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Abstract: In recent years, there has been a substantive change in the conceptual paradigm regarding what an 
ejaculate is. Until recently, it was considered that a representative population (billions) of sperm was made up of 
“equivalent” cells with a common goal: to be the one that could finally fertilize the oocyte. New data suggesting 
that a set of spermatozoa is grouped in distinct subpopulations, according to their kinematic and morphometric 
characteristics, has opened the way towards a more cooperative vision. In addition, recently, it has been estab-
lished that the subpopulation distribution is different among males, which seems to indicate that there are differ-
ent strategies that can be understood within another paradigm: sperm competition between different ejaculates. 
These heterogeneous subpopulations of spermatozoa in the ejaculate, that show kinematics and morphometric 
patterns, has been widely known for a while, but the biological meaning of these different sperm subpopulations 
is still not clear. For this reason, the subjective evaluation of seminal quality is being displaced by objective 
assessment techniques using CASA technology (computer-assisted semen analysis). Also, the application of 
principal components (PC) and clustering methods to reveal subpopulations of spermatozoa are complementary 
tools used to characterize raw semen and processed cell suspensions. Despite the advances in such powerful 
tools, researchers are not well versed on such techniques and its advantages. For instance, PC analysis is a mul-
tivariate statistical method that reduces the number of variables used in subsequent calculations for describing 
the data. By integrating the original data into new complex mathematical variables, homogenous subpopulations 
of spermatozoa can define clearly. Furthermore, kinematic, morphometric, morphological or DNA integrity tests 
can be also applied to characterize and understand the reproductive biology of the spermatozoon. Although the 
role of the different subpopulations of spermatozoa remains unknown, the work should continue by implement-
ing novel technologies and coordinated tools. In this review, we characterize the fertility evaluation with CASA 
technology and examine the main multivariate methods in the assessment of sperm subpopulations analyzed by 
CASA systems.
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Semen analysis is usually the first and 
most commonly performed test during male 
infertility consultations. However, this type 
of evaluation has a critical limitation in the 

classical approach because it treats seminal 
variables separately. For this reason, none of 
the classical parameters alone or in combina-
tion can be considered to be diagnostic for 
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infertility (Guzick et al., 2001). Hence, while 
poor semen quality is a good indicator of sub-
fertility (Bonde et al., 1998), good semen quali-
ty (in terms of conventional subjective analysis 
of sperm number, motility, and morphological 
normality) is no guarantee of acceptable fertil-
ity, given that there are many other parameters 
involved, many of which involve the female 
partner (Eimers et al., 1994; Colenbrander, 
Gadella, & Stout, 2003). 

Several trials used to define the signifi-
cance of semen analysis results on predict-
ing fertility success after assisted reproductive 
techniques (such as intrauterine insemination, 
intracytoplasmic sperm injection and IVF) have 
produced different conclusions (Barratt, Bjorn-
dahl, Menkveld, & Mortimer, 2011; Oehninger, 
Franken, Sayed, Barroso, & Kolm, 2000; Soler 
et al., 2005). All this has led to the implemen-
tation of more accurate measurements of the 
classical parameters by introducing metric data 
obtained mainly by computer assisted semen 
analysis (CASA) technology and the study of 
other specific markers of sperm function (Bar-
ratt, Tomlinson, & Cooke, 1993; Macleod & 
Irvine, 1995; Fernández-Valadés et al., 2001; 
Álvarez-Gonçalvez, Arellano, & Pérez Carrera, 
2015). Despite its advantages, CASA technol-
ogy for assessing motility (CASA-Mot) could 
not offer its full potential since it doesn’t use 
a system-limitation analysis (Soler, Cooper, 
Valverde, & Yániz, 2016; Valverde, Madrigal-
Valverde, Caldeira, et al., 2019). Therefore, 
most laboratories using CASA-Mot systems 
are replacing subjective evaluations with an 
objective one. This has reduced technical error 
(Auger et al., 2000; Johnson, Boone, & Black-
burst, 1996; Keel et al., 2000) and allowed the 
development of more robust quality-control 
programs (Cooper, Neuwinger, Bahrs, & Nie-
schlag, 1992; Cooper, Björndahl, Vreeburg, & 
Nieschlag, 2002). 

Even when some software improvements 
have been applied, the most powerful informa-
tion obtained through kinematic data has been 
lost since only mean values of the popula-
tion are considered when comparing between 
individuals or experimental conditions (Hoshi, 

Yanagida, Aita, Yoshimatsu, & Sato, 1988). 
That is why it is necessary to consider the total 
cell by cell data and distributions and sperma-
tozoa motility patterns, which contains much 
more information. The recent approach of com-
puting a group of variables by using multivari-
ate statistics that includes principal components 
and cluster analysis (subpopulations) offers a 
new comprehension of what is a semen picture 
and how it is associated to male fertility (Soler 
et al., 2016; Valverde et al., 2016; Yániz et al., 
2016).The aims of this paper are two-fold: 1) to 
review the fertility evaluation with CASA tech-
nology and 2) to examine the main multivariate 
methods in the assessment of sperm subpopula-
tions analyzed by CASA systems. 

Literature reviewed: All literature related 
to the main multivariate methods used in the 
analysis of sperm subpopulations by CASA 
technology affecting the semen evaluation was 
reviewed. The paper has been structured in 
seven sections: it starts with the main concepts 
related to the male reproductive system, fer-
tility and semen quality, CASA technology, 
seminal doses for artificial insemination and 
seminal analysis by CASA systems; the sperm 
subpopulation concept is also revised. The 
other headings of the paper will be focused on 
the multivariate methods of clustering analysis 
and sperm subpopulations structure with kine-
matics and morphometric parameters.

Trends in the literature: Semen analysis 
is a technique used for predicting male fertility 
from semen samples that can help improve suc-
cess in artificial insemination (AI) when apply-
ing the correct seminal doses (Hansen, 2014; 
Valverde et al., 2019; Valverde et al., 2019; 
Valverde, Madrigal-Valverde, Lotz, Bompart, 
& Soler, 2019). Total and progressive sperm 
motility is considered two of the most accurate 
fertility predictors, but there are many other 
factors that may influence the overall results 
of the samples (Rodríguez-Martínez, 2007). To 
overcome those constraints, computer assist-
ed semen analysis (CASA) technology was 
developed in the mid-1980s (Bompart et al., 
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2018; Gallagher, Smith, & Kirkman-Brown, 
2018). This technology provides more accurate 
information about the specific sperm qual-
ity variables based on objective measurements 
(Valverde & Madrigal-Valverde, 2018; Yániz, 
Palacín, et al., 2018; Yániz, Silvestre, Santo-
laria, & Soler, 2018).

Fertility and semen quality: The epididy-
mal function is vital for the fertility of male 
mammals because the sperm becomes infertile 
when it leaves the testes. It only acquires the 
ability to fertilize an ovum during the passage 
through the epididymides. It is relevant that 
this structure accumulates and stores sperm 
since, depending on the species, it takes 0.5–2 
days for the testes to produce the number of 
sperm in a normal ejaculate (Jones, 1999; 
Jones, Dacheux, Nixon, & Ecroyd, 2007). The 
success of storage is so high that fertile sperm 
can survive in an isolated epididymis for sev-
eral days at 4 °C (Dacheux et al., 2009).

Even though all mammals have an initial 
epididymis segment with distinctive character-
istics, there is variation among species in the 
structure and length of the different segments, 
suggesting some differences in post-testicular 
sperm maturation and storage (Jones, 2002). 
Due to these anatomical variations in epididy-
mides among species, there must also be dif-
ferences in protein composition throughout this 
structure (Dacheux, Gatti, & Dacheux, 2003), 
indicative of the relative significance of sperm 
maturation and storage.

Excluding the female effect, fertility is 
related to the seminal characteristics (Flowers, 
2009). However, it is multifactorial; therefore, 
the season of the year, the number of sperm, 
the timing of copula before ovulation, and the 
individual sire’s seminal plasma profile (Ves-
seur, Kemp, & Den Hartog, 1996; Flowers, 
2009) can also have an effect. Furthermore, 
functional and structural sperm parameters 
such as motility, kinematic, viability, acrosome 
and DNA integrity, mitochondrial function, 
morphology, and morphometrics may be asso-
ciated with fertility (Gillan, Evans, & Maxwell, 
2005). Concerning the seasonal effect, even in 

boars or bulls, which are not usually consid-
ered seasonal breeders, can also occur seasonal 
variations of semen quality (Ibănescu, Leiding, 
& Bollwein, 2018). Variations of sperm param-
eters between summer and winter months have 
been partially attributed to related changes of 
scrotal thermoregulation and heat dissipation 
mechanisms (Menegassi et al., 2015).

Besides, the success of artificial insemina-
tion (AI) in animals is also related to the ability 
of farm staff to detect estrus, their skills during 
actual insemination, as well as semen quality 
(Holt, Holt, Moore, Reed, & Curnock, 1997). 
Additionally, when semen parameters are sub-
optimal – such as volume, sperm number, 
motility or sperm morphology - conception 
rates can be affected (Flowers, 1997). In this 
context, several authors have demonstrated the 
correlations between some semen parameters, 
including those evaluated using CASA systems 
and fertility indices (Budworth et al., 1988; 
Hirai et al., 2001; Hirano et al., 2001; Ibănescu 
et al., 2016; McPherson et al., 2014; Sutkev-
iciene et al., 2005).

CASA technology: CASA technology has 
been commercially available since the mid-
1980s and provides a more objective sperm 
characterization (Soler et al., 2016; Holt, Cum-
mins, & Soler, 2018). CASA systems offer a 
big set of kinematics and morphometric param-
eters in addition to the general motility evalua-
tion. During this time, it was showed that these 
parameters are sensitive to several hardware 
and software constraints, as well as the vari-
ability of semen samples (Bompart et al., 2018; 
Castellini, Dal Bosco, Ruggeri, & Collodel, 
2011; Yeste, Bonet, Rodríguez-Gil, & Rivera 
Del Álamo, 2018). The capacity of CASA to 
generate large datasets comprising motility 
data from thousands of spermatozoa has been 
overlooked. In turn, more attention has been 
payed to the summary statistics provided by 
the software, which do not show the intrinsic 
variability of the semen itself (Martínez-Pastor, 
Tizado, Garde, Anel, & de Paz, 2011). 

The introduction of CASA technology 
has revolutionized the semen evaluation 
process, particularly the ability to estimate 
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seminal doses production and the quality con-
trol planned for marketing or research (Didion, 
2008; Feitsma, Broekhuijse, & Gadella, 2011; 
Amann & Waberski, 2014; Meza et al., 2018). 
The computers have the capacity to make rapid 
counts of hundreds of sperm in seconds and 
analyze motility, kinematics, morphometric, 
concentration, and subsequently, optimize the 
number and reliability of the final produced 
seminal doses for AI.

Production of AI doses and analysis by 
CASA: The primary objective of AI stations is 
to obtain the higher number of doses from each 
ejaculate (or pool, depending on the species). 
Having enough numbers of good spermatozoa 
guarantees the pregnancy of the inseminated 
female (Tsakmakidis, Lymberopoulos, & Khal-
ifa, 2010). Traditionally, the semen evaluation 
was performed using the 5 % approximation by 
a subjective approach, which produced lower 
precision and reliability. The typical way to 
overcome these limitations is to include more 
cells than needed (Soler et al., 2017a).

Sperm kinematics includes the measure-
ment of the distance between each head point 
for a given sperm during the acquisition period. 
The following are eight standard sperm motility 
parameters defined by (Bompart et al., 2018): 
(1) curvilinear velocity (VCL, µm/s) is the sum 
of the distances between the sperm head cen-
troid positions, frame by frame, divided by the 
analysis time; (2) straight-line velocity (VSL, 
µm/s) is the straight-line distance between 
the first and last sperm position divided by 
the elapsed time; (3) average path velocity 
(VAP, µm/s) is the time-averaged velocity of a 
sperm head along its average path; (4) linear-
ity of forward progression (LIN = VSL/VCL, 
dimensionless) is the percentage of linearity 
on the curvilinear path; (5) straightness (STR 
= VSL/VAP, dimensionless) is a measurement 
of the linearity of the average path; (6) path 
wobble (WOB = VAP/VCL, dimensionless) 
is a measurement of the oscillation of the 
actual path compared to the average path and 
is expressed as a percentage; (7) amplitude of 
lateral head displacement (ALH, µm) is the 

average distance of the sperm head from the 
average sperm-swimming path where the aver-
age path is calculated using a 5-point moving 
average (can be considered as the maximum 
or the mean value along the track); and (8) 
beat-cross frequency (BCF, Hz) is the fre-
quency with which the sperm head crosses the 
average path line during acquisition (Kay & 
Robertson, 1998).

These motility parameters are estimated 
using the set of position measurements associ-
ated to an entire track history. They are avail-
able as a database file for post-processing and 
cluster analysis. The first and last five points 
of the pathway are discarded from analysis to 
prevent track initiation and track termination 
artifacts corrupting the motility estimations. A 
5-point moving average is utilized to low-pass 
filter noisy signals when plotting individual 
parameters versus time. In population statistics, 
motility analysis is limited to five seconds per 
sperm because, in general, track lengths are 
longer for slower sperm than for faster sperm, 
which leave the field of view (Urbano, Masson, 
VerMilyea, & Kam, 2017).  

In general, the assessment on sperm mor-
phometry has been focused mainly on the 
sperm heads, although others measure addi-
tional parts of the sperm cell structure, such 
as the nucleus, acrosome, mid-piece or the 
whole flagellum (Yániz, Soler, & Santolaria, 
2015). Different parameters have been used 
to describe the morphometry of sperm heads, 
but the most commonly accepted are (Valverde 
et al., 2016): primary parameters that provide 
information on sperm head dimensions and 
usually include length (L, µm), width (W, µm), 
area (A, µm2), and perimeter (P, µm); and 
derived parameters that approximate the head 
shape using a series of mathematical formu-
lae, including ellipticity (L/W), rugosity (also 
known as roughness; 4 π A/P2), elongation 
(lack of roundness; (L − W) / (L + W)), and 
regularity (π LW/4A). To some authors, ellip-
ticity and elongation provide redundant infor-
mation as they describe the same phenomenon: 
the ratio between sperm head lengthening and 
widening (Sánchez, Bastir, & Roldan, 2013); 
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but, in general, the multivariate mathematical 
analysis considers both significant measure-
ments (Vásquez, Soler, Camps, Valverde, & 
García-Molina, 2016).

The introduction of quality control pro-
grams is needed throughout the process of 
production of AI doses. The use of CASA tech-
nology makes it easy, reproducible, and reliable 
(Gadea, 2005). These programs have been suc-
cessful for many years and have been able to 
secure successful results in AI around the world 
(Maes, López Rodríguez, Rijsselaere, Vyt, & 
Van Soom, 2011). 

Sperm subpopulation concept: The sper-
matozoon is a dynamic cell: its biochemi-
cal processes modify the sperm physiology 
throughout maturation, ejaculation, transport 
through the female genital tract and fertilization 
(Chamberland et al., 2001). These physiologi-
cal changes are related to flagellar beating, thus 
spermatozoa show different swimming patterns 
in the epididymis, seminal plasma, cervical 
mucus and oviduct (Hamamah & Gatti, 1998; 
Tash & Bracho, 1998). Sperm samples are het-
erogeneous, implying that spermatozoa with 
different motility values coexist in the same 
ejaculate (Katz, Erickson, & Nathanson, 1979; 
Katz & Davis, 1987; Neill & Olds-Clarke, 
1987; Chantler, Abraham-Peskir, & Roberts, 
2004). Also, the morphology is heterogeneous 
in different levels depending on the species: 
humans have the most heterogeneous sperm 
among mammals (Yániz, Palacín, Vicente-Fiel, 
Sánchez-Nadal, & Santolaria, 2015). 

The historical view has conceived the 
ejaculate as a conjunct of “equivalent” cells 
competing for arrival to the oocyte. However, 
this conceptual approach is in contradiction 
with the observed heterogeneity. To solve this, 
during the 21st century, the use of quantitative 
sperm parameters obtained with CASA tech-
nology and multivariate analysis was imple-
mented and the paradigm has shifted to a 
subpopulation approach of semen (Quintero-
Moreno, Miró, Teresa Rigau, & Rodríguez-
Gil, 2003; Valle et al., 2013). Nowadays, we 
can consider that, in every studied species, all 

males have a well-defined sperm subpopulation 
structure. The real biological significance still 
has to be defined. 

Principal components analysis: Principal 
component analysis (PCA) is a multivariate 
technique that is being used for the dimension-
reducing CASA data (Dorado, Molina, Muñoz-
Serrano, & Hidalgo, 2010; Martínez-Pastor et 
al., 2011; Maroto-Morales et al., 2016; Soler 
et al., 2017b; Caldeira et al., 2018; Ramón & 
Martínez-Pastor, 2018). In brief, PCA replaces 
the variables in a multivariate data set with 
uncorrelated estimated derived variables (linear 
combinations of the initial variables) called 
principal components (Fig. 1A, Fig. 1B). This 
enables the selection and use of only the prin-
cipal components since they convey most of 
the total variance, thus reducing the number of 
variables. Also, the conceptual weight of the 
new variables, that integrate some coherent 
individual ones, increases the significance of 
the derived results (Ramió et al., 2008). 

Clustering methods: There are two dif-
ferent approaches for multivariate analysis 
classification: the discriminant and cluster 
analysis. The first one is based on an a priori 
classification taken form canonical subjects 
of well-predefined classes (male/female). On 
the other hand, the second one approaches the 
intrinsic mathematical distances among the 
considered variables to define a conjunct of 
classes needed for a posteriori definition of 
their meaning (Kaufman & Rousseeuw, 2005; 
Spencer, 2013).

Cluster analysis is a technique for mul-
tivariate statistical data analysis that allows 
unsupervised grouping of observations into 
subsets (called clusters) so that observations 
in the same cluster are similar depending on a 
given criteria (Kaufman & Rousseeuw, 1990; 
Xu & Wunsch, 2005; Everitt, Landau, Leese, 
& Stahl, 2011;). “Unsupervised” implies that 
there is not an a priori grouped dataset to 
guide the grouping. Therefore, cluster analy-
sis are suited to resolve the heterogeneity of 
sperm motility data in discrete subpopulations, 
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taking special advantage of the information 
contained in CASA datasets (Martínez-Pastor 
et al., 2011).

The objective of these analysis is to assign 
observations to groups (“clusters”) so that, 
within each one, the variables or attributes 
of interest are similar, but the groups them-
selves stand apart from one another based on 
the selected information (Everitt et al., 2011). 
Cluster analysis has several problems; for 
example, the selection of distance measure, 
clustering procedure, number of clusters, and 
the interpretation of the profile clusters and the 
assessment of the clustering validation. 

If these analyses are applied in CASA sys-
tems, the datasets provided by CASA need to 

be first explored before the clustering process. 
Also, lack of fit of a normal distribution, skew-
ness, outliers, extreme values, data “noise,” a 
weak clustering structure, and multicollinearity 
among different variables, have to tested first 
(Spencer, 2013). Nevertheless, we must take 
into account that datasets are expected to bear 
non-normal distribution and skewed variables. 
Thus, the presence of such features should not 
be automatically taken as a sign of incorrect 
data (Martínez-Pastor et al., 2011).

The dataset must be examined for extreme 
or unreliable data, which could profoundly 
affect clustering results (Martínez-Pastor et 
al., 2011). Nevertheless, it is often difficult to 
determine if an event is a real outlier or a real 

Fig. 1. A. Principal Components Analysis chooses the first PCA axis as that line that goes through the centroid, but also 
minimizes the square of the distance of each point to that line. Equivalently, the line goes through the maximum variation 
in the data. The second PCA axis also must go through the centroid and goes through the maximum variation in the data, 
but with a certain constraint: It must be completely uncorrelated (i.e., at right angles, or “orthogonal”) to PCA axis 1. B. 
Consider an extreme case, (lower right), where your data all lie in one direction. Although two features represent the data, 
we can reduce the dimension of the dataset to one using a single linear combination of the features (as given by the first 
principal component). Image adapted from https://onlinecourses.science.psu.edu/stat857/node/154/ (PennState Eberly 
College of Science, 2019).
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value belonging to an underrepresented cluster. 
Typical clustering methods of outliers - as the 
k-means method, which tend to group outli-
ers in a few clusters - can be used to remove 
them. Moreover, some clustering methods can 
deal with noise or outliers as the model-based 
clustering (Fraley & Raftery, 2002). The CASA 
systems provide a high number of kinematic 
variables that can be redundant. That is because 
many of those convey similar information as 
the velocities (VCL, VAP, and VSL), whereas 
others are derived from linearity (LIN) as the 
VSL/VCL ratio. Therefore, it is desirable to 
reduce the number of variables before run-
ning the clustering algorithm, reducing both 
dimensionality and redundancy. Another con-
sideration is that not all variables contribute 
equally in the cluster structure, and an incorrect 
variable selection could result in inaccurate 
clustering (Steinley & Brusco, 2008). A Pear-
son correlation analysis helps to determine 
subsets of highly correlated variables, suggest-
ing redundant ones.

Clustering analysis can be a non-hierar-
chical or hierarchical procedure (Kaufman & 
Rousseeuw, 2005; Spencer, 2013). In hierar-
chical classifications, each sub-cluster can be 
formed from one larger cluster split into two, 
or the union of two smaller ones. In the non-
hierarchical or partitional methods, the final 
number of clusters (k) is decided by the user 
before carrying out the cluster running. Then, 

the algorithm begins assigning the observations 
to the k clusters, iteratively recalculating clus-
ter membership, and seeking for the optimal 
partitioning of the data. The k-means algorithm 
was the most used in this kind of method, but it 
has some drawbacks as sensitiveness to outliers 
and data-noise (Kaufman & Rousseeuw, 1990).

On the other hand, hierarchical cluster-
ing methods are based on a multiple-step 
procedure that can mainly be categorized into 
agglomerative (bottom-up) and divisive (top-
down) procedures (Castro, Coates, & Nowak, 
2004; Leonard & Droege, 2008; Wang et al., 
2015) (Fig. 2). In agglomerative procedures, 
each subject is initially assumed to be a cluster. 
The two nearest clusters (based on a distance 
measure) are then merged at a time. This merge 
process continues until all the samples are clus-
tered into one group. Consequently, a tree-like 
structure, known as a dendrogram, is returned. 
As an alternative, if the number of clusters is 
provided, the process of amalgamation of clus-
ters can be terminated when the desired number 
is obtained. The first step of an agglomerative 
procedure considers all the possible mergers 
of two samples, which requires n (n - 1) / 2 
combinations (where n depicts the number of 
samples) (Sharma, López, & Tsunoda, 2017). 
Among the agglomerative algorithms, average 
linkage (UPGMA) or Ward’s averaging method 
may be more appropriate for clustering CASA 
systems data (Martínez-Pastor et al., 2011).

Fig. 2. Example of agglomerative and divisive hierarchical clustering. Adapted from (Everitt et al., 2011).
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Divisive procedures perform clustering in 
the opposite way. They start by considering a 
group (having all samples) and divide it into 
two groups at each stage until all the groups 
comprise only a single subject (Duda, Hart, 
& Stork, 2001). In the first step of a divisive 
procedure, all the partitions of a sample set are 
considered, which amounts to 2n -1 - 1 combi-
nations. The number of combinations grows 
exponentially and practically makes divisive 
clustering a difficult procedure to implement. 
Thus, divisive procedures, which start with 
the entire dataset, are in general considered 
safer than agglomerative methods (Kaufman & 
Rousseeuw, 2005). Therefore, the accuracy of 
a divisive procedure is usually higher than that 
of an agglomerative procedure (Roux, 2018). 
However, the high computational demand (O 
(2n) ~ O (n 5)) of divisive procedures has 
severely restricted their usage (Roux, 1991). 
The number of bipartitions is O (n2); therefore, 
the complexity of one divisive step is O (n4). 
As the construction of the full binary hierarchy 
needs n - 1 steps, the overall complexity of the 
proposed divisive algorithms is O (n5) (Roux, 
2018). This whole process involves substantial 
computer power. Thereby, the divisive pro-
cedure is generally not used for hierarchical 
clustering, remaining largely ignored in the 
literature (Sharma et al., 2017).

As a result, clustering analysis allows to 
distribute the observations (spermatozoa) in 
clusters (subpopulations). Sperm samples can 
be characterized by calculating the respective 
average values of the CASA parameters as the 
median or confidence intervals. The frequen-
cies of each subpopulation, within males or 
treatments, can be estimated, obtaining differ-
ent subpopulation patterns (Martínez-Pastor et 
al., 2011). These population frequencies can 
be used for further statistical analyses, such 
as regression, that can be used to relate sub-
populations to other sperm features (Quintero-
Moreno, Rigau, & Rodríguez-Gil, 2007). 

Sperm subpopulation structure: It has 
to be remembered that the primary requirement 
for subpopulation analysis is that the CASA 

systems deliver the accurate data. The opti-
mization of new methodological approaches, 
that were commented previously, suggests that 
the previous work developed on this topic has 
to be reassessed. The combination of clearly 
acquired image-sequences and sophisticated 
image processing allows to obtain reliable 
kinematic and morphometric sperm param-
eters, whose outcomes are improved datasets. 
This enables a better establishment of real and 
significant subpopulation structures within and 
between species (Martínez-Pastor et al., 2011).

Even with the previous technological anal-
ysis limitations, many studies have explored the 
use of cluster analysis to identify subpopulation 
patterns in sperm samples. Several works have 
considered kinematics data (Ortega-Ferrusola 
et al., 2009; Soler, García, Contell, Segervall, 
& Sancho, 2014; Yániz, Palacín, Vicente-Fiel, 
Sánchez-Nadal, & Santolaria, 2015; Yániz et 
al., 2018), morphometric (Aggarwal et al., 
2007; Álvarez et al., 2008; Esteso et al., 2009), 
or a combination of both (Vásquez et al., 2016; 
Soler et al., 2017b).

In reference to motility, each subpopu-
lation may be characterized accordingly to 
its average kinematic variables. For example, 
initially a subpopulation with high-velocity 
values and high linearity could be defined as 
“fast, linear”, whereas another could be defined 
as “slow, non-linear” (Martínez-Pastor et al., 
2011). Then, the frequencies of these subpopu-
lations can be calculated. If differences on these 
frequencies are detected, they can be associated 
to individual variations among ejaculates and 
individuals (Núñez-Martínez, Moran, & Peña, 
2006), sperm freezability (Martínez-Pastor et 
al., 2005), or sperm fertility (Quintero-Moreno 
et al., 2003).

According to the species, different works 
have indicated that kinematic subpopulation 
structure was composed of three or four sub-
populations. The presence of a “fast and linear” 
subpopulation has been proposed as a good 
indicator of sample quality, whereas a pre-
dominant “slow and non-linear” subpopulation 
would be a marker of poor quality (Martínez-
Pastor et al., 2011). In any case, the final 
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structure is animal dependent, and it means dif-
ferent animals present dissimilar subpopulation 
structures (Soler et al., 2017b). 

Regarding morphology, the general picture 
is similar to motility. In human’s sperm, two 
(Vásquez et al., 2016) or three (Santolaria et 
al., 2016; Yániz et al., 2016) morphometric 
subpopulations were observed. In other spe-
cies, a different number of subpopulations 
were identified; for example, three for pumas 
(Cucho et al., 2016) and roosters (García-Her-
reros, 2016), four for cats (Gutiérrez-Reinoso 
& García-Herreros, 2016), and five for guinea 
fowls (García-Herreros, 2016). Following the 
observed motility, each animal inside the same 
species showed a different subpopulation fre-
quency, probably a consequence of its particu-
lar genetic and physiological build.

During this review, only one previous 
work - on foxes’ semen – was found that 
comprises the combination of kinematic and 
morphometric data for defining an integrative 
subpopulation structure study. Three subpopu-
lations were observed when only kinematic or 
morphometric were considered, and four when 
combining both databases (Soler et al., 2017b). 
This kind of integrative work must be applied 
in the future, including the assessment of other 
parameters (DNA fragmentation, viability and 
membrane stability) to obtain a better compre-
hension of what the ejaculate is.

With this literature review, we are able to 
conclude that the principal goal of subpopula-
tion structure analysis is to understand the 
sperm biology. Nevertheless, until now, we 
have just established the conceptual basis. The 
future must be devoted to evaluate the biologi-
cal basis on the frame of sperm competition, 
movement along the female track, environmen-
tal effects and, finally, fertility determination.
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RESUMEN

Análisis de subpoblaciones cinéticas y morfomé-
tricas de espermatozoides con sistemas CASA: revisión. 
La valoración subjetiva de la calidad seminal ha dado 
paso al uso de las técnicas objetivas de valoración por 
medio de la tecnología CASA (computer-assisted semen 
analysis). Se pueden aplicar una serie de pruebas cinéticas, 
morfométricas, morfológicas o de integridad del ADN 
para caracterizar y entender la biología reproductiva del 
espermatozoide. En los últimos años, se ha dado un cam-
bio significativo de paradigma conceptual respecto de qué 
es un eyaculado. Cabe decir que, hasta tiempos recientes, 
se consideró que una población representativa (miles de 
millones) de espermatozoides estaba formada por células 
“equivalentes” con un objetivo común: ser el que finalmen-
te pudiese fecundar el ovocito. La comprobación de que el 
conjunto de espermatozoides se agrupa en subpoblaciones 
bien definidas de acuerdo con sus características cinéticas 
y/o morfométricas, ha abierto el camino hacia una visión 
más cooperativa. Además, se ha visto que la distribución 
subpoblacional es diferente entre individuos, lo que parece 
indicar diferentes estrategias que se pueden entender dentro 
de otro paradigma: el de la competencia espermática entre 
diferentes eyaculados. A pesar de que aún no se conoce el 
papel de las diferentes subpoblaciones, se deben continuar 
los trabajos en esa dirección. En esta revisión, se caracteri-
zó la evaluación de la fertilidad con la tecnología CASA y 
se examinaron los principales métodos multivariados en la 
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evaluación de subpoblaciones de espermatozoides analiza-
dos mediante un sistema CASA.

Palabras clave: semen, movilidad, análisis multivariado, 
andrología, reproducción.
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