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Abstract: Understanding the effects of heavy metals in aquatic ecosystems is of significant importance due to 
their potential to bioaccumulate at various trophic levels and induce damage in DNA. Mercury is considered one 
of the most dangerous heavy metals, causing chromosomal breakage (clastogenic event) or spindle dysfunction 
(aneugenic event), that can lead to the formation of encapsulated chromatin into a separate smaller nucleus, 
generally referred to as a micronucleus. We evaluated the sensitivity of the micronucleus test in the neotropical 
cichlid Andinoacara rivulatus (Günther 1860). The fish were divided into four groups of 16 individuals, and 
each group was placed in separate aquaria (140 L) provided with filtered water and constant aeration. Fish 
were exposed to mercury chloride (HgCl2) at doses 0.1, 0.25, and 0.50 mg/kg body weight, administered by 
intraperitoneal (IP) injection. Fish from the control group were injected with a physiologic solution. The fol-
lowing erythrocyte anomalies were identified: erythrocytes with micronuclei varying to some extent in size and 
position in the cytoplasm, blebbed nucleus, binucleated cell, nuclei showing a deep invagination toward the 
center (notched nuclei). Examination of blood smears demonstrated a higher level of micronucleus and notched 
erythrocytes in fish injected with HgCl2 than in the controls. There were significant differences in the frequency 
of micronucleated and notched erythrocytes among the groups exposed to mercury. Linear regression analysis 
revealed a positive relationship between the frequency of micronucleated and notched erythrocytes (P< 0.0001), 
with a moderately strong correlation coefficient (R= 0.737). We propose that, in addition to the two so far known 
mechanisms of micronucleus formation (spindle apparatus damage and chromosomal ruptures), chromatin frag-
mentation in notched nuclei resulting from a combination of the cytotoxic effects of mercury and mechanical 
stress, may be a third mechanism of micronuclei genesis. 
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Heavy metals released into aquatic eco-
systems from industrial, agricultural, and 
domestic sources, municipal sewage treatment 
plants, and from other anthropogenic activi-
ties have the potential to bioaccumulate at 

various trophic levels and can induce damage 
in DNA (Mitchelmore & Chipman, 1998; Ohe, 
Watanabe, & Wakabayashi; 2004, Bolognesi, 
Perrone, Roggieri, Pampanin, & Sciutto, 2006; 
Isani et al., 2009; Sharifuzzaman et al. 2016). 
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Thus, given the extreme toxicity of heavy met-
als, understanding their effects in aquatic eco-
systems is of significant importance.

Mercury is one of the most dangerous 
heavy metals, causing deleterious effects on 
biota (W.H.O., 1990; Buhl, 1997; Rocha et 
al. 2011a; Anual, 2014; Nabi, 2014; Kandroo, 
Tripathi, & Sharma, 2015; Morcillo, Esteban, 
& Cuesta, 2017). This toxicant interferes with 
the formation of the mitotic spindle during cell 
division, causing the contraction of chromo-
somes, a delay in the division of the centro-
mere, and a slower movement during anaphase, 
as well as chromosomal breakage (Skerfving, 
Hansson, & Lindsten, 1970; Catherine Ferens 
& United States, 1974; Thier, Bonacker, Stoi-
ber, & Böhm, 2003). Chromatin fragments 
derived from chromosomal breakage (clasto-
genic event) or spindle dysfunction (aneugenic 
event), or even whole chromosomes in the case 
of chromosome lag, do not migrate to the poles 
during anaphase and are included in the daugh-
ter cells, becoming encapsulated into a separate 
smaller nucleus, generally referred to as a 
micronucleus (Miller,1973; Miller et al., 1998; 
Wirzinger, Weltje, Gercken, & Sordyl, 2007).

Fishes have a greater ability to metabolize 
xenobiotics, accumulate pollutants, and are 
capable of inhabiting practically all zones of 
the aquatic habitat. In addition, unlike mam-
mals, fish erythrocytes are nucleated and have 
been shown to be more sensitive to the induc-
tion of DNA damages (Mir et al., 2014). These 
characteristics make them an excellent model 
for assessing the potential danger of chemi-
cals introduced into the aquatic environment. 
Indeed it has been shown that after exposure 
to different pollutants under field and labora-
tory conditions the peripheral erythrocytes of 
fishes have a higher incidence of micronuclei 
formation (Al-Sabti & Hardig, 1990; Heddle et 
al., 1991; Vanparys, Deknudt, Vermeiren, Sys-
mans, & Marsboom, 1992; Torres de Lemos, 
Rödel, Terra, D’Avila de Oliveira, & Erdtmann, 
2007; Ali, El-Shehawi, & Seehy, 2008; Yadav 
& Trivedi, 2009; Monteiro, Cavalcante, Viléla, 
Sofia, & Martinez, 2011; Özkan, Gündüz, 
Berköz, & Hunt, 2011; Bakar, Ashriya, Shuib, 

& Razak, 2014; Fatima et al. 2014; Vignardi 
et al, 2015; Ivanova & Popovska-Percinic, 
2016). Therefore, fishes are suitable organ-
isms in which to evaluate the clastogenic and 
aneugenic effects of genotoxic compounds, 
with the assay being called the micronucleus 
test (MNT), a widely applied method due to its 
simplicity, reliability, sensitivity, and adaptive 
suitability (Carrasco, Tilbury, & Myers, 1990; 
Al-Sabti & Metcalfe, 1995; Udroiu, 2006; 
Junín, Rodríguez, Heras, & Braga, 2008). 
Indeed, research on clastogenic or mutagenic 
effects in neotropical fish has become increas-
ingly common (Cestari et al., 2004; Rocha et 
al., 2011b; Zapata et al., 2016).

Some authors have observed, in addition to 
micronucleated erythrocytes (MNE), the occur-
rence of other nuclear abnormalities (ENAs), 
such as blebbed, lobed, binucleated, and 
notched nuclei, suggesting that these anomalies 
should be considered analogous to MNs, and, 
therefore, should be taken into consideration as 
potential indicators of cytotoxicity (Carrasco 
et al., 1990; Ayllon & Garcia-Vazquez, 2000, 
2001; Çavaş & Ergene-Gözükara, 2003, 2005; 
da Silva Souza & Fontanetti, 2006; Matsumoto 
et al., 2006; Ergene et al., 2007; Jiraungkoor-
skul et al., 2007; Costa et al., 2008; Monteiro 
et al., 2011; Tasneem & Yasmeen, 2018). Our 
preliminary, unpublished observations, showed 
a significant proportion of erythrocytes with 
notched nuclei in fish exposed to mercury, 
leading us to investigate if this nuclear anomaly 
could be effectively employed as a genotoxic 
marker. Thus, in the present study, we assessed 
the proportion of MNE and notched erythro-
cytes (NE) after the administration of mercury 
chloride in Andinoacara rivulatus (Günther 
1860), a freshwater teleost fish naturally dis-
tributed from the north of Ecuador to the north 
of Peru, and also spread throughout the world 
as an aquarium pet colloquially known as Vieja 
Azul or Green Terror.

MATERIALS AND METHODS

All specimens used in this study were 
acquired from a stock obtained via induced 
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reproduction that is carried out by the repopula-
tion program of the species in La Tembladera 
Wetland, in El Oro Province of Ecuador (http://
asogrotem.org/). Fish were transported in plastic 
bags to the laboratory and acclimated for 24 h.

Bioassay, blood sampling and smear 
preparation: Fish were divided into four 
groups of 16 individuals, and each group was 
placed in separate aquaria (140 L) provided 
with filtered water and constant aeration. Fish 
were not fed while the test was ongoing. Mer-
cury chloride (HgCl2) was administered by a 
single intraperitoneal (IP) injection (Al-Sabti 
& Metcalfe, 1995). Concentrations of 20, 50, 
and 100 µg/ml of mercury were used in a ratio 
of 0.5 ml of solution per 100 g of weight (0.1, 
0.25, and 0.50 mg HgCl2/Kg). Fish from the 
control group were injected with a physiologic 
solution. The mercury doses tested were cho-
sen considering the mercury content (mg/kg) 
reported in some freshwater species of teleosts 
(Cyprinus carpio Linnaeus 1758, 0.1-0.5, max. 
0.8; Gambusia affinis (Baird & Girard 1853), 
max. 0.5; Lepomis macrochirus Rafinesque 
1819, 0.1-0.3, max. 0.41; Micropterus salmoi-
des (Lacepède 1802) 0.35-0.85, max. 1.9) 
(Saiki, Jennings, & May, 1992). Four individu-
als from each group were randomly selected 
every 24 h until 96 h, and peripheral blood 
smears were prepared by draining blood via 
caudal vein puncture using a syringe without 
anticoagulant. All the fish were anesthetized 
with benzocaine before blood extraction. The 
fish of the control group were immediately 
released while the fish injected with mer-
cury were euthanized with anesthetic overdose, 
incinerated and the ashes placed in plastic 
bags and buried in a landfill. Smears were air-
dried, fixed in absolute ethanol for 20 min, and 
stained with 10 % Giemsa in phosphate buffer 
(pH 6.88) for 20 min. Three slides per fish were 
mounted using Canada balsam and archived 
until evaluation. The procedures were conduct-
ed in accordance with Institutional Authoriza-
tion Research Project 396/2016, Universidad 
Técnica de Machala and Protocol number 1027 

for experiments with animals of Universidade 
Estadual Paulista “Julio de Mesquita Filho”. 

Cell scoring: On each plate, a series of 
15-20 photographs were taken at random with 
an Olympus BX53 photomicroscope (1 000 x 
magnification) to guarantee that no fewer than 
1000 cells/slide were counted. Scoring was 
performed on the digital images by a single 
observer. The frequencies of MNE and/or NE 
were expressed per 1 000 counted cells.

Statistical analysis: Levene’s and Kol-
mogorov-Smirnov tests were applied to check 
the homoscedasticity and normality, respec-
tively. Since data obtained did not present a 
normal distribution and violated the homog-
enous variance principle for both MNE and NE 
frequencies, they were square root transformed 
to normalize and homogenize the variances. 
Then, data were analyzed by two-way ANOVA 
and Fisher’s Least Significant Difference 
(LSD) post-hoc test (P≤ 0.05) for comparison 
of differences among groups. The relation-
ship between MNE and NE frequencies was 
analyzed using linear regression analysis by 
the least squares method. Pearson’s correlation 
coefficients were calculated between NE and 
MNE. The entire analysis was done with the 
statistical package STATGRAPHICS® Centu-
rion XVI (version 16.1.18).

RESULTS

Fish exposed to 0.50 mg/kg of HgCl2 
died progressively during the period of the 
experiment. At 96 h only one fish was still 
alive in this group. Therefore, data from this 
group were excluded for statistical analysis. 
The analysis of peripheral blood smears of the 
studied fish showed that normal erythrocytes 
appeared with an oval shape and a centric 
ellipsoid nucleus with well-defined boundary 
(Fig. 1A). The following nuclear abnormali-
ties were found: small, non-refractive circular/
ovoid particles in the cytoplasm resembling a 
nucleus with respect to staining properties were 
considered an MNE varying to some extent in 
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size and position in the cytoplasm (Fig. 1B, 
Fig, 1C, Fig. 1D); blebbed nucleus appeared 
as a small evagination of the nuclear envelope 
resembling a micronucleus (Fig. 1E, Fig. 1F); 
binucleated cell contains two nuclei that are not 
attached and relatively similar in size (Fig. 1G); 
nuclei showing a deep invagination toward the 
center were considered an NE (Fig. 1 H). Some 
fractured notched nuclei were also observed 
(Fig. 1I, Fig. 1J, Fig. 1K, Fig. 1L).

Compared with the control group, fish 
exposed to HgCl2 showed an increase in the 
frequency of MNE and NE with a peak in MNE 
24 h after dosing (Fig. 2). Two-way ANOVA 
with three levels of concentration of HgCl2 (0, 
0.1, 0.25 mg/kg) and four levels of exposure 
time (24, 48, 72, 96 h), followed by a post-hoc 
LSD test revealed significant differences in 
the MNE and NE among groups exposed to 
different concentrations of HgCl2 (Table 1). 
Simple linear regression analysis between the 
frequency of MNE and NE (Fig. 3) revealed a 
moderately strong relationship (F = 54.84, P < 
0.0001), with the linear model

  

and a correlation coefficient R = 0.74. The 
adjusted model explains 54.38 % (R2) of the 
variability in .

DISCUSSION

Fish exposed to HgCl2 showed an increase 
in the frequency of MNE and NE, demonstrat-
ing that the species here studied is sensitive 
to mercury at the concentration used. Similar 
time-dependent effects in MNE frequency were 
also reported in Oreochromis niloticus (Linnae-
us 1758), Phoxinus phoxinus (Linnaeus 1758), 
and Poecilia latipinna (Lesueur 1821) exposed 
to different heavy metals (Ayllon & Garcia-
Vazquez, 2000; Jiraungkoorskul et al., 2007).

Differences in sensitivity to the induction 
of MNE and other erythrocyte nucleus anoma-
lies among fish species have been reported 
after IP injection of mercurial compounds in 
Salmo trutta Linnaeus 1758, P. phoxinus (San-
chez-Galan et al., 1999), and Channa punctata 
(Bloch 1793) (Yadav & Trivedi 2009). Here, 
a low frequency of MNE and NE in the con-
trol group indicates that a percentage of these 

Fig. 1. Photomicrographs showing cells with normal nucleus (A) and nuclear abnormalities (arrows) in peripheral blood 
erythrocytes of Andinoacara rivulatus exposed to HgCl2: micronuclei (B, C, D), blebbed nucleus (E, F), binucleated cell 
(G), Notched nucleus (H), putative fragmented notched nucleus (L).
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Fig. 2. Frequency of micronucleated erythrocytes (MNE) and erythrocytes with notched nucleus (NE) in Andinoacara 
rivulatus exposed to HgCl2 (mg/kg). Bars represent 95 % Fisher’s Least Significant Difference.

TABLE 1
Mean ± standard deviation of micronuclei (MN), notched nuclei (Notch), and MN+Notch per 1 000 erythrocytes in 

Andinoacara rivulatus injected with two doses of HgCl2 and subjected to 96 h of exposure

HgCl2 (mg/g) n √MN LSD √Notch LSD √(MN+Notch) LSD
0 16 0.68 ± 0.56 X 3.84 ± 1.75 X 3.93 ± 1.75 X
0.1 16 1.52 ± 0.94 X 6.08 ± 2.40 X 6.31 ± 2.46 X
0.25 16 2.15 ± 0.92 X 7.71 ± 1.76 X 8.05 ± 1.79 X
ANOVA F= 16.96 *** p= 0.0002 F= 16.90 *** p= 0.000 F= 19.20*** p= 0.000

Time (H) n √MN LSD √Notch LSD √(MN+Notch) LSD
24 12 1.86 ± 1.09 X 5.29 ± 2.12 X 7.03 ± 2.29 X
48 12 1.35 ± 0.97 XX 5.33 ± 2.52 X 5.57 ± 2.54 X
72 12 0.94 ± 0.83 X 6.19 ± 2.54 X 5.41 ± 2.58 X
96 12 1.66 ± 1.03 X 6.75 ± 2.93 X 6.43 ± 3.05 X
ANOVA F= 3.77 * p= 0.0189 F= 0.195 ns p= 0.1950 F= 1.92 ns p= 0.1433

Interaction  HgCl2  x  Time F= 1.88ns p= 0.1116 F= 1.35ns p= 0.2591 F= 1.57ns p= 0.1853

F-tests (F) and probability values (p) on Analysis of Variance (ANOVA) with results of post-hoc test (LSD) for establishing 
significantly different means are shown.
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abnormalities were generated naturally. Indeed, 
spontaneous micronucleus frequencies (con-
trol) have been observed in several species of 
fish such as Astyanax bimaculatus (Linnaeus 
1758) (Matsumoto & Cólus, 2000), S. trutta, 
Anguilla anguilla (Linnaeus 1758), P. phoxinus 
(Rodriguez-Cea, Ayllon, & Garcia-Vazquez, 
2003), Mullus barbatus Linnaeus 1758 (Bolog-
nesi et al., 2006), Rhamdia quelen (Quoy & 
Gaimard 1824), C. carpio, Hypostomus punc-
tatus Valenciennes 1840, O. niloticus (Salvag-
ni, Ternus, & Fuentefria, 2011), and Colossoma 
macropomum (Cuvier 1816) (Rocha et al., 
2011b), with analogous frequency to that found 
in this study.

Cell populations treated with a genotoxic 
agent must undergo mitosis for MNE to appear 
(Savage, 2000; Harding et al., 2017). In fishes, 
erythrocytes arise from small lymphoid hemo-
blasts maintained by continuous mitotic divi-
sions in the intertubular tissues of the kidney, 
although in some fishes like trout, the spleen 
is also active, while in others like perch, only 
the spleen is active (Catton, 1951). In fishes, a 
peak in micronucleated erythrocytes occurs 1-5 
days after exposure to genotoxic substances, 
but in most species, it takes place after 2 or 3 
days (Udroiu, 2006). Thus, the MNE peak here 
detected at 24 h suggests that mitotic spindle 
poisoning and/or the clastogenic effects of 
mercury (or their reactive metabolites) arose 

from already active mitotic cells after dosing. 
By the contrary, the lower frequency of MN 
after 72 and 96 h of exposure could be a result 
of a weakening of the normal process of cell 
division (mitosis) in the hematopoietic tissues, 
probably produced by the toxic effect of mer-
cury. Indeed, the decrease in the erythrocyte 
count in Astronotus ocellatus (Agassiz, 1831), 
Anabas scandens (Daldorff, 1797), Salmo 
trutta caspius Kessler, 1877; Hypophthalmi-
chthys molitrix (Valenciennes, 1844), exposed 
to chronic doses of mercurial compounds has 
been attributed to the impairment of erythro-
poiesis due to direct effect of this heavy metal 
(Rodríguez et al., 2017).

The results of linear regression analy-
sis revealed that an increase in the frequen-
cy of notched cells was accompanied by a 
proportional increase in micronuclei bearing 
cells, with a high significant correlation index 
(R = 0.74; P < 0.0001), suggesting a direct 
relationship between these nuclear anoma-
lies. These data are congruent with previous 
results obtained in other fishes like Clarias 
gariepinus (Burchell, 1822), Alburnus orontis 
Sauvage, 1882, Mugil cephalus Linnaeus, 1758 
(Ergene et al., 2007), Dicentrarchus labrax 
(Linnaeus, 1758), and Mugil spp. Linnaeus, 
1758 (Strunjak-Perovic, Topic Popovic, Coz-
Rakovac, & Jadan, 2009a). The cytotoxicity 
of mercury compounds causes damage in cell 

Fig. 3. Regression between micronucleated erythrocytes (MNE/1 000) and cells with notched nuclei (NE/1 000). Data was 
square root transformed.
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function, resulting in the inability of cells to 
proliferate (Silva-Pereira et al., 2005). Studies 
in rats exposed to HgCl2 have shown that this 
metal has a high affinity for chromatin in the 
cell nucleus (Rózalski & Wierzbicki, 1979) 
and studies on the effect of mercury on the 
nucleus of Dictyostelium discoideum Raper, 
1935, a species of soil-living amoeba recog-
nized as a model organism by the American 
National Institute of Health (http://www.nih.
gov/science/model), revealed that 10 mM of 
HgCl2 provokes an increase in MNE frequency, 
in addition to the carbonylation and quantita-
tive changes in nuclear proteins (Boatti et al., 
2017). Other compounds, such as the herbicide 
sulfentrazone, have induced MNE and nuclear 
DNA fragmentation on Allium cepa L. cells 
(Bianchi et al., 2016).

Mechanisms of erythrocyte nuclei defor-
mity have not yet been explained and there is 
no consensus about the causes of these changes 
(Strunjak-Perovic, Coz-Rakovac, Topic Popo-
vic, & Jadan, 2009a, 2009b). Recently, it has 
been proposed that severe nuclear deformations 
can also originate from physical forces, such as 
the compression of the nucleus during migra-
tion through confined spaces that can lead to 
nuclear envelope rupture (Shah, Wolf, & Lam-
merding, 2017).

Although further studies are required to 
explain the mechanisms involved in the con-
comitant variation of MNE and NE in A. 
rivulatus, it is likely that mechanical stress 
might contribute to generation of chromatin 
fragmentation. In other words, in addition to 
the known cytotoxic effects of mercury on 
spindle apparatus damage and chromosomal 
ruptures, local defects in nuclear envelope 
might also results from a third mechanism 
linked to mechanical stress. 
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RESUMEN

Efectos genotóxicos del cloruro de mercurio en 
el pez neotropical Andinoacara rivulatus (Cichlidae: 
Cichlasomatini). Comprender los efectos de los metales 
pesados en los ecosistemas acuáticos es de gran importan-
cia debido a su potencial de bioacumulación en los diversos 
niveles tróficos y de inducir daños en el ADN. El mercurio, 
considerado uno de los metales pesados más peligrosos, 
causa fracturas cromosómicas (evento clastogénico) o 
disfunción del huso mitótico (evento aneugénico), y puede 
conducir a la formación de fragmentos de cromatina encap-
sulada en un núcleo separado más pequeño, generalmente 
denominado micronúcleo. En este trabajo se evalúa la sen-
sibilidad del test de micronúcleos en el cíclido neotropical 
Andinoacara rivulatus (Günther 1860). Los peces fueron 
divididos en cuatro grupos de 16 individuos, y cada grupo 
se colocó en acuarios separados (140 L) provistos de agua 
filtrada y aireación constante. Los peces fueron expuestos 
al cloruro de mercurio (HgCl2) en dosis de 0.1, 0.25 y 
0.50 mg/kg de peso corporal, administrada por inyección 
intraperitoneal (IP). Los peces del grupo control fueron 
inyectados con solución fisiológica. Se identificaron las 
siguientes anomalías en los eritrocitos: micronúcleos que 
varían en tamaño y posición en el citoplasma, núcleo con 
evaginaciones, células binucleadas núcleos con muesca 
(núcleos con una profunda invaginación hacia el centro). El 
examen de los frotis de sangre demostró un mayor nivel de 
eritrocitos micronucleados y con muesca en peces inyec-
tados con HgCl2 que en los controles. Fueron detectadas 
diferencias significativas en la frecuencia de eritrocitos 
micronucleados y células con núcleos con muescas entre 
los grupos expuestos al mercurio. El análisis de regresión 
lineal reveló una relación positiva entre la frecuencia de 
eritrocitos micronucleados y con muescas (P< 0.0001), con 
un coeficiente de correlación moderadamente fuerte (R= 
0.737). Se propone que, además de los dos mecanismos 
hasta ahora conocidos de formación de micronúcleos (daño 
del huso mitótico y rupturas cromosómicas), la fragmenta-
ción de la cromatina en núcleos con muesca probablemente 
a causa de la combinación de los efectos citotóxicos del 
mercurio y el estrés mecánico, podría ser un tercer meca-
nismo de génesis de micronúcleos.

Palabras clave: micronúcleos; anomalías nucleares de 
eritrocitos; daño en el ADN; metal pesado; peces.
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