231
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
Estimation of bat colony size even with low recapture rates:
an example based on the Cormack-Jolly-Seber model in Oaxaca, México
Antonio Santos-Moreno
1
& Itandehui Hernández-Aguilar
2
*
1. Laboratorio de Ecología Animal, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-
Unidad Oaxaca, Instituto Politécnico Nacional, México; asantosm90@hotmail.com
2. Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad San Cristóbal, Chiapas,
México; itandehui0901@gmail.com
* Correspondence
Received 28-IV-2020. Corrected 17-X-2020. Accepted 19-XI-2020.
ABSTRACT. Introduction: Group or colony size is an important variable that is related to biological, ecologi-
cal, and conservation aspects of bats. However, estimating the size of each colony or group in roosts used by
more than one species is particularly difficult, especially when recapture rates are very low (< 10 %). Objective:
Estimate the colony size of 14 species of bats: one emballonurid, one natalid, four mormoopids, seven phyl-
lostomids, and one vespertilionid, which roosted throughout one year (July 2016 to June 2017) in a mine and
two caves -Cerro Huatulco and El Apanguito- in the Sierra Sur and Costa of the state of Oaxaca. Methods: We
constructed capture-recapture histories per species and roost, and for species for which we obtained recaptures
that represented at least 10 % of the captures, we used the probabilistic Cormack-Jolly-Seber model. In the case
of species with no recaptures or with a recapture proportion lower than 10 %, we estimated the number of indi-
viduals per roost by applying the same proportion between the number of captured specimens and the estimated
number for species with recaptures greater than 10 % and that they belonged to the same family or trophic guild.
Results: The total estimated number of bats in the three studied roosts was 20 105. The highest colony size esti-
mates were for the mormoopids Pteronotus fulvus and P. mesoamericanus from El Apanguito and P. fulvus from
Cerro Huatulco, with 6 609, 4 092 and 2 212 individuals, respectively. Conclusions: The methodology used in
this study allowed estimating the colony size for all registered species, even though only for 21.42 % the recap-
ture rates were greater than 10 %. Therefore, we consider that this methodology represents a viable alternative
to estimate colony size in other roosts. This information, together with the high species richness and importance
for reproductive processes, allow us to propose these sites as Bat Protection and Conservation Areas in Mexico.
Key words: abundance; capture-recapture; cave; chiropterans; Cormack-Jolly-Seber; mine.
Santos-Moreno, A., & Hernández-Aguilar, I. (2021). Estimation of bat colony size even
with low recapture rates: an example based on the Cormack-Jolly-Seber model in
Oaxaca, México. Revista de Biología Tropical, 69(1), 231-244. DOI 10.15517/rbt.
v69i1.38777
ISSN Printed: 0034-7744 ISSN digital: 2215-2075
Bat populations play a vital role in natural
ecosystems and have a significant positive
economic impact, particularly insectivore bat
populations in the control of agricultural pests
(Cleveland et al., 2006). Colony size is an
important variable to understand the biology
and ecology of organisms that live in groups.
It is also important for the implementation
of effective conservation actions for these
organisms and can also provide useful eco-
logical information, such as the amount of
dispersed seeds, dynamic of the community,
and foraging patterns (Hristov, Betke, Theri-
ault, Bagchi, & Kunz, 2010). However, esti-
mating colony size in the field is difficult and
has been both a logistical and technological
DOI 10.15517/rbt.v69i1.38777
232
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
challenge, particularly for endangered, rare,
and cryptic species (Kunz & Anthony, 1996;
Kunz, 2003; McCracken, 2003; Kunz, Betke,
Hristov, & Vonhof, 2009). This is mainly due
to the biological characteristics of bats, such as
their small size, high vagility, and their strictly
nocturnal lifestyle, although it is also a result
of the methodologies employed. For example,
estimations of colony size using thermal imag-
ing are highly costly (Hristov, Betke, & Kunz,
2007) and visual counts and photographic esti-
mations can be prone to bias (O’Farrell & Gan-
non, 1999). Capture-mark-recapture (CMR)
methods, which consist in marking individuals
in a first capture session and then recording the
proportion of marked individuals in subsequent
recapture sessions, have been demonstrated to
be an efficient tool for the estimation of bat col-
ony size (Puechmaille & Petit, 2007). Although
to date there are no studies in which the popula-
tion size of ecologically similar and taxonomi-
cally related sympatric bat species is compared,
it is to be expected that when subjected to the
same environmental conditions they will show
similar population sizes, and therefore similar
probabilities of capture. The empirical data,
at least in the Mexican tropics, do not show a
clear pattern in this sense, since some studies
show a tendency for species of the same genus
to show similar abundances (e. g., Navarro &
Leon-Paniagua, 1995; Ramírez-Lucho, Coates,
& González-Christen, 2017), while in others
there is a clear predominance in the number of
captures of a species (e. g. Moreno & Halfter,
2001; Mendoza, Horváth, Ruiz, Escalona, &
Navarrete, 2017).
Given the low abundance of roosts that
contain colonies of thousands of bats world-
wide (Furey & Racey, 2016), it is necessary
to carry out estimations of colony size that
will help to obtain a better perspective of the
dynamics of bat populations across time. In
this sense, caves stand out due to their capacity
to maintain thousands or millions of individu-
als (Arita, 1993; Trajano & Giménez, 1998),
although they are also relatively more vulner-
able systems compared to other roosting sites
(Elliott, 2000; Hamilton-Smith & Eberhard,
2000) and are currently subject to threats (guano
mining, unsupervised tourist visits, vandalism,
and alteration and loss of surrounding vegeta-
tion cover) that put bat populations at risk and
could even lead to the extinction of species that
depend on cave roosts (Mickleburgh, Hutson,
& Racey, 2002; Medellín, 2003; Elliott, 2004;
Gunn, 2004; McCracken, 2011; Medellín, Wie-
derholt, & López-Hoffman, 2017).
Considering the above, there is an urgent
need to perform studies that provide infor-
mation about the identity and abundance of
species that occupy a given roosts, such as
caves and mine tunnels, in order to determine
which are the main populations and sites that
exhibit higher vulnerability and conservation
value (Kloepper et al., 2016). This is impor-
tant because in most conservation plans and
identification of areas in need of protection,
the parameters that are taken into account
are vegetation cover and forest fragmenta-
tion, while subterranean ecosystems (caves,
mines, cracks) tend to be underrepresented or
even ignored (Sugai, Ochoa-Quintero, Costa-
Pereira, & Roque, 2015; Medellín et al., 2017).
The roosts evaluated in this study had
not been previously explored, so there are no
previous studies that indicated the high diver-
sity of species that the three roosts harbor.
However, the results of the diversity (rich-
ness and abundance) of the three refuges have
been published recently (Hernández-Aguilar &
Santos-Moreno, 2020a), so work will continue
so that the three sites are considered impor-
tant sites for bat populations from Mexico.
Therefore, the objective of this study was to
estimate the colony size of 14 bat species that
were recorded throughout one year in a mine
and two caves. In addition, we present a new
method to estimate the colony size of species
with low recapture rates (< 10 %).
MATHERIALS AND METHODS
Study site: The study was carried out in a
mine tunnel (hereafter La Mina, 15º54’52’ N &
96º24’59’ W, and an altitude of 1 110 m.a.s.l),
in the municipality of Pluma Hidalgo, and two
233
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
caves in Santa María Huatulco: El Apanguito
(15º51’58’ N & 96º21’13.2’ W, and an altitude
of 695 m.a.s.l) and Cerro Huatulco (15º50’59’
N & 96º21’04.3’ W, and an altitude of 475
m.a.s.l), located in the state of Oaxaca, Mexico
(Fig. 1). The entrances to La Mina are 3 m high
and 2 m wide, for El Apanguito it is 1.20 x 1.5
m and at Cerro Huatulco it is 10 x 15 m. The
Mine contains water for most of the year and
only Cerro Huatulco has four chambers, the
remaining two have only one chamber. A com-
plete description of the roosting sites can be
found in Hernández-Aguilar & Santos-Moreno
(2020a; 2020b). The climate is hot subhumid
with rainfall in the summer and the main veg-
etation in the zone is medium semi-evergreen
forest with coffee plantations (Trejo, 2004;
OEIDRUS, 2005).
Field work: We carried out monthly sam-
plings from June 2016 to June 2017, with a
duration of two nights per roost, including a
dry season (October-April) and a rainy season
(May-September). It was not possible to per-
form any sampling during the month of May
2017 due to adverse environmental conditions
that made it impossible to access La Mina.
Bats were captured with a G5 harp trap (Bat
Conservation and Management, Inc., Carlisle,
PA, EE. UU.), 1.5 m wide and 2 m high, that
was placed at the entrance of the roosts from
18:00 to 00:00. All captured individuals were
immediately placed in cloth bags and then
processed. We identified the species and deter-
mined the sex and age category (juvenile or
adult); according to the degree of the phalan-
geal epiphyses observed against the light of a
headlamp (Handley, Wilson, & Gardner, 1991).
Finally, we placed an aluminum ring (National
Band and Tag Company, Newport, Kentucky,
USA) on the forearm of each individual with a
unique serial identification number depending
on the size of the organism: category A (2.9
mm diameter) for species such as Pteronotus
Fig. 1. Geographic location of the three roosts evaluated in the municipalities
of Pluma Hidalgo and Santa María Huatulco, Oaxaca, Mexico.
234
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
fulvus and Natalus mexicanus; and category B
(4 mm) for species such as Artibeus toltecus,
Carollia perspicillata, Glossophaga soricina,
Pteronotus mesoamericanus, and Mormoops
megalophylla. Once all the information was
recorded, we released the individuals in the
place where they were captured. In the case
of recaptured organisms, we obtained comple-
mentary data, such as time of recapture and
if the ring caused any damage to the forearm.
This study was carried out with a Scientific
Collection License for wildlife teaching grant-
ed by the Ministry of Environment and Natural
Resources (SEMARNAT-20/ks-0112/10/16).
Data analysis: We constructed capture-
recapture histories of individuals grouped by
species and roost. In the case of species with
recaptures that represented at least 10 % of
total captures, we applied a Cormack-Jolly-
Seber model was applied, which includes four
assumptions: 1) each animal marked in time (i)
has the same probability of being recaptured
(p
i
); 2) each animal marked in the population
at time (i) has the same probability of surviving
time (i + 1); 3) the marks do not fall off or are
erased, they are detectable, and 4) the informa-
tion collection process is relative to the interval
of each time elapsed between time (i) and time
(i + 1). This model includes two parameters:
capture probability (p) and apparent survival
probability (ϕ). Each parameter can be constant
(p o ϕ) or vary across time (p
t
or ϕ
t
), which
results in four possible candidate models for
each species and roost. The final model for
each species and roost was selected based on
the Akaike Information Criterion for small
samples (AICc, Burnham & Anderson, 2002).
Estimations were performed in Mark version
8.2 (White & Burnham, 1999). Once the final
model was selected, we estimated the value
or values of p (when the final model included
this parameter as constant or varying across
time, respectively) and used them to estimate
monthly population sizes (N) as the ratio of
the number of captured individuals (n) and the
capture probability (p): N= n/p (Lindenmayer,
Lacy, & Viggers, 1998). In order to apply the
Cormack-Jolly-Seber model to species with no
recaptures or a recapture proportion lower than
10 % of the captures, we estimated the number
of individuals per roost by applying the same
proportion between the number of captured
specimens and the estimated number for the
recorded species that belonged to the same
family or to the same trophic guild. For the
phyllostomid bat species Artibeus jamaicensis,
A. toltecus, A. watsoni, Desmodus rotundus,
Glossophaga soricina, Sturnira hondurensis,
and Carollia perspicillata from El Apanguito
and Cerro Huatulco, the estimated number
was obtained by applying the same proportion
between the number of captured specimens and
the estimated number for Carollia perspicil-
lata from La Mina, whose capture probability
had a narrower confidence interval than that
of A. toltecus in the same roost. In the case of
the mormoopid species Pteronotus fulvus, P.
mesoamericanus, and P. psilotis, values were
calculated with the proportion observed for
insectivorous bat Mormoops megalophylla in
El Apanguito, which was the only species of
this family for which we obtained enough data
to estimate capture probabilities. Moreover,
this species shares ecological similarities with
other species of the same family and can form
large colonies, as those observed in the genus
Pteronotus. Given that we did not record
M. megalophylla in El Apanguito during the
months of May, June, and July and could not
estimate the proportion between the number of
captured individuals and the number estimated
with the Cormack-Jolly-Seber model, we con-
sidered the mean value of the proportions of the
months when the species was recorded (from
September to April). In the case of Balantiop-
terix plicata (Emballonuridae), Natalus mexi-
canus (Natalidae), and Myotis pilosatibialis
(Vespertilionidae), which did not have recap-
ture proportions higher than 10 % in any roost
or an ecologically similar species, proportions
were calculated in the same way as for mor-
moopids, which did not have recaptures or had
recaptures lower than 10 % of total captures.
The number of individuals per roost and month
was calculated as the sum of the estimates of
235
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
each species present, while the total per roost
was calculated conservatively as the sum of the
maximum estimated number monthly of each
species for each roost throughout the year. This
restriction was applied because we do not know
the number of individuals that remain in each
refuge throughout the year and many individu-
als would be re-counted as much as 12 times
if we the sum of all the monthly estimates of
each species.
RESULTS
We captured, marked, and released 5 788
bats of 14 species, 10 genera, and five families:
one emballonurid (Balantiopterix plicata), one
natalid (Natalus mexicanus), four mormoopids
(Mormoops megalophylla, Pteronotus fulvus, P.
mesoamericanus, and P. psilotis), seven phyl-
lostomids (Artibeus jamaicensis, A. toltecus,
A. watsoni, Carollia perspicillata, Desmodus
rotundus, Glossophaga soricina, and Sturnira
hondurensis), and one vespertilionid (Myotis
pilosatibialis). The most abundant species were
P. fulvus and P. mesoamericanus with 41.01
and 32.34 % of the captures, respectively, and
the least abundant species were G. soricina
(3.11 %) and A. toltecus (1.31 %). We captured
570 individuals in La Mina, 4 306 in El Apan-
guito and 960 in Cerro Huatulco (Table 1).
The Cormack-Jolly-Seber model was
applied only to the data of A. toltecus (16.92
% recaptures) and Carollia perspicillata
(15.79 %), both in La Mina, and Mormoops
TABLE 1
Number of captured (first number) and estimated (second number) bats per month per roost for species or colonies to
which we could not apply capture-recapture models (recapture proportions lower than 10 %)
Month
Max
Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
Roost
Balantiopterix plicata
La Mina 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
CCH 1-13 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 1-13
CEA 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Total 1-13 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Natalus mexicanus
La Mina 1-13 1-13 0-0 1-13 0-0 0-0 1-13 0-0 0-0 0-0 0-0 0-0 1-13
CCH 0-0 0-0 0-0 1-13 0-0 0-0 0-0 1-13 3-40 0-0 0-0 0-0 3-40
CEA 0-0 12-159 28-371 17-225 61-808 17-225 18-238 11-146 15-199 13-172 3-40 4-53 61-808
Total 1-13 13-172 28-371 19-251 61-808 17-225 19-251 12-159 18-239 13-172 3-40 4-53
Mormoops megalophylla
La Mina 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
CCH 6-79 0-0 2-27 0-0 1-13 0-0 1-13 0-0 0-0 0-0 6-79 13-172 13-172
Total 6-79 0-0 2-27 0-0 1-13 0-0 1-13 0-0 0-0 0-0 6-79 13-172
Pteronotus fulvus
La Mina 0-0 0-0 0-0 0-0 0-0 0-0 1-13 0-0 1-13 0-0 0-0 0-0 1-13
CCH 6-79 81-1 070 70-928 37-490 167-2 212 78-1 033 23-305 110-1 457 100-1 325 68-901 8-106 10-132 167-2 212
CEA 0-0 2-26 151-2 001 65-861 138-1 828 190-2 516 177-2 345 499-6 609 311-4 119 38-504 27-358 11-146 499-6 609
Total 6-79 83-1 096 221-2 929 102-1 351 305-4 040 268-3 549 201-2 663 609-8 066 412-5 457 106-1 405 35-464 21-278
Pteronotus mesoamericanus
La Mina 2-26 10-132 41-543 14-185 16-212 8-106 15-199 1-13 0-0 5-66 0-0 0-0 41-543
CCH 12-159 6-79 9-119 12-159 1-13 1-13 0-0 3-40 4-53 1-13 17-225 8-106 17-225
CEA 58-768 108-1 427 136-1 802 216-2 860 117-1 550 88-1 165 74-980 114-1 510 74-980 186-2 466 202-2 675 309-4 092 309-4 092
Total 72-953 124-1 638 186-2 464 242-3 204 134-1 775 97-1 284 89-1 179 118-1 563 78-1 033 192-2 545 219-2 900 317-4 198
236
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
TABLE 1 (Continued)
Month
Max
Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
Pteronotus psilotis
La Mina 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
CCH 2-26 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 2-26
CEA 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Total 2-26 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Desmodus rotundus
La Mina 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
CCH 17-363 0-0 0-0 0-0 2.42 0-0 0-0 0-0 0-0 0-0 2.42 0-0 17-363
CEA 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Total 17-363 0-0 0-0 0-0 2.42 0-0 0-0 0-0 0-0 0-0 2.42 0-0
Glossophaga soricina
La Mina 0-0 0-0 11-235 10-214 27-576 6-128 7-149 11-234 19-406 39-833 0-0 0-0 39-833
CCH 2-43 4-85 0-0 2-42 33-704 0-0 0-0 0-0 0-0 0-0 11-235 0-0 33-704
CEA 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Total 2-43 4-85 11-235 12-256 60-1 280 6-128 7-149 11-234 19-406 39-833 11-235 0-0
Carollia perspicillata
CCH 0-0 1-21 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 1-21
CEA 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Total 0-0 1-21 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Artibeus jamaicensis
La Mina 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
CCH 12-256 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 3-64 2-42 12-256
CEA 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Total 12-256 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 3-64 2-42
Artibeus toltecus
CCH 1-21 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 1-21
CEA 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Total 1-21 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Artibeus watsoni
La Mina 0-0 2-43 0-0 0-0 3-64 0-0 0-0 1-21 1-21 0-0 0-0 0-0 3-64
CCH 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
CEA 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Total 0-0 2-43 0-0 0-0 3-64 0-0 0-0 1-21 1-21 0-0 0-0 0-0
Sturnira hondurensis
La Mina 2-43 1-21 2-43 0-0 1-21 0-0 0-0 0-0 0-0 0-0 0-0 1-21 2-43
CCH 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 1-21 0-0 1-21
CEA 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Total 2-43 1-21 2-43 0-0 1-21 0-0 0-0 0-0 0-0 0-0 1-21 1-21
Myotis pilosatibialis
La Mina 0-0 0-0 0-0 1-13 3-40 0-0 0-0 0-0 1-13 0-0 0 -0 1-13 3-40
CCH 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
CEA 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
Total 0-0 0-0 0-0 1-13 3-40 0-0 0-0 0-0 1-13 0-0 0-0 1-13
Max=Maximum number of bats per roost per species throughout the entire sampling year. CCH: Cave Cerro Huatulco;
CEA: Cave El Apanguito.
237
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
megalophylla in El Apanguito (13.17 %). For
C. perspicillata and A. toltecus in La Mina,
the final model was the one where both cap-
ture probability and apparent survival were
constant throughout the year (ϕp), whereas
for Mormoops megalophylla in El Apanguito,
apparent survival was also constant across the
whole sampling period, but capture probabili-
ties varied monthly (ϕp
t
; Table 2). For the three
species, the best supported models presented
weights of 95.37, 99.21, and 98.77, respec-
tively. The capture probabilities estimated for
C. perspicillata and A. toltecus in La Mina and
M. megalophylla in El Apanguito were very
low, lower than 0.1. For C. perspicillata in La
Mina, we estimated a population size of 684
individuals throughout the year, with monthly
fluctuations between 107 (March) and 684
(September). For A. toltecus, we estimated 183
individuals, with a maximum abundance in
July (183 individuals) and a minimum abun-
dance in December and January (23 individu-
als in each month). For M. megalophylla in El
Apanguito, we estimated a total population size
of 2 106 individuals, with a maximum in March
(2 106 individuals) and a minimum in June and
July (0) (Table 3).
Even though we obtained recaptures of
four other species from the three roosts (Glos-
sophaga soricina in La Mina with 2.36 % of
recaptures, Pteronotus mesoamericanus in La
Mina and El Apanguito with 3.77 and 4.55 %,
respectively, P. fulvus in Cerro Huatulco with
0.39 % and in El Apanguito with 3.67 %, and
TABLE 2
Comparison of four candidate models and parameters of the final model (standard error of the estimation in parenthesis)
for the three bat species that had recapture proportions higher than 10 %
Candidate
Model
AICc ∆AICc
AICc
Weights
Model
Likelihood
Num.
Par.
Deviance
Final model
Parameter= Value (EE)
Carollia perspicillata La Mina
ϕp 222.7785 0 0.9537 1 2 80.4352 ϕ=0.8585 (0.9500)
ϕp
t
228.8673 6.0888 0.0454 0.0476 11 66.9147 p=0.0467 (0.0899)
ϕ
t
p 236.7892 14.0107 0.0008 0.0009 11 74.8366
ϕ
t
p
t
244.5441 21.7656 0.00002 0 19 63.1724
Artibeus toltecus La Mina
ϕp 97.0229 0 0.9921 1 2 42.6725 ϕ=0.7286 (0.8815)
ϕp
t
111.5070 14.4841 0.0007 0.0007 11 34.8584 p=0.0876 (0.2042)
ϕ
t
p 116.0200 18.9971 0.00007 0.0001 11 39.3715
ϕ
t
p
t
127.5036 30.4807 0 0 19 24.4276
Mormoops megalophylla El Apanguito
ϕp
t
763.4193 0 0.9877 1 9 46.9828 ϕ=0.7818 (0.8784)
ϕ
t
p
t
772.9295 9.5102 0.0085 0.0086 15 44.099 p
September
= 0 (0)
ϕ
t
p 774.5513 11.1320 0.0037 0.0038 9 58.1148 p
October
=0 (0)
ϕp 785.3180 21.8987 0.00002 0 2 83.0995 p
November
=0.0299 (0.1134)
p
December
=0.0679 (0.1230)
p
January
=0.1181 (0.1877)
p
February
=0.1218 (0.1932)
p
March
=0.0807 (0.1367)
p
April
=0.0212 (0.0487)
AICc = Akaike Information Criterion for small samples. ∆AICc = difference in AICc between the respective model and
the best candidate model. Num. Par. = Number of parameters. p = capture probability. Φ = apparent survival probability.
238
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
Natalus mexicanus in El Apanguito with 1.52
% recaptures), the proportions with respect to
the number of captures were lower than 10 %,
and we were not able to apply the Cormack-
Jolly-Seber model. There were no recaptures
for the rest of the species, but we were able
to obtain an estimation of colony size using
the methodology described above. We did not
observe any species that was consistently the
most abundant in the three roosts. In El Apan-
guito, we obtained the highest estimations for
P. fulvus in February (6 609 individuals), for
P. mesoamericanus in June (4 092), and for
N. mexicanus in November (808). In La Mina,
the highest estimated number of individuals
for G. soricina was observed in April (833
individuals), for A. watsoni in November (64
individuals), for S. hondurensis in July and
September (43 individuals), and for M. pilo-
satibialis in November (40 individuals), while
in Cerro Huatulco, the highest estimations for
D. rotundus, A. jamaicensis, P. psilotis, and B.
plicata were obtained in July with 363, 256, 26,
and 13 individuals, respectively (Table 1).
In the complex comprised of the three stud-
ied roosts, we estimated the presence of 20 105
bats, with 67.71 % in El Apanguito, 12.01 %
in La Mina, and 20.26 % in Cerro Huatulco.
Overall, we estimated a monthly mean value
of 525.15 bats in La Mina, with a maximum
in September (1 318) and a minimum in May
(0). In Cerro Huatulco, the monthly mean was
of 339.5 individuals, with a maximum (2 916)
in November and a minimum (0) in September
and October, December to February and April.
In El Apanguito, the monthly mean was of
1 309 individuals, with a maximum (4 092) in
June and a minimum (0) in July and May.
DISCUSSION
We obtained recapture rates higher than 10
% only for three bat species (C. perspicillata
15.79 %, A. toltecus 16.92 %, and M. megalo-
phylla 13.17 %), and lower than 10 % for four
species (G. soricina 2.36 %, P. mesoamerica-
nus 5.51 %, P. fulvus 3.95 %, and 1.52 % for N.
mexicanus); we did not record any recaptures
for the other seven species. In the latter two
cases, it was not possible to apply the Cor-
mack-Jolly-Seber model or, if it was applied,
the resulting estimations are not accurate. Thus,
TABLE 3
Monthly number of captured (first number) and estimated bats with the probabilistic Cormack-Jolly-Seber model
(second number) in three roosts for the three species that had recapture proportions higher than 10 %
Month
Carollia perspicillata Artibeus toltecus Mormoops megalophylla
La Mina La Mina El Apanguito
July 23 - 491 16 - 183 0 - 0
August 17 - 363 4 - 46 14 - 185
September 32 - 684 8 - 91 12 - 159
October 10 - 214 3 - 34 66 - 874
November 25 - 534 14 - 160 143 -1 894
December 8 - 171 2 - 23 99 - 1 311
January 10 - 214 2 - 23 133 - 1 762
February 20 - 427 3 - 34 155 - 2 053
March 5 - 107 15 - 171 159 - 2 106
April 19 - 406 4 - 46 35 - 464
May 0 - 0 0 - 0 0 - 0
June 7 - 150 5 - 57 0 - 0
Mean 15 - 313 6 - 72 68 - 901
Min 0 - 0 0 - 0 0 - 0
Max 32 - 684 16 - 183 159 - 2 106
239
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
the implementation of new methodologies is
necessary to obtain estimations with extremely
low recapture rates as occur with large colonies
of bats. In our study, the two most abundant
species (P. fulvus with 2 369 individuals and
P. mesoamericanus with 1 868 individuals)
had such low recapture rates (3.95 % and 5.51
%, respectively, perhaps because they occupy
other alternative refuges, since we have identi-
fied three caves near El Apanguito and Cerro
Huatulco) that it was not possible to directly
apply the model. However, with the methodol-
ogy implemented in this study and taking the
proportion between the number of captures and
the estimated colony size of M. megalophylla,
it was possible to estimate the colony size of
the mormoopids P. fulvus and P. mesoamerica-
nus, obtaining thus the largest colony sizes in
El Apanguito with 6 609 and 4 092 individuals,
respectively.
The specific ecological characteristics of
each species, such as roost fidelity, use of
alternative roosts, flight patterns, the echoloca-
tion abilities to detect the net, and large colony
sizes make it difficult to obtain high recapture
rates, which makes it difficult to estimate their
colony sizes (Lewis, 1995; Storz, Balasingh,
Nathan, Emmanuel, & Kunz, 2000; Godoy
et al., 2002; Chaverri & Kunz, 2006). The
overall recapture percentage (average 6.1 %)
were similar to those reported in other studies
in México, North America (United States 40
%, Stevenson & Tuttle, 1981; Canada 14 %,
Norquay, Martinez-Núñez, Dubois, Monson, &
Willis, 2013), and South America (Brazil 0 %,
Zortéa, Bastos, & Acioli, 2015; 1 %, McCrak-
en, 2003; 27.4%, Trajano, 1996). In this sense,
for bat species with recaptures lower than 10 %,
we consider it appropriate to use the approach
applied in the present study, where colony size
was estimated by using the proportions of the
observed number and the number estimated for
species with recapture percentages higher than
10 % that are ecologically similar and share
the same roost. Although this method has not
been applied before in bat species, it is to be
expected that when subjected to the same envi-
ronmental conditions they will show similar
population sizes and, therefore, similar capture
probabilities. Although it should be noted that
the precision of this method should be proven
in subsequent studies.
The estimations of colony size obtained
with the Cormack-Jolly-Seber capture-recap-
ture model are reasonable for the three studied
species (M. megalophylla with 2 106 indi-
viduals throughout the year in El Apanguito
and C. perspicillata with 684 individuals and
A. toltecus with 183 individuals in La Mina)
if we consider that the estimated values are
within the range known of colony size for
these species. For example, M. megalophylla is
cave-specialist species that can form colonies
from less than 1 000 individuals (Torres-Flores,
López-Wilchis, & Soto-Castruita, 2012) to up
to 500 000 individuals (Bonaccorso, Arends,
Genoud, Canton, & Morton, 1992; Iñiguez-
Dávalos, 2005). In the cave system Cuevas del
Silvino in Guatemala, the colony size of this
species was estimated to be of approximately
44 200 individuals using video cameras (Cajas-
Castillo, Echeverría, & Trujillo, 2015). In the
case of C. perspicillata and A. toltecus, low
population sizes have been reported through-
out their distribution area in Mexico (Jalisco,
Iñiguez-Dávalos, 1993; Stoner, 2002; Queré-
taro, Navarro & León-Paniagua, 1995; Oaxa-
ca, García-García, & Santos-Moreno, 2008),
which could be related to specific requirements
of the roosts such as temperature, humidity, air
flow, or light intensity, the diversity of other
available roosts, and the availability of food,
which could limit the presence of large popu-
lations (over 1 000 individuals according to
Arita, 1993). Artibeus toltecus, together with A.
watsoni and S. hondurensis, apart from roost-
ing in caves, also form small colonies in tents
constructed with leaves, holes in trees, tunnels,
cracks in rocks, and abandoned constructions
(Kunz & McCracken, 1996; McCracken &
Wilkinson, 2000; Chaverri & Kunz, 2006).
Other species with large colony sizes were P.
mesoamericanus and P. fulvus, with colony
size estimations of over 20 000 individuals
throughout the year in El Apanguito. These are
cave-specialist species that can form colonies
240
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
of thousands of individuals (Bonaccorso et al.,
1992; Arita, 1993; Ortega, 2005). Other stud-
ies that have carried out estimations for these
species, through direct observations in Mexico
(Torres-Flores et al., 2012) and video cameras
in Guatemala (Cajas-Castillo et al., 2015), have
reported colonies of over 6 000 individuals for
P. mesoamericanus and up to 98 600 individu-
als for P. fulvus (Cajas-Castillo et al., 2015).
In the case of N. mexicanus, we captured 199
individuals and estimated a colony size of 2
636 individuals in El Apanguito, 66 in Cerro
Huatulco, and 52 in La Mina. This species has
been observed to form colonies of up to 5 000
individuals, but it is generally found in colo-
nies between 100 and 200 individuals (Torres-
Flores & López-Wilchis, 2010). Finally, the
estimated colony size of G. soricina was of
833 individuals in La Mina and 704 individuals
in Cerro Huatulco. For this species, estimated
colony sizes have been of less than 500 indi-
viduals in other caves in Mexico (Torres-Flores
et al., 2012). Therefore, the estimates obtained
in this study are higher than those estimated in
other areas, so the precision and usefulness of
this method should be tested in the future. We
found considerable variation in the monthly
estimations of the species recorded in all three
roosts, which suggests that the composition of
the colonies exhibits considerable dynamics
(Hristov et al., 2010).
The total estimated number of bats in the
three studied roosts was 20 105, with higher
concentrations in El Apanguito (13 615 indi-
viduals) and Cerro Huatulco (4 074 individu-
als). These estimations, together with high
species richness, reproduction processes, and
occupation dynamics between these roosts
(Hernández-Aguilar & Santos-Moreno, 2020a;
Hernández-Aguilar & Santos-Moreno, 2020b),
allow us to propose these sites as Bat Protec-
tion and Conservation Areas in Mexico. We
also recommend continuing to monitor the
bat populations of these sites and, if possible,
implementing other methods to evaluate the
accuracy of our estimations.
Some studies have demonstrated that the
use of video cameras to record bats emerging
from roosts (Escalona-Segura, Vargas-Contre-
ras, & Sosa, 2002; Vargas-Contreras, Escalo-
na-Segura, Arroyo, Rendon Von Osten, &
Navarro, 2012; Cajas-Castillo et al., 2015)
and the incorporation of acoustic recordings
(Kloepper et al., 2016) could be techniques
that may produce robust estimations of size of
bat colonies. Thus, further studies using these
techniques could complement our results or
even improve estimates of the number of bats
that use the roosts, as well as provide the tools
that allow to establish priority criteria for the
conservation of roosts and bats in the area.
Even though recent advances, such as digi-
tal photography and image analysis, in some
cases allow estimating the number of individu-
als emerging from a roost (Corso, Woolley, &
Lacher, 2010), they do not allow to determine
the species identity and, thus, it is not pos-
sible to know the colony size of each species,
except in cases where the roost includes only
one species. This is the same limitation of pas-
sive acoustic methods (Kloepper et al., 2016),
thermal detection systems (Otálora-Ardila et
al., 2020), and thermal infrared imaging and
computer vision analysis (Hristov et al., 2010).
The Light Detection and Ranging (LiDAR)
scanning system allows to estimate the num-
ber of individuals per species by scanning the
roosts and visually recognizing and labelling
the areas occupied by each species (Shazali
et al., 2017); however, the cost of this system
is currently too high for its generalized use.
Very recently, genetic tag-recapture methods
are expensive but seem to offer advantages
over other more invasive methods, although
it is only recommended for species that show
high fidelity to the refuge and that do not form
colonies of thousands or millions of individu-
als (Oyler-McCance et al., 2018). Therefore,
we consider that the estimation method used
in the present study provides a low-cost, and
reasonably reliable option for the estimation of
bat colony size, especially for roosts occupied
by more than one species.
Ethical statement: authors declare that
they all agree with this publication and made
241
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are
fully and clearly stated in the acknowledge-
ments section. A signed document has been
filed in the journal archives.
ACKNOWLEDGMENTS
We thank the municipal authorities of
Pluma Hidalgo and Santa María Huatulco for
providing the facilities and permits to carry
out this study. To all the people that helped
with the field work and the ringing of bats. To
A.G. Ramos-Fernández, M.U. García Guer-
rero, M. Rös, and J. Williams for reviews prior
to the preparation of the manuscript. To M.
Calixto-Rojas for preparing the study map. To
the Instituto Politécnico Nacional de México
for providing financial support to carry out
this project (projects SIP-20161645 and SIP-
20171154 to the first author). The Consejo
Nacional de Ciencia y Tecnología de México
provided a scholarship for postgraduate studies
to the second author.
RESUMEN
Estimación del tamaño de colonia en murciéla-
gos incluso con bajas tasas de recaptura: un ejemplo
basado en el modelo Cormack-Jolly-Seber en Oaxaca,
México. Introducción: El tamaño del grupo o colonia
es una variable importante que está relacionada con los
aspectos biológicos, ecológicos y de conservación de los
murciélagos. Sin embargo, estimar el tamaño de cada colo-
nia o grupo en refugios utilizados por más de una especie
es particularmente difícil, especialmente cuando las tasas
de recaptura son muy bajas (< 10 %). Objetivo: Estimar
el tamaño de la colonia de 14 especies de murciélagos: un
emballonúrido, un natálido, cuatro mormópidos, siete filos-
tómidos y un vespertiliónido, que se refugiaron durante un
año (Julio 2016 a Junio 2017) en una mina y dos cuevas
-Cerro Huatulco y El Apanguito- en la Sierra Sur y Costa
del estado de Oaxaca. Métodos: Construimos historias de
captura-recaptura por especie y refugio, y para las especies
que se obtuvieron recapturas que representaban al menos
el 10 % de las capturas, utilizamos un modelo probabi-
lístico de Cormack-Jolly-Seber para estimar el tamaño de
sus colonias. En el caso de especies sin recapturas o con
una proporción de recaptura inferior al 10 %, estimamos
el número de individuos por refugio aplicando la misma
proporción entre el número de individuos capturados y
el número total estimado para las especies con recapturas
mayores del 10 % y que pertenecieran a la misma familia
o gremio trófico registradas con la mayor similitud eco-
lógica y con suficientes recapturas para aplicar el modelo
Cormack-Jolly-Seber. Resultados: El número total esti-
mado de murciélagos en los tres refugios de estudio fue de
20 105. Las estimaciones de tamaño de colonia más altos
fueron para los mormópidos Pteronotus fulvus y P. mesoa-
mericanus de El Apanguito y P. fulvus en Cerro Huatulco,
con 6 609, 4 092 and 2 212 individuos, respectivamente.
Conclusiones: La metodología utilizada en este estudio
permitió estimar el tamaño de la colonia para todas las
especies registradas, a pesar de que solo para el 21.42 %
las tasas de recaptura fueron superiores al 10 %. Por lo
tanto, consideramos que esta metodología representa una
alternativa viable para estimar el tamaño de colonia en
otros refugios. Esta información, junto con los procesos de
alta riqueza de especies y reproducción que tienen lugar
en esta área, permiten proponer estos sitios como áreas de
protección y conservación de murciélagos en México.
Palabras clave: abundancia; captura-recaptura; Cormack-
Jolly-Seber; cueva; mina; quirópteros.
REFERENCES
Arita, H. (1993). Conservation biology of the caves bats of
Mexico. Journal of Mammalogy, 74, 693-702.
Bonaccorso, F.J., Arends, A., Genoud, M., Canton, D., &
Morton, T. (1992). Thermal ecology of moustached
and ghost-faced bats (Mormoopidae) in Venezuela.
Journal of Mammalogy, 73, 365-378.
Burnham, K.P., & Anderson, D.R. (2002). Model Selection
and Inference - A Practical Information- Theoretic
Approach. New York, USA: Springer-Verlag.
Cajas-Castillo, J.O., Echeverría, J.L., & Trujillo, L. (2015).
Murciélagos del Parque Nacional Cuevas del Silvino,
Izabal, Guatemala. Boletín Red Latinoamericana y
del Caribe para la Conservación de los Murciélagos,
6, 4-8.
Chaverri, G., & Kunz, T.H. (2006). Roosting ecology of
the tent-roosting bat Artibeus watsoni (Chiroptera:
Phyllostomidae) in Southwestern Costa Rica. Biotro-
pica, 38, 77-84.
Cleveland, C.J., Betke, M., Federico, P., Frank, J.D.,
Hallam, T.G., Horn, J., ... Kunz, T.H. (2006). Eco-
nomic value of the pest control service provided
by Brazilian free-tailed bats in South-central Texas.
Frontiers in Ecology and the Environment, 4,
238-243.
Corso, A.E., Woolley, J.B., & Lacher, T.E. (2010). Using
digital photography and image analysis software to
242
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
estimate the emergence of bats at Tou Santi Cave,
Dominica, West Indies. Caribbean Journal of Scien-
ce, 46(2-3), 169-175.
Elliott, W. (2000). Conservation of the North American
cave and karst biota. In H. Wilkens, D.C. Culver, &
W.F. Humphreys (Eds.), Subterranean Ecosystems,
Ecosystems of the World (pp. 665-689). Amsterdam,
Netherlands: Elsevier Science.
Elliott, W. (2004). Protecting caves and cave life. In D.C.
Culver, & W.B. White (Eds.), The Encylopedia of
Caves (pp. 458-468). Amsterdam, Netherlands: Else-
vier Science.
Escalona-Segura, G., Vargas-Contreras, J.A., & Sosa, L.
(2002). Registros importantes de mamíferos para
Campeche, México. Revista Mexicana de Mastozoo-
logía, 6, 99-103.
Furey, N.M., & Racey, P.A. (2016). Conservation Ecology
of Cave Bats. In C. Voigt, & T. Kingston (Eds.), Bats
in the Anthropocene: Conservation of Bats in a Chan-
ging World (pp. 463-500). New York, USA: Springer
International Publishing
García-García, J.L., & Santos-Moreno, A. (2008). Diver-
sidad de cuatro ensambles de murciélagos en San
Miguel Chimalapa, Oaxaca, México. In C. Loren-
zo, E. Espinoza, & J. Ortega (Eds.), Avances en el
Estudio de los Mamíferos de México. Publicaciones
Especiales (Vol. II, pp. 411-326). Ciudad de México,
México: Asociación Mexicana de Mastozoología.
Godoy, H., Esbérard, C., Ribeiro, M.A., Mangolin, R.,
Melo, G., & Baptista, M. (2002). Bat Species Rich-
ness in Atlantic Forest: What Is the Minimum Sam-
pling Effort? Biotropica, 35(2), 278-288.
Gunn, J. (2004). Encyclopedia of Caves and Karst Science.
New York, USA: Fitzroy Dearborn.
Handley, C.O., Wilson, D.E., & Gardner, A.L. (1991).
Demography and natural history of the common
fruit bat A. jamaicensis, on Barro Colorado Island,
Panamá. Smithsonian. Contributions to Zoology,
511, 1-1733.
Hamilton-Smith, E., & Eberhard, S. (2000). Conservation
of cave communities in Australia. In H. Wilkens,
D.C. Culver, & W.F. Humphreys (Eds.), Subterra-
nean Ecosystems, Ecosystems of the World (pp. 647-
664). Amsterdam, Netherlands: Elsevier.
Hernández-Aguilar, I., & Santos-Moreno, A. (2020a). Bat
diversity in three roosts in the Coast region of Oaxa-
ca, México. Neotropical Biology and Conservation,
15(2), 135-152.
Hernández-Aguilar, I., & Santos-Moreno, A. (2020b).
Reproduction and population dynamics of cave-
dwelling bats in Costa of Oaxaca, México. Revista de
Biología Tropical, 68(3), 785-802.
Hristov, N.I., Betke, M., & Kunz, T.H. (2007). Applications
of thermal infrared imaging for research in aeroecolo-
gy. Integrative and Comparative Biology, 48, 50-59.
Hristov, N.I., Betke, M., Theriault, D.E., Bagchi, A., &
Kunz, T.H. (2010). Seasonal variation in colony
size of Brazilian free-tailed bats at Carlsbad Cavern
based on thermal imaging. Journal of Mammalogy,
91, 183-192.
Iñiguez-Dávalos, L.I. (1993). Patrones Ecológicos en la
comunidad de murciélagos de la sierra de Manantlán.
In R.A. Medellín, & G. Ceballos (Eds.), Avances en
el Estudio de los Mamíferos de México (pp. 355-370).
Ciudad de México, México: Asociación Mexicana de
Mastozoología A.C.
Iñiguez-Dávalos, L.I. (2005). Mormoops megalophylla. In
G. Ceballos, & G. Oliva (Eds.), Los Mamíferos Sil-
vestres de México (pp. 178-179). Ciudad de México,
México: Conabio.
Kloepper, L.N., Linnenschmidt, M., Blowers, Z., Brans-
tetter, B., Ralston, J., & Simmons, J.A. (2016). Esti-
mating colony sizes of emerging bats using acoustic
recordings. Royal Society Open Science, 3, 160022.
Kunz, T.H. (2003). Censusing bats: challenges, solutions,
and sampling biases. In T.J. O’Shea, & M.A. Bogan
(Eds.), Monitoring Trends in Bat Populations of the
United States and Territories: Problems and Pros-
pects (pp. 9-20). Washington, D.C., USA: United
States Geological Survey, Biological Resources Dis-
cipline, Sciences Division.
Kunz, T.H., & Anthony, E.L.P. (1996). Variation in the
timing of nightly emergence behavior in the little
brown bat, Myotis lucifugus (Chiroptera: Vesperti-
lionidae). In H.H. Genoways, & R.J. Baker (Eds.),
Contributions in Mammalogy: a Memorial Volume
Honoring Dr. J. Knox Jones, Jr. (pp. 225-235). Lub-
bock, USA: Museum of Texas Tech University.
Kunz, T.H., & McCracken, G.F. (1996). Tents and harems:
apparent defense of foliage roosts by tent-making
bats. Journal of Tropical Ecology, 12, 121-137.
Kunz, T.H., Betke, M., Hristov, N.I., & Vonhof, M. (2009).
Methods for assessing colony size, population size,
and relative abundance of bats. In T.H. Kunz, & S.
Parsons (Eds.), Ecological and Behavioral Methods
for the Study of Bats (pp. 133-157). Baltimore, USA:
Johns Hopkins University Press.
Lewis, S.E. (1995). Roost fidelity of bats: a review. Journal
Mammalogy, 76, 481-496.
Lindenmayer, D.B., Lacy, R.C., & Viggers, K.L. (1998).
Modelling survival and capture probabilities of the
mountain brushtail possum (Trichosurus caninus)
in the forests of Southeastern Australia using trap-
recapture data. Journal of Zoology, 245, 1-13.
243
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
McCracken, G.F. (2003). Estimates of population sizes
in summer colonies of Brazilian free-tailed bats
(Tadarida brasiliensis). In T.J. O’Shea, & M.A.
Bogan (Eds.), Monitoring Trends in Bat Popula-
tions of the United States and Territories: Problems
and Prospects (pp. 21-30). Washington, D.C., USA:
Information and Technology Report USGS/BRD/
ITR-2003003:1-274.
McCracken, G.F. (2011). Cave Conservation: Special
Problems of Bats. Texas, USA: Bat Conservation
International.
McCracken, G.F., & Wilkinson, G.S. (2000). Bat mating
systems. In E.G. Crichton, & P.H. Krutzsch (Eds.),
Reproductive Biology of Bats (pp. 321-362). New
York, USA: Academic.
Medellin, R.A. (2003). Diversity and conservation of bats
in México: research priorities, strategies, and actions.
Wildlife Society Bulletin, 31, 87-97.
Medellín, R.A., Wiederholt, R., & López-Hoffman, L.
(2017). Conservation relevance of bat caves for
biodiversity and ecosystem services. Biological Con-
servation, 211, 45-50.
Mendoza, V.H., Horváth, A., Ruiz, L., Escalona, G., &
Navarrete, D.A. (2017). Patrones de diversidad de
murciélagos en la Reserva de la Biosfera Selva El
Ocote, Chiapas, México. Mastozoología Neotropical,
24, 365-387.
Moreno, C.E., & Halffter, G. (2001). Spatial and temporal
analysis of α, β and γ diversities of bats in a frag-
mented landscape. Biodiversity and Conservation,
10, 367-382.
Mickleburgh, S., Hutson, A., & Racey, P.A. (2002). A
review of the global conservation status of bats. Orix,
36, 18-34.
Navarro, D., & León-Paniagua, L. (1995). Community
structure of bats along an altitudinal gradient in
tropical eastern México. Revista Mexicana de Mas-
tozoología, 1, 9-21.
Norquay, K.J.O., Martinez-Núñez, F., Dubois, J.E., Mon-
son, K.M., & Willis, C.K.R. (2013). Long-distance
movements of Little Brown bats (Myotis lucifugus).
Journal of Mammalogy, 94, 506-515.
O’Farrell, M.J., & Gannon, W.L. (1999). A comparison of
acoustic versus capture techniques for the inventor of
bats. Journal of Mammalogy, 80, 24-30.
OEIDRUS. (2005). Oficina Estatal de Información para el
Desarrollo Rural Sustentable. Tarjeta municipal de
información estadística básica.
Ortega, J. (2005). Pteronotus parnellii. In G. Ceballos, &
G. Oliva (Eds.), Los Mamíferos Silvestres de México
(pp. 181-183). Ciudad de México, México: Conabio.
Otálora-Ardila, A., Torres, J., Barbier, E., Pimentel, N.,
Leal, E., & Bernard, E. (2020). Thermally-assisted
monitoring of bat abundance in an exceptional cave
in Brazil’s Caatinga drylands. Acta Chiropterologica,
21, 411-423.
Oyler-McCance, S.J., Fike, J.A., Lukacs, P.M., Sparks,
D.W., O’Shea, T.J., Whitaker, J.O., & O’Sheam, T.J.
(2018). Genetic mark-recapture improves estimates
of maternity colony size for Indiana bats. Journal of
Fish and Wildlife Management, 9(1), 1-11.
Puechmaille, S.J., & Petit, E.J. (2007). Empirical evalua-
tion of non-invasive capture-mark-recapture estima-
tion of population size based on a single sampling
session. Journal of Applied Ecology, 44(4), 843-852.
Ramírez-Lucho, I., Coates, R., & González-Christen, A.
(2017). The understory bat community in a frag-
mented landscape in the lowlands of Los Tuxtlas,
Veracruz, Mexico. Therya, 8, 99-107.
Shazali, N., Teong, H.C., Shamsir, M.S., Tawie-Tingga,
R.C., Mohd-Ridwan, A.R., & Anwarali-Khan, F.A.
(2017). Assessing bat roosts using the LiDAR system
at Wind Cave Nature Reserve in Sarawak, Malaysian
Borneo. Acta Chiropterologica, 19, 199-210.
Stevenson, D.E., & Tuttle, D. (1981). Survivorship in the
endangered gray bat (Myotis grisescens). Journal of
Mammalogy, 62, 244-257.
Stoner, K.E. (2002). Murciélagos nectarívoros y frugívo-
ros del bosque tropical caducifolio de la Reserva de
Biosfera Chamela-Cuixmala. In F.A. Noguera, J.H.
Vega-Rivera, A.N. García-Aldrete & M.Q. Avendaño
(Eds.), Historia natural de Chamela (pp. 379-395).
Ciudad de México, México: Instituto de Biología,
UNAM.
Storz, J.F., Balasingh, J., Nathan, P.T., Emmanuel, K., &
Kunz, T.H. (2000). Dispersion and site Fidelity in a
tent-rosting population of the short-nosed fruit bat
(Cynopterus sphinx) in the Southerm India. Journal
of Tropical Ecology, 16, 117-131.
Sugai, L.S.M., Ochoa-Quintero, J.M., Costa-Pereira, R., &
Roque, F.O. (2015). Beyond aboveground. Biological
Conservation, 24, 2109-2112.
Torres-Flores, J.W., & López-Wilchis, R. (2010). Condi-
ciones microclimáticas, hábitos de percha y especies
asociadas a los refugios de Natalus stramineus en
México. Acta Zoológica Mexicana, 26, 191-213.
Torres-Flores, J.W., López-Wilchis, R., & Soto-Castrui-
ta, A. (2012). Dinámica poblacional, selección de
sitios de percha y patrones reproductivos de algunos
244
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 231-244, March 2021
murciélagos cavernícolas en el oeste de México.
Revista de Biología Tropical, 60, 1369-1389.
Trajano, E. (1996). Movements of cave bats in Southeas-
tern Brazil, with emphasis on the population ecology
of the common vampire bat, Desmodus rotundus
(Chiroptera). Biotropica, 28, 121-129.
Trajano, E., & Giménez, E.A. (1998). Bat community in
a cave from eastern Brazil, including a new record
of Lionycteris (Phyllostomidae, Glossophaginae).
Studies on Neotropical Fauna and Environment, 33,
69-75.
Trejo, I. (2004). Clima. In A.J. García-Mendoza, M.J.
Ordoñez, & M. Briones-Salas (Eds.), Biodiversidad
de Oaxaca (pp. 67-85). Ciudad de México, México:
Instituto de Biología, UNAM-Fondo Oaxaqueño para
la conservación de la naturaleza-World Wildlife Fund.
Vargas-Contreras, J.A., Escalona-Segura, G., Arroyo, J.,
Rendon Von Osten, J., & Navarro, L. (2012). Con-
servación de murciélagos en Campeche. Therya,
3(1), 53-66.
White, G.C., & Burnham, K.P. (1999). Program MARK:
Survival estimation from populations of marked ani-
mals. Bird Study, 46, 120-139.
Zortéa, M., Bastos, N.A., & Acioli, T.C. (2015). The
bat fauna of the Kararaô and Kararaô Novo caves
in the area under the influence of the Belo Monte
hydroelectric dam, in Pará, Brazil. Brazilian Journal
of Biology, 75(3), 168-17.