circ}$	$8,694 \pm 0,08^{d}$	$10,457 \pm 1,33^{a}$
T4	$11,660 \pm 0,10^{a}$	$1,304 \pm 0,12^{ab}$	$0,70 \pm 0,03^{b}$	$8,144 \pm 0,33^{b}$	$10,618 \pm 1,05^{a}$
Т6	$11,694 \pm 0,26^{a}$	$1,359 \pm 0,09^{b}$	$0,61 \pm 0,02^{a}$	$7,181 \pm 0,22^{a}$	$9,766 \pm 0,85^a$

^{*}Valores promedios de siete determinaciones \pm desviación estándar. / *Mean values of seven determinations \pm standard deviation. Letras diferentes en la misma columna, indican diferencia significativa ($p \le 0.05$). / Different letters in the same column, lead to significant differences at $p \le 0.05$.

Evaluación sensorial de los jamones: prueba hedónica

No se encontraron diferencias significativas entre las muestras para ninguno de los atributos evaluados, aunque se observó una ligera tendencia (no significativa) a que disminuyera la aceptación en los atributos Aspecto, Color, Olor y Sabor, al aumentar la incorporación de HDAT. Todas las formulaciones fueron evaluadas favorablemente con una aceptación general media superior a 7. La intención de compra fue positiva (mayor a 3,5) para todos los jamones elaborados (Cuadro 6).

Cuadro 6. Resultados de la prueba de aceptación de los jamones. Facultad de Educación Técnica para el Desarrollo. Universidad Católica de Santiago de Guayaquil. Guayaquil, Ecuador. 2023.

Table 6. Hams acceptance test results. Faculty of Technical Education for Development. Catholic University of Santiago de Guayaquil. Guayaquil, Ecuador. 2023.

TRAT	Aspecto	Color	Olor	Sabor	Textura	AG	IC
T0	$7,2 \pm 1,7^{a}$	$7,1 \pm 1,7^{a}$	$7,5 \pm 1,5^{a}$	$7,4 \pm 1,5^{a}$	$7,0 \pm 1,6^{a}$	$7,4 \pm 1,4^{a}$	3.8 ± 1.2^{a}
T2	$7,0 \pm 1,8^{a}$	$7,2 \pm 1,8^{a}$	$7,5 \pm 1,7^{a}$	$7,4 \pm 1,9^{a}$	$7,1 \pm 1,8^{a}$	$7,4 \pm 1,9^{a}$	$3,6 \pm 1,3^{a}$
T4	$6,9 \pm 1,6^{a}$	$7,0 \pm 1,7^{a}$	$7,1 \pm 2,1^{a}$	$7,0 \pm 1,7^{a}$	$6,9 \pm 1,9^{a}$	$7,1 \pm 1,5^{a}$	3.6 ± 1.1^{a}
Т6	$6,9 \pm 1,8^{a}$	$6,8 \pm 1,6^{a}$	$7,1 \pm 1,8^{a}$	$6,7 \pm 1,9^{a}$	$7,0 \pm 1,9^{a}$	$7,2 \pm 1,5^{a}$	$3,7 \pm 1,1^a$

AG: aceptación general; IC: intención de compra. / AG: General acceptance; IC: Purchase intention.

Valores medios de 41 jueces. Letras diferentes en la misma columna indican diferencia significativa ($p \le 0.05$). Average values of 41 judges. Different letters in the same column lead significant difference at $p \le 0.05$.

Con relación a la calidad de las respuestas obtenidas en la prueba hedónica, se puede observar (Cuadro 7) que para todas las formulaciones ensayadas la aceptación general (AG) sobrepasó el 85 %, excepto la formulación codificada T4 que alcanzó un 80,5 % con el mayor porcentaje de respuestas neutras entre todos los jamones elaborados. De forma similar, se observó una disminución del porcentaje de respuestas positivas del índice de calidad sensorial (ICS) para los jamones con 4 o 6 % de HDAT añadido. Sin embargo, el porcentaje de respuestas negativas se mantuvo bajo en todos los casos.

Cuadro 7. Porcentaje de calificaciones según tipo y muestra (41 jueces). Facultad de Educación Técnica para el Desarrollo. Universidad Católica de Santiago de Guayaquil. Guayaquil, Ecuador. 2023.

Table 7. Percentage of grades by type and sample (41 judges). Faculty of Technical Education for Development. Catholic University of Santiago de Guayaquil, Guayaquil, Ecuador. 2023.

Clasificación	Т	0	Т	2	Т	4	Т6	
Clasificación	AG	ICS	AG	ICS	AG	ICS	AG	ICS
Negativas (menor a 5)	2,4	4,9	7,3	4,9	7,3	7,3	4,9	12,2
Neutras (entre 5 y 6)	12,2	7,3	4,9	9,8	12,2	22,0	9,8	12,2
Positivas (mayor a 6)	85,4	87,8	87,8	85,4	80,5	70,7	85,4	75,6

AG: aceptación general; ICS: índice de calidad sensorial. / AG: General acceptance; ICS: Sensory quality index.

Evaluación sensorial de los jamones: Comportamiento de los jueces, prueba CATA

Los resultados de la prueba CATA se resumen en los Cuadros 8 y 9. Respecto al atributo general aspecto, para todas las muestras fueron considerados de manera sistemática los indicadores homogéneo y característico. De acuerdo con los comentarios de los evaluadores, estos indicadores se solapaban, pues consideraron la homogeneidad como algo característico del producto. Basados en ello, estos indicadores, pese a ser muy seleccionados, no discriminaron entre las fórmulas ensayadas. En todos los casos los porcentajes de mención de brilloso y rosado son menores que para T0 y los porcentajes de mención de muy pálido son mayores que para T0. Esto se refleja en la tendencia a la disminución (no significativa) de la aceptación del color, según indicaron los resultados de la prueba hedónica.

Cuadro 8. Porcentaje global de selección de atributos (para todos los productos). Facultad de Educación Técnica para el Desarrollo. Universidad Católica de Santiago de Guayaquil. Guayaquil, Ecuador. 2023.

Table 8. Overall selection percentage by attributes (for all products). Faculty of Technical Education for Development. Catholic University of Santiago de Guayaquil, Ecuador. 2023.

Aspecto	Aspecto (%)		%)	Sabor (%)		Textur	a (%)
Homogéneo	45,6	Característico	48,1	Característico	46,8	Duro	28,4
Característico	38,8	Rancio	8,3	Desabrido	11,9	Elástico	13,8
Brilloso	11,9	Ahumado	26,9	Ácido	4,4	Seco	33,5
Rosado	36,9			Salado	15,0	Grasoso	7,2
Muy Pálido	36,9			Amargo	7,0	Arenoso	11,0
				Rancio	5,5	Blando	22,0
						Fibroso	24,6

Cuadro 9. Porcentaje de veces que cada atributo fue seleccionado para cada muestra. Facultad de Educación Técnica para el Desarrollo. Universidad Católica de Santiago de Guayaquil. Guayaquil, Ecuador. 2023.

Table 9. Percentage of times each attribute was selected for each sample. Faculty of Technical Education for Development. Catholic University of Santiago de Guayaquil. Guayaquil, Ecuador. 2023.

	A 4 27 4 76	Muestra				
Atributo general	Atributo específico —	ТО	T2	T4	Т6	
	Homogéneo (%)	53,7	48,8	48,8	46,3	
	Característico (%)	34,1	26,8	31,7	31,7	
Aspecto	Brilloso (%)	24,4	17,1	7,3	14,6	
	Rosado (%)	43,9	26,8	19,5	26,8	
	Muy Pálido (%)	34,1	41,5	58,5	53,7	
	Característico (%)	51,2	41,5	41,5	43,9	
Olor	Rancio (%)	9,8	9,8	12,2	9,8	
	Ahumado (%)	26,8	29,3	29,3	22,0	
	Característico (%)	46,3	43,9	58,5	36,6	
	Desabrido (%)	4,9	14,6	12,2	9,8	
Sabor	Ácido (%)	7,3	0,0	0,0	7,3	
Saboi	Salado (%)	19,5	4,9	14,6	14,6	
	Amargo (%)	7,3	0,0	9,8	17,1	
	Rancio (%)	2,4	4,9	4,9	2,4	
	Duro (%)	26,8	43,9	31,7	17,1	
	Elástico (%)	4,9	14,6	17,1	17,1	
	Seco (%)	36,6	36,6	39,0	34,1	
Textura	Grasoso (%)	7,3	4,9	4,9	9,8	
	Arenoso (%)	12,2	9,8	4,9	14,6	
	Blando (%)	12,2	7,3	24,4	31,7	
	Fibroso (%)	26,8	24,4	22,0	22,0	

Para el atributo olor, el indicador más mencionado fue olor característico, aunque el porcentaje de menciones fue menor con la incorporación de HDAT, sin que esto afectara la aceptación del resto de las fórmulas (Cuadro 6). Aunque el atributo ahumado fue mencionado de manera repetida, no constituyó un elemento de discriminación entre muestras. Para el atributo sabor, el indicador más mencionado fue sabor característico, el cual estuvo presente en todas las muestras.

Respecto al atributo textura, los indicadores elástico y grasoso, no fueron considerados por el bajo número de menciones. Sin embargo, el indicador arenoso, también poco mencionado, aumentó con la incorporación de HDAT, lo que sugiere que sería deseable un tamaño de partícula menor, aun cuando esto no se reflejó en la aceptabilidad. Las fórmulas T0, T2 y T4 fueron evaluadas como más duras que T6, en consecuencia, al analizar el indicador blando, hubo un comportamiento inverso, como sería de esperar. Los atributos seco y fibroso, fueron mencionados, sin permitir discriminar entre muestras.

Discusión

El pH de un producto cárnico es importante, pues afecta sus características funcionales y la calidad del producto durante su almacenamiento. La harina desamargada de toronja empleada en este trabajo no influyó significativamente en el valor de pH de los embutidos elaborados, probablemente debido a que con el tratamiento de desamargado se redujo su acidez y el valor pH de la HDAT fue de $5,5 \pm 0,01$. Este resultado es similar al encontrado por Alrawashdeh & Abu-Alruz (2022) para nuggets de pollo bajos en grasa, con el empleo de cuatro tipos diferentes de fibra dietética comercial y a lo hallado por Aminzare et al. (2024) quienes usaron fibra de naranja en mortadela de pollo.

Los productos estudiados contenían como fuentes de proteína la carne de pato de Moscovia (*Cairina moschata*) y la proteína de soya. Debido a los porcentajes empleados en la formulación, se obtuvieron para los 4 jamones valores de proteína superiores al 12 % exigido en la legislación ecuatoriana para productos cárnicos Tipo I. Estos resultados además permiten que las cuatro formulaciones puedan ser etiquetadas como "fuente de proteína", según lo reportado en la literatura (De Angelis et al., 2023).

La única fuente de grasa en las formulaciones estudiadas, es la carne. El contenido de grasa de la carne de pato de Moscovia (*Cairina moschata*) varía de 2,7 a 8,2 %, menor al presentado para carnes de res, cordero o cerdo (da Silva Costa et al., 2023). Además, la grasa de pato es más saludable que otras grasas animales, como la manteca de cerdo (Shin, Kim et al., 2023), asimismo su ácido graso principal es el ácido oleico, lo cual proporciona buena estabilidad física y oxidativa (Shin et al., 2021). El contenido de grasa encontrado en los jamones, corresponde a la clasificación de ultra bajo en grasa (menor a 5 %) reportada en la literatura (Chappalwar et al., 2021) para productos cárnicos.

La HDAT empleada aporta fibra, sustancias con capacidad antioxidante y ceniza, por tanto, estos valores aumentan al adicionar mayor cantidad de harina, mientras descienden los valores de humedad, grasa y proteína, lo que concuerda con lo planteado por Salazar et al. (2021). Se ha reportado que en los productos cárnicos donde se incluye fibra cítrica, su contenido suele estar entre 0,5 y 2 % para evitar efectos sensoriales adversos (Salazar et al., 2021). Sin embargo, para que sean considerados para el etiquetado como "fuente de fibra", el valor debe ser mayor a 3 % (Vieira et al., 2022), requisito que solamente es alcanzado por la fórmula T6.

Se considera que añadir fibra dietética podría mejorar la capacidad de retener agua y grasa, y la estabilidad de la emulsión (Xiao et al., 2021). En esta investigación, la estabilidad fue evaluada mediante los valores LTF y PG, los cuales indicaron que la adición de HDAT la mejoró. Como el valor LTF está en el denominador de la ecuación (2), se podría esperar que PG aumente al añadir HDAT, pues LTF disminuye. Que no ocurriera, indica que la fibra utilizada también contribuyó a retener agua y grasa, lo que concuerda con lo reportado en la literatura (Nieto et al., 2021).

La CRA influye en la pérdida de cocción y en la calidad sensorial de los productos cárnicos (Farag et al., 2024). Un descenso del valor de pH afecta la CRA de las proteínas miofibrilares (Silva et al., 2020) y se ha señalado que el cambio en el pH al agregar fibra dietética al sistema cárnico depende del pH de la fuente de fibra (Twarogowska et al., 2022). En esta investigación, el valor pH de las formulaciones no mostró una variación estadísticamente significativa, por tanto, el factor predominante fue la absorción de agua por la fibra; no un cambio en el punto isoeléctrico de las proteínas atribuible al pH.

Es importante controlar la presencia de microorganismos responsables del deterioro, pues pueden generar cambios indeseados en propiedades sensoriales como olor, textura y apariencia (Abdel-Naeem et al., 2022). La mayoría de los estudios afirman que la presencia de las fibras no provoca efectos negativos sobre la calidad microbiológica (Aminzare et al., 2022). Los resultados de los análisis microbiológicos en este trabajo, indicaron que los procesos fueron realizados con inocuidad y que la adición de HDAT no afectó su calidad sanitaria, lo que concuerda con lo señalado por otros investigadores con el empleo de harina de cáscara de frutas cítricas o de su albedo (Abdel-Naeem et al., 2022; Aminzare et al., 2022).

La textura se encuentra entre los atributos considerados para seleccionar un alimento, por tanto, influye en su aceptabilidad, especialmente en los productos cárnicos (Haque et al., 2023), para los cuales la dureza instrumental se asocia con la fuerza del gel obtenido, que en general disminuye al aumentar el porcentaje de grasa. Para la adición de fibra, el efecto depende de la fibra utilizada (Barbut et al., 2023). En esta investigación, los resultados indican que la incorporación de HDAT, al interferir con la formación del gel, provocó la disminución de la dureza, efecto favorable al tratarse de un producto ultra bajo en grasa.

La elasticidad mide la recuperación elástica del embutido, tras eliminar la fuerza que lo deforma, mientras que la cohesividad mide la dificultad para romper su estructura interna (Jonkers et al., 2021). En esta investigación, el APT muestra que al incrementar el contenido de HDAT, aumentó la elasticidad, con tendencia de la cohesividad y gomosidad a disminuir, comportamientos relacionados con la disminución de la fuerza del gel, sin un efecto definido sobre la masticabilidad. Estos cambios pueden atribuirse al contenido de fibra, ya que esta interrumpe las interacciones proteína-agua y proteína-proteína, para la formación del gel (Choe et al., 2018), aunque la variación en humedad y las propiedades tecnológicas de la fuente de fibra, también influyen (Chappalwar et al., 2021).

El tipo de fibra añadido también es importante, pues la textura de los productos cárnicos se afecta por las propiedades de la fibra utilizada (Barbut, 2023). Un estudio realizado con la adición de varios tipos de fibra dietética (inulina, celulosa, carboximetilcelulosa, quitosano y pectina) en un sistema cárnico modelo (Han & Bertram, 2017), reveló que la dureza, la elasticidad y la masticabilidad de las muestras, fue mayor o menor que los valores del control, en dependencia del tipo de fibra estudiado. En otra investigación, Cardona-Hincapié et al. (2020) estudiaron el efecto de dos tipos comerciales de fibra cítrica y encontraron que, con la adición de ambas, la dureza disminuyó, pero no en igual proporción, lo cual concuerda con los resultados del presente trabajo.

Los criterios sensoriales importan para evaluar la calidad de los alimentos (Shang et al., 2022). Adicionar fibra cítrica, es conveniente para la salud (Zarate-Vilet et al., 2022), pero su empleo está limitado, debido a que a mayor concentración, disminuye la valoración organoléptica (Aminzare et al., 2022). La aceptación sensorial de los jamones fue satisfactoria (valores superiores a 7 para AG y a 6,7 en los atributos individuales), para todas las formulaciones, lo que se explica por el tratamiento previo de la harina. Un valor AG alrededor de 7 se considera bueno (de Oliveira Paula et al., 2021) e incluso con un valor entre 6 y 7 se considera al producto optimizado de manera sensorial (Scarton et al., 2021).

Para la incorporación de HDAT en productos cárnicos elaborados a partir de carne de pato, no se encontraron referencias, pero sí de otras harinas de albedo de cítricos. La harina de albedo de limón (Chappalwar et al., 2021) fue empleada en hamburguesas de pollo ultra-bajas en grasa y al incorporar hasta el 1 % de harina se obtuvo una mejora sensorial del producto, pero los panelistas reportaron sabor amargo a mayor concentración. Esto no ocurrió en los jamones de la presente investigación, pues la harina de toronja fue desamargada previamente.

En la prueba hedónica se obtuvieron los porcentajes de las calificaciones dadas por los jueces, categorizadas según su valor numérico. El porcentaje de respuestas positivas fue alto (mayor al 80 %) para AG e ICS en todos los tratamientos, lo cual reafirma lo antes expuesto. Respecto a IC, valores medios superiores a 2,5 pueden indicar voluntad para comprar el producto (Tavares et al., 2021), por lo que un valor medio siempre superior a 3,5 fue favorable para todas las formulaciones elaboradas en el presente estudio. Los resultados concuerdan con lo planteado por Silva et al. (2020), quienes concluyeron que las harinas de albedo de naranja pueden funcionar como alternativas viables tanto en el aspecto nutricional como en el sensorial.

En la prueba CATA, los indicadores mencionados menos del 20 % de veces del total posible, no se consideraron aptos para discernir entre formulaciones, estos fueron: aspecto (brilloso), olor (rancio), sabor (desabrido, ácido, salado, amargo y rancio) y textura (elástico, grasoso y arenoso). La mención de estos rasgos se considera debido a la percepción individual de los jueces, no a características del alimento. Tampoco se consideran discriminantes entre formulaciones aquellos atributos que no muestran diferencias en ese porcentaje, pues se consideran propios del producto.

Se observó un cambio notable en el atributo general "aspecto", con una disminución del atributo específico "rosado" y aumento del atributo específico "muy pálido" al incrementar la incorporación de HDAT, lo cual coincide con la medición instrumental del color de mortadela de pollo (Aminzare et al., 2024). Este cambio es debido a dos factores: la dilución del pigmento mioglobina, por la incorporación de harina, y al mayor contenido de fibra, ya que la fibra está compuesta por macromoléculas que pueden rehidratarse y permanecer fuera de la matriz cárnica, lo que provoca aumento de la luminosidad del producto (Abdel-Naeem et al., 2022). Esto concuerda de manera parcial con lo observado por otros autores (Chappalwar et al., 2021; Eldahrawy et al., 2022).

En el atributo olor, el único término relevante fue "olor característico", que mostró una ligera disminución del porcentaje de mención, con la incorporación de HDAT, probablemente atribuible a la disminución en fórmula del componente cárnico. Para el atributo sabor, el indicador más mencionado fue "sabor característico", presente en todas las muestras sin ser discriminador, ya que no se pudo relacionar con el porcentaje de HDAT añadido. Esto indica que, debido al tratamiento previo, dicha incorporación no afecta la percepción del sabor en el producto, a diferencia de lo que sucede con otras harinas de origen cítrico (Chappalwar et al., 2021).

En relación con el atributo textura, el comentario mayoritario para todas las formulaciones fue calificarlas como secas, seguido de dura y fibrosa, lo cual se atribuye al hecho de ser un producto bajo en grasa. La capacidad de una fibra específica para mejorar la textura de un producto cárnico, depende de sus propiedades y su interacción con la proteína de la matriz cárnica formada, y puede ser beneficiosa o no para la textura, en dependencia de sus caracteristicas (Barbut, 2023). Por tanto, el efecto de adición de estas harinas, depende del producto al cual se añade, y en menor medida de la fuente y su tratamiento (Velásquez-Rivera & Díaz-Torres, 2024).

Los resultados de la evaluación sensorial concuerdan, en general, con lo hallado por Baioumy & Abedelmaksoud (2021), quienes reportaron que la adición de un 5 % de albedo de naranja en la elaboración de hamburguesas de carne de res resultó en una ligera mejoría de sus propiedades organolépticas. También concuerda con lo reportado por Silva et al. (2020), en el sentido de que la sustitución de grasa por harina de albedo de naranja, hasta un 50 %, no afecta las propiedades organolépticas de las hamburguesas bovinas. Al utilizar hasta un 6 % de HDAT, los consumidores no detectan el sabor amargo que según la literatura (Zarate-Vilet et al., 2022) podría ser una limitante lanus organoléptica.

Conclusiones

Es posible elaborar jamones ultra bajos en grasa, a partir de carne de pato, al incorporar hasta un 6 % de HDAT, con buena aceptación, mayor contenido de fibra, mayor capacidad antioxidante y buenas propiedades tecnológicas. Todas las formulaciones estudiadas cumplieron con los parámetros sanitarios de la normativa ecuatoriana. Los resultados de la prueba CATA indican que las formulaciones elaboradas son duras y fibrosas, presentan olor y sabor característicos, pero son más pálidas y secas que el control.

Agradecimientos

Los autores agradecen a la Universidad Católica de Santiago de Guayaquil por el apoyo brindado.

Conflictos de interés

Los autores declaran que no tienen conflicto de interés

Referencias

- Abdel-Naeem, H. H., Elshebrawy, H. A., Imre, K., Morar, A., Herman, V., Paşcalău, R., & Sallam, K. I. (2022). Antioxidant and antibacterial effect of fruit peel powders in chicken patties. *Foods*, 11(3), Article 301. https://doi.org/10.3390/foods11030301
- Ahn, J. Y., Kim, T. K., Shin, D. M., Lee, J. H., Cha, J. Y., Kim, Y. J., Park, M., & Choi, Y. S. (2023). Comparison of quality characteristics of smoked duck hams in domestic market. *Food and Life*, 2023(2), 49-54. https://doi.org/10.5851/fl.2023.e5
- Alrawashdeh, H., & Abu-Alruz, K. (2022). Development of High-Fiber, Low Fat Chicken Nuggets. *International Journal of Food Studies*, 11(2), 354–373 https://doi.org/10.7455/ijfs/11.2.2022.a8
- Aminzare, M., Hashemi, M., Afshari, A., Noori, S. M. A., & Rezaeigolestani, M. (2022). Comparative evaluation of the effects of different dietary fibers as natural additives on the shelf life of cooked sausages. *Jundishapur Journa of Natural Pharmaceutical*, 17(3), Article e121624. https://doi.org/10.5812/jjnpp-121624
- Aminzare, M., Hashemi, M., Afshari, A., Noori, S. M. A., & Rezaeigolestani, M. (2024). Development of Functional Sausages:

 A Comparative Study of the Impact of Four Dietary Fibers on the Physico-Chemical Properties of Mortadella Sausages. *Journal of Human Environment and Health Promotion*, 10(2), 83-88. https://doi.org/10.61186/jhehp.10.2.83
- Andrews, W. H., Wang, H., Jacobson, A., Ge, B., Zhang, G., & Hammack, T. (2023). *Bacteriological Analytical Manual (BAM)*. *Chapter 5: Salmonella* (Bacteriological Analytical Manual). United States Food and Drug Administration. https://www.fda.gov/media/172194/download?attachment
- Association of Official Analytical Chemists. (2023a). Official method 950.46. Loss on drying (moisture) in meat. In G. W. Latimer, Jr. (Ed.), *Official methods of analysis of AOAC International* (Chapter 39.1.02, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.3431
- Association of Official Analytical Chemists. (2023b). Official method 962.09 Fiber (crude) in animal feed and pet food: Ceramic fiber filter method. (2023). In G. W. Latimer, Jr. (Ed.), *Official methods of analysis of AOAC International* (Chapter 4.6.01, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.1416
- Association of Official Analytical Chemists. (2023c). Official method 992.15. Crude protein in meat and meat products: Including pet foods. Combustion method. In G. W. Latimer, Jr. (Ed.), *Official methods of analysis of AOAC International* (Chapter 39.1.16, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.3446
- Association of Official Analytical Chemists. (2023d). Official method 2003.06. Crude fat in feeds, cereal grains, and forages: Randall/Soxtec/Hexanes extraction-submersion method. In G. W. Latimer, Jr. (Ed.), *Official methods of analysis of AOAC International* (Chapter 4.5.06, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.00 3.1415
- Association of Official Analytical Chemists. (2023e). Official method 966.23. Microbiological methods. In G. W. Latimer, Jr. (Ed.), *Official methods of analysis of AOAC International* (Chapter 17.2.01, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.2172
- Azanedo, L., Garcia-Garcia, G., Stone, J., & Rahimifard, S. (2020). An overview of current challenges in new food product development. *Sustainability*, 12(8), Article 3364. https://doi.org/10.3390/su12083364

- Baioumy, A. A., & Abedelmaksoud, T. G. (2021). Quality properties and storage stability of beef burger as influenced by addition of orange peels (albedo). *Theory and Practice of Meat Processing*, 6(1), 33-38. https://doi.org/10.21323/2414-438X2021-6-1-33-38
- Barbut, S. (2023). Research note: Effects of fiber source on the physicochemical properties of lean poultry meat products. *Poultry Science*, 102(5), Article 102423, https://doi.org/10.1016/j.psj.2022.102423
- Ben Zid, M., Dhuique-Mayer, C., Bellagha, S., Sanier, C., Collignan, A., Servent, A., & Dornier, M. (2015). Effects of blanching on flavanones and microstructure of *Citrus aurantium* peels. *Food and Bioprocess Technology*, 8(11), 2246–2255. https://doi.org/10.1007/s11947-015-1573-1
- Biswas, S., Bhattacharyya, D., Patra, G., Das, A. K., & Das, S. K. (2019). Technological investigation into duck meat and its products-a potential alternative to chicken. *World's Poultry Science Journal*, 75(4), 609–620. https://doi.org/10.1017/S004393391900062X.
- Cardona-Hincapié, J. A., Restrepo-Molina, D. A., & López-Vargas, J. H. (2020). Effect of a total substitution of vegetable protein and phosphates on shrinkage by cooking and purging in chopped york ham. *Revista Facultad Nacional de Agronomía Medellín*, 73(3), 9333-9340. https://doi.org/10.15446/rfnam.v73n3.80131
- Chappalwar, A. M., Pathak, V., Goswami, M., Verma, A. K., & Rajkumar, V. (2021). Efficacy of lemon albedo as fat replacer for development of ultra-low-fat chicken patties. *Journal of Food Processing and Preservation*, 45(7), Article e15587. https://doi.org/10.1111/jfpp.15587
- Chen, C., Fan, X., Hu, Y., Zhou, C., Sun, Y., Du, L., & Pan, D. (2023). Effect of different salt substitutions on the decomposition of lipids and volatile flavor compounds in restructured duck ham. *LWT-Food Science and Technology*, *176*, Article 114541. https://doi.org/10.1016/j.lwt.2023.114541
- Choe, J., Lee, J., Jo, K., Jo, C., Song, M., & Jung, S. (2018). Application of winter mushroom powder as an alternative to phosphates in emulsion-type sausages. *Meat Science*, *143*, 114-118. https://doi.org/10.1016/j.meatsci.2018.04.038
- Coelho, S. R., Lima, Í. A., Martins, M. L., Júnior, A. A. B., de Almeida Torres Filho, R., Ramos, A. D. L. S., & Ramos, E. M. (2019). Application of *Lactobacillus paracasei* LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage. *LWT-Food Science and Technology*, 102, 254-259. https://doi.org/10.1016/j.lwt.2018.12.045
- Czech, A., Malik, A., Sosnowska, B., & Domaradzki, P. (2021). Bioactive substances, heavy metals, and antioxidant activity in whole fruit, peel, and pulp of citrus fruits. *International Journal of Food Science*, 2021(1), Article I6662259. https://doi.org/10.1155/2021/6662259
- Dagevos, H., & Verbeke, W. (2022). Meat consumption and flexitarianism in the Low Countries. Meat Science, 192, Article 108894 https://doi.org/10.1016/j.meatsci.2022.108894
- da Silva Costa, J., dos Santos, W. M., Lemos, I. M. T., dos Santos Braga, B. S., dos Santos, M. A. S., & de Araújo Guimarães, E. D. A. (2023). Nutritional aspects and commercial challenges of Muscovy duck meat (*Cairina moschata*). World's Poultry Science Journal, 79(3), 513-533. https://doi.org/10.1080/00439339.2023.2234347
- De Angelis, D., Vurro, F., Santamaria, M., Garzon, R., Rosell, C. M., Summo, C., & Pasqualone, A. (2023). Effect of dry-fractionated pea protein on the physicochemical properties and the nutritional features of gluten-free focaccia flat bread. *LWT-Food Science and Technology*, 182, Article 114873. https://doi.org/10.1016/j.lwt.2023.114873

- de Araújo, P. D., Araújo, W. M. C., Patarata, L., & Fraqueza, M. J. (2022). Understanding the main factors that influence consumer quality perception and attitude towards meat and processed meat products. *Meat Science*, 193, Article 108952. https://doi.org/10.1016/j.meatsci.2022.108952
- de Oliveira Paula, M. M., Massingue, A. A., de Moura, A. P. R., de Deus Souza Carneiro, J., de Lemos Souza Ramos, A., & Ramos, E. M. (2021). Temporal dominance of sensations and check-all-that-apply analysis of restructured cooked hams elaborated with different salt content and pork quality meats. *Food Science and Technology International*, 27(1), 73-83. https://doi.org/10.1177/1082013220932355
- Eldahrawy, M., Salem, A. M., & Nabil, M. (2022). The efficiency of citrus peel powders in improvement of meat quality during chilled storage. *Benha Veterinary Medical Journal*, 42(2), 208-213. https://doi.org/10.21608/BVMJ.2022.144967.1535
- Farag, Z. S., Farhat, R. M., & Sharaf, A. M. (2024). Impact of Incorporating Mango Peels Powder on Beef Burger Quality Attributes. *Journal of Food and Dairy Sciences*, 15(11), 151-158. https://doi.org/10.21608/jfds.2024.328086.1170
- Feng, P., Weagant, S. D., Grant, M. A., Burkhardt, W., Shellfish, M., & Water, B. (2020). *Bacteriological Analytical Manual (BAM)*. *Chapter 4:* Enumeration of *Escherichia coli* and the Coliform Bacteria. Bacteriological analytical manual, *13*(9), 1-13. United States Food and Drug Administration. https://www.fda.gov/media/182572/download?attachment
- Fu, L., Du, L., Sun, Y., Fan, X., Zhou, C., He, J., & Pan, D. (2022). Effect of Lentinan on Lipid Oxidation and Quality Change in Goose Meatballs during Cold Storage. *Foods*, 11(7), Article 1055 https://doi.org/10.3390/foods11071055
- Hadidi, M., Orellana-Palacios, J. C., Aghababaei, F., Gonzalez-Serrano, D. J., Moreno, A., & Lorenzo, J. M. (2022). Plant by-product antioxidants: Control of protein-lipid oxidation in meat and meat products. *LWT-Food Science and Technology*, 169, Article 114003. https://doi.org/10.1016/j.lwt.2022.114003
- Han, M., & Bertram, H. C. (2017). Designing healthier comminuted meat products: Effect of dietary fibers on water distribution and texture of a fat-reduced meat model system. *Meat Science*, 133, 159-165. https://doi.org/10.1016/j. meatsci.2017.07.001
- Haque, A., Ahmad, S., Azad, Z. R. A. A., Adnan, M., & Ashraf, S. A. (2023). Incorporating dietary fiber from fruit and vegetable waste in meat products: a systematic approach for sustainable meat processing and improving the functional, nutritional and health attributes. *PeerJ*, 11, Article e14977. https://doi.org/10.7717/peerj.14977
- Instituto Ecuatoriano de Normalización. (1985). NTE INEN-783:1985. Carne y productos cárnicos. Determinación del pH. Quito-Ecuador.
- Instituto Ecuatoriano de Normalización (INEN). (2012). NTE INEN 1338:2012. Carne y productos cárnicos. Productos cárnicos crudos, productos cárnicos curados madurados y productos cárnicos precocidos cocidos. Requisitos. Quito-Ecuador.
- Jin, S., Yang, H., Liu, F., Pang, Q., Shan, A., & Feng, X. (2021). Effect of dietary curcumin supplementation on duck growth performance, antioxidant capacity and breast meat quality. *Foods*, 10(12), Article 2981. https://doi.org/10.3390/ foods10122981
- Jonkers, N., van Dommelen, J. A. W., & Geers, M. G. D. (2021). Intrinsic mechanical properties of food in relation to texture parameters. *Mechanics of Time-Dependent Materials*, 26, 323–346. https://doi.org/10.1007/s11043-021-09490-4
- Kausar, T., Hanan, E., Ayob, O., Praween, B., & Azad, Z. R. A. A. (2019). A review on functional ingredients in red meat products. *Bioinformation*, 15(5), 358-363. https://doi.org/10.6026/97320630015358

- Kim, D. H., Kim, T. K., Kim, Y. B., Sung, J. M., Jang, Y., Shim, J. Y., Han, S. G., & Choi, Y. S. (2017). Effect of the duck skin on quality characteristics of duck hams. *Korean Journal for Food Science of Animal Resources*, 37(3), Article 360. https://doi.org/10.5851/kosfa.2017.37.3.360
- Kim, T. K., Shim, J. Y., Hwang, K. E., Kim, Y. B., Sung, J. M., Paik, H. D., & Choi, Y. S. (2018). Effect of hydrocolloids on the quality of restructured hams with duck skin. *Poultry Science*, 97(12), 4442-4449. https://doi.org/10.3382/ps/pey309
- Karwowska, M., Stadnik, J., Stasiak, D. M., Wójciak, K., & Lorenzo, J. M. (2021). Strategies to improve the nutritional value of meat products: Incorporation of bioactive compounds, reduction or elimination of harmful components and alternative technologies. *International Journal of Food Science & Technology*, 56(12), 6142-6156. https://doi.org/10.1111/ijfs.15060
- Maturin, L. & Peeler, J. (2001). *Bacteriological analytical manual (BAM) Chapter 3: Aerobic plate count*. U.S. Food and Drug Administration. https://www.fda.gov/media/178943/download?attachment
- Ming-Min, W., & Ismail-Fitry, M. R. (2023). Physicochemical, rheological and microstructural properties of chicken meat emulsion with the addition of Chinese yam (*Dioscorea polystachya*) and arrowroot (*Maranta arundinacea*) as meat substitutes. Future Foods, 7, Article 100221. https://doi.org/10.1016/j.fufo.2023.100221
- Nieto, G., Fernández-López, J., Pérez-Álvarez, J. A., Peñalver, R., Ros, G., & Viuda-Martos, M. (2021). Valorization of citrus co-products: Recovery of bioactive compounds and application in meat and meat products. *Plants*, 10(6), Article 1069. https://doi.org/10.3390/plants10061069
- Onk, K., Yalcintan, H., Sari, M., Isik, S. A., Yakan, A., & Ekiz, B. (2019). Effects of genotype and sex on technological properties and fatty acid composition of duck meat. *Poultry Science*, 98(1), 491-499. https://doi.org/10.3382/ps/pey355
- Pérez Chabela, M., & Ponce Alquicira, E. (2013). *Manual de prácticas de laboratorio. Tecnología de carnes*. Universidad Autónoma Metropolitana. http://publicacionescbs.izt.uam.mx/DOCS/carnes.pdf
- Pereira, J., Hu, H., Xing, L., Zhang, W., & Zhou, G. (2019). Influence of rice flour, glutinous rice flour, and tapioca starch on the functional properties and quality of an emulsion-type cooked sausage. *Foods*, 9(1), Article 9. https://doi.org/10.3390/foods9010009
- Roa Acosta, D. F., Bravo Gómez, J. E., Solanilla Duque, J. F., Zuñiga Galindez, J. Z., & Martínez Cruz, J. A. (2022). Antioxidant potential of extruded snacks enriched with hyper-protein quinoa flour and vegetable extracts. Food Science and Technology, 42, Article e74621. https://doi.org/10.1590/fst.74621
- Salazar, D., Arancibia, M., Calderón, L., López-Caballero, M. E., & Montero, M. P. (2021). Underutilized Green Banana (*Musa acuminata* AAA) flours to develop fiber enriched frankfurter-type sausages. *Foods*, 10(5), Article 1142. https://doi.org/10.3390/foods10051142
- Scarton, M., Nascimento, G. C., Felisberto, M. H. F., Moro, T. D. M. A., Behrens, J. H., Barbin, D. F., & Clerici, M. T. P. S. (2021). Muffin with pumpkin flour: technological, sensory and nutritional quality. *Brazilian Journal of Food Technology*, 24, Article e2020229. https://doi.org/10.1590/1981-6723.22920
- Shang, F., Kryzhska, T., & Duan, Z. (2022). Study on the effect of baking process on the quality characteristics, moisture distribution and sensory evaluation of bran, duck and pork emulsification sausage. *Eastern-European Journal of Enterprise Technologies*, *I*(11), Article 115. https://doi.org/10.15587/1729-4061.2022.253210
- Shim, J. Y., Kim, T. K., Kim, Y. B., Jeon, K. H., Ahn, K. I., Paik, H. D., & Choi, Y. S. (2018). The ratios of pre-emulsified duck skin for optimized processing of restructured ham. Korean Journal for Food Science of Animal Resources, 38(1), Article 162. https://doi.org/10.5851/kosfa.2018.38.1.162

- Shin, D. M., Kim, Y. J., Choi, Y. S., Kim, B. K., & Han, S. G. (2023). Duck fat: Physicochemical characteristics, health effects, and food utilizations. *LWT*, Article 115435. https://doi.org/10.1016/j.lwt.2023.115435
- Shin, D. M., Yune, J. H., Kim, D. H., & Han, S. G. (2023). Effect of sous-vide cooking conditions on the physicochemical, microbiological and microstructural properties of duck breast meat. *Animal Bioscience*, *36*(10), 1596-1603. https://doi.org/10.5713/ab.23.0039
- Shin, D. M., Yune, J. H., Kim, T. K., Kim, Y. J., Kwon, H. C., Kim, D. H., Jeong, C. H., Choi, Y., & Han, S. G. (2021). Physicochemical properties and oxidative stability of duck fat-added margarine for reducing the use of fully hydrogenated soybean oil. *Food Chemistry*, 363, Article 130260. https://doi.org/10.1016/j.foodchem.2021.130260
- Silva, L. B. F., Miranda, C. N., Santos, M. D., Pereira, P. A. P., Cunha, L. R. D., Vieira, S. M., & Gandra, K. M. B. (2020). Orange albedo flour as a fat replacer in beef burgers: adding value to citrus industry by-products. *Research*, *Society and Development*, 9(10), Article e1599108298. https://doi.org/10.33448/rsd-v9i10.8298
- Skwarek, P., & Karwowska, M. (2023). Fruit and vegetable processing by-products as functional meat product ingredients-a chance to improve the nutritional value. *LWT-Food Science and Technology*, 189, Article 115442. https://doi.org/10.1016/j.lwt.2023.115442
- Tavares, P. P. L. G., dos Anjos, E. A., Nascimento, R. Q., da Silva Cruz, L. F., França Lemos, P. V., Druzian, J. I., Batista de Oliveira, T. T., Barreto de Andrade, R., da Costa Souza, A. L., Magalhães-Guedes, K. T., & de Oliveira Mamede, M. E. (2021). Chemical, microbiological and sensory viability of low-calorie, dairy-free kefir beverages from tropical mixed fruit juices. CyTA-Journal of Food, 19(1), 457-464. https://doi.org/10.1080/19476337.2021.1906753
- Tigga, A., Bahadur, V., Joseph, A. V., Topno, S. E., Dawson, J., & Jeberson, W. (2024). Influence of Various Edible Oil Coatings on the Shelf Life of Cape Gooseberry (*Physalis peruviana* L.). *Journal of Advances in Biology & Biotechnology*, 27(8), 920-929. https://doi.org/10.9734/jabb/2024/v27i81212
- Twarogowska, A., Van Droogenbroeck, B., & Fraeye, I. (2022). Application of Belgian endive (*Cichorium intybus var. foliosum*) dietary fiber concentrate to improve nutritional value and functional properties of plant-based burgers. *Food Bioscience*, 48, Article 101825. https://doi.org/10.1016/j.fbio.2022.101825
- Velásquez-Rivera, J. R., & Díaz-Torres, R. (2024). Citrus peel flour as an ingredient for the meat industry. *Agronomía Mesoamericana*, 35, Article 58857. https://doi.org/10.15517/am.2024.58857
- Vieira, E. D., Styles, D., Sousa, S., Santos, C., Gil, A. M., Gomes, A. M., & Vasconcelos, M. W. (2022). Nutritional, rheological, sensory characteristics and environmental impact of a yogurt-like dairy drink for children enriched with lupin flour. *International Journal of Gastronomy and Food Science*, 30, Article 100617. https://doi.org/10.1016/j.ijgfs.2022.100617
- Xiao, L., Ye, F., Zhou, Y., & Zhao, G. (2021). Utilization of pomelo peels to manufacture value-added products: A review. *Food Chemistry*, 351, Article 129247. https://doi.org/10.1016/j.foodchem.2021.129247
- Yimenu, S. M., Koo, J., Kim, B. S., Kim, J. H., & Kim, J. Y. (2019). Freshness-based real-time shelf-life estimation of packaged chicken meat under dynamic storage conditions. *Poultry Science*, 98(12), 6921-6930. https://doi.org/10.3382/ps/pez461
- Zarate-Vilet, N., Gué, E., Delalonde, M., & Wisniewski, C. (2022). Valorization of grapefruit (Citrus x paradisi) processing wastes. In M. F. Ramadan, & M. A. Farag, (Eds.), Mediterranean fruits bio-wastes: chemistry, functionality and technological applications (pp. 179-220). Springer International Publishing. https://doi.org/10.1007/978-3-030-84436-3