113
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
Drivers of diversity and altitudinal distribution of chironomids
(Diptera: Chironomidae) in the Ecuadorian Andes
Christian Villamarín
1
*, Santiago Villamarín-Cortez
2,3
, Danielle M. Salcido
2
,
Mauricio Herrera-Madrid
3
& Blanca Ríos-Touma
1
1. Grupo de Investigación BIOMAS, Facultad de Ingenierías y Ciencias Aplicadas, Universidad de Las Américas,
C/ José Queri, Quito, Ecuador; christian.villamarin@udla.edu.ec, blanca.rios@udla.edu.ec
2. Department of Biology, PhD Program in Ecology, Evolution and Conservation, University of Nevada, Reno, Nevada,
United States of America; sanbiol@gmail.com, danisalcido@gmail.com
3. Instituto Nacional de Biodiversidad (INABIO), Rumipamba 341 y Av. Shyris, Quito, Ecuador;
mauricio.herrera@biodiversidad.gob.ec
* Correspondence.
Received 03-III-2020. Corrected 15-X-2020. Accepted 04-XI-2020.
ABSTRACT. Introduction: Chironomids (Diptera: Chironomidae) are the most globally diverse and widely
distributed aquatic insects. Despite their prevalence in lotic systems, little is known about the ecology and
diversity of tropical species relative to other aquatic insect taxa, particularly at the immature stages. Objective:
Characterize chironomid diversity across an elevational gradient in Southwestern Ecuador and water quality
parameters associated with their composition. Methods: Samples were collected using a Surber net in forty riv-
ers within four watersheds in the Ecuadorian Andes comprised of montane and dry lowland forest and spanning
an elevational gradient of 3 120 m.a.s.l. Various physic chemical variables were measured including oxygen,
conductivity, total dissolved solids, temperature, and pH. Results: Generally, environmental variables were
strongly correlated with the composition of chironomid communities. Variation in the chriomid communities
was most strongly associated with oxygen, conductivity and pH. The presence of Parametriocnemus, Cricotopus
f4, Cricotopus sp3., Cricotopus (Isocladius), Oliveiriella, Onconeura, Alotanypus and Pentaneura was associ-
ated with lower temperatures, high dissolved oxygen and low conductivity while assemblages of Cricotopus sp.,
Rheotanytarsus, Tanytarsus, and Chironomus were associated with high conductivity and low concentrations
of dissolved oxygen. The RELATE analysis showed that local environmental characteristics are determine the
composition of the chironomid community. Conclusions: Similarity among local environmental factors was
strongly correlated to similarity among Chironomidae assemblages, especially with variables such as oxygen
concentration, pH and conductivity, whose variables are highly correlated to land use and dominant vegetation
in the watersheds sampled.
Key words: Tropical Andes; environmental variables; diversity patterns.
Chironomidae is one of the most widely
distributed families of aquatic Diptera span-
ning broad latitudinal, altitudinal, and dis-
turbance gradients (Ashe, Murray, & Reiss,
1987). Species within this group are able to
survive a suite of extreme conditions including
freezing temperatures, saline-rich or oxygen-
poor waters. Extraordinary examples include
species that inhabit extreme freezing, hypoxic
or saline environments such as Antarctica,
swamps, brackish water and sewers (Lencioni,
Cranston, & Makarchenko, 2018) via a suite
Villamarín, C., Villamarín-Cortez, S., Salcido, D.M., Herrera-Madrid, M., & Ríos-Touma,
B. (2021). Drivers of diversity and altitudinal distribution of chironomids (Diptera:
Chironomidae) in the Ecuadorian Andes. Revista de Biología Tropical, 69(1), 113-
126. DOI 10.15517/rbt.v69i1.40964
ISSN Printed: 0034-7744 ISSN digital: 2215-2075
DOI 10.15517/rbt.v69i1.40964
114
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
of protein adaptations such as hemoglobin-
like respiratory proteins or heat shock proteins
(Hanson, Springer, & Ramirez, 2010). Both
the immature and adult stages of their life-
cycle, make this group extremely important to
aquatic food webs as sources of proteins, lipids
and minerals for fish, amphibians, birds and
other macroinvertebrates (Armitage, Cranston,
& Pinder, 1995).
While these familiar examples highlight
taxa capable of living in extreme environments,
the majority of species have specific habitat
requirements (Lencioni et al., 2018). Species
are sensitive to subtle changes in water quality
and serve as indicators of stream health in fresh-
water biomonitoring assessments (Paggi, 2003).
In addition, individual-level morphological fea-
tures such as teeth deformities can indicate spe-
cific water contaminates (Roback & Coffman,
1983; Ossa et al., 2018). Pollution from mining
and agriculture have altered the physical, chem-
ical and biotic environment of aquatic systems,
especially in the Neo-tropics (Villamarín, Prat,
& Rieradevall, 2014). These result in changes
to nutrient and sedimentation inputs, flow rate,
thermal environment and biotic introductions
(Ríos-Touma & Ramírez, 2019) with implica-
tions for the macroinvertebrate communities
and functional diversity (Prat, Ríos-Touma,
Acosta, & Rieradevall, 2009).
In Ecuador, most Chironomidae research
focuses on systematics and for the subset that
address ecology, identifications are resolved to
family-level morphotypes (Ríos-Touma, Acos-
ta, & Prat, 2014; Encalada et al., 2019). Given
the importance and diversity of this family in
aquatic environments, it is critical to advance
the knowledge with species-level resolution in
an ecological context to understand how envi-
ronmental stressors modify these communities.
Previous studies in the Andean ranges focus on
Northern (Oviedo-Machado & Reinoso-Flórez,
2018) and Central Andes (Acosta & Prat,
2010) and have shown differences in subfamily
composition across elevational cline. Domi-
nant subfamilies at higher elevations include
Orthocladiinae, Podonominae and Diamesi-
nae, while lower elevations Chironominae and
Tanypodinae dominate indicating the role of
elevation, temperature and stream physical
characteristics in structuring these communi-
ties (Acosta & Prat, 2010; Oviedo-Machado &
Reinoso-Flórez, 2018).
Southern Ecuador exhibits exceptional
endemism (Mittermeier, Myers, Thomsen, da
Fonseca, & Olivieri, 1998) and is a biodiver-
sity hotspot (Mittermeier et al., 1998) in part
because of the several unique ecoregions, prox-
imity to arid and semi-arid areas of Northern
Perú (Sierra, 1999) and the Andean depression
(also known as the Depression of Huanca-
bamba) a valley separating the central Andes
from the Northern (Villamarín, Rieradevall,
& Prat, 2020). Despite the extreme ende-
mism of this region, studies characterizing
aquatic macroinvertebrate fauna, particularly
among Chrironomidae, are scarce. Understand-
ing environmental factors shaping chironomid
diversity is particularly important as rivers in
the region are continually impacted by land-use
change (Ríos-Touma & Ramírez, 2019). Here
we analyze how elevation and environmental
gradients shape the Chironomid community
composition in four watersheds of Southwest-
ern Ecuador to understand the environmen-
tal drivers of the diversity of this important
aquatic group.
MATERIALS AND METHODS
Study Area: The study took place at El
Oro Province, in Southwestern Ecuador. This
region has marked seasonality, a dry season
(June-October) and wet season (December-
May) (Escribano-Ávila, 2016). The samples
were taken only in dry season to minimize the
environmental variability that could destabi-
lize the chironomid community. Within the
province we sampled from four watersheds
(Fig. 1, Table 1): Puyango (3 394 km
2
, 0-3 285
m), Santa Rosa (2 805 km
2
, 0-2 900 m), Jubon-
es (2 153 km
2
, 0-3 900 m) and Siete (1 411 km
2
,
0-3 120 m) (Villamarín & Villamarín-Cortez,
2018). Forty rivers were sampled total dur-
ing the dry season between 2015 and 2016
(Fig. 1). The elevation gradient of sample sites
115
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
ranged between 10 to 2 427 m and varied in
their degree of disturbance (ie. not impacted to
highly impacted). For the analyses we defined
three elevation bands: low (16 to 300 m; N = 17
rivers), mid (301 to 1 000 m; N = 14) and high
(> 1 001 m; N = 9).
Sampling and measurement of envi-
ronmental variables: We collected abiotic
samples using a 0.11 m
2
Surber net with
280-micron mesh light standardized at 1 m
2
(Manson, Wallis, & Hope, 2001). Nine benthic
samples were collected at each site and stored
in 96 % alcohol. Samples were separated into
families at the National Institute of Biodiver-
sity (INABIO) and taxonomic identifications
were made at the Research Laboratory of the
Universidad de Las Américas (UDLA) follow-
ing the nomenclature published in chironomids
specialized guides (Ruiz-Moreno, Ospina-Tor-
res, Gómez-Sierra, & Riss, 2000; Ruíz-More-
no, Ospina-Torres, & Riss, 2000; Epler, 2001;
Prat, Rieradevall, Acosta, & Villamarín, 2011).
We prepared plate mounts following the meth-
odology proposed by Epler (2001) to designate
chironomids morpho species.
Measurements of the chemical and physi-
cal parameters, hereafter referred to as environ-
mental variables, were collected in situ at each
sample site using a HACH multi-metric probe
(Loveland, CO, USA). We measured tem-
perature, dissolved oxygen, conductivity, total
dissolved solids and pH. Due to significant cor-
relations among environmental variables, we
did not include measurements of total dissolved
solids and temperature analyses.
Principal Component Analysis of envi-
ronmental parameters for each elevational
band: To understand the environmental fac-
tors associated with variation in elevation
we applied Principal Component Analysis
(PCA) (Clarke & Gorley, 2006). PCA effec-
tively reduces the dimensionality of covarying
variables without loss of information thereby
improving the interpretation of the results
Fig. 1. Sampling sites location in Southwest Ecuador. Basin and biomes information of each site is included.
116
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
TABLE 1
Description of each studied site (river name, code, coordinates, altitude, biome) at of El Oro province, Ecuador
Códe River Name Coordinates WGS84 (UTM) Altitude (masl) Biome
EOP001 Riachuelo S/N Buenaventura 1 631 698 / 9 598 507 1 124 Foothill forest
EOP002 Río El Placer 634 599 / 9 596 436 1 311 Foothill forest
EOP003 Riachuelo S/N Buenaventura 2 638 334 / 9 600 616 1 095 Foothill forest
OP004 Río Buenaventura 638 934 / 9 598 359 1 003 Foothill forest
EOP008 Río Elvira 662 069 / 9 598 826 1 065 Foothill forest
EOP009 Río San Luis 669 052 / 9 592 458 1 472 Foothill forest
EOPO10 Río Pindo 651 584 / 9 583 798 562 Foothill forest
EOPO14 Río Amarillo 660 240 / 9 596 314 946 Foothill forest
EOP017 Riachuelo 3 Guizhaguiña 663 410 / 9 591 554 1 282 Foothill forest
EOP020 Riachuelo 3 Guizhaguiña 659 573 / 9 595 804 907 Foothill forest
EOP022 Río Naranjo 625 313 / 9 597 675 162 Dry lowlands forest
EOP023 Quebrada Los Sábalos 600 736 / 9 571 197 315 Dry lowlands forest
EOP024 Río Palmales 601 406 / 9 594 922 73 Dry lowlands forest
EOP025 Quebrada del Gallo 605 506 / 9 585 837 338 Dry lowlands forest
EOP027 Río Balsas 628 257 / 9 584 535 598 Foothill forest
EOP028 Río Marcabelí 619 227 / 9 580 988 499 Foothill forest
EOP029 Río Aguas Negras 615 636 / 9 582 190 561 Foothill forest
EOP030 Río Puyango 607 225 / 9 571 745 308 Dry lowlands forest
EOP032 Río S/N (sector la Cuca) 605 536 / 9 612 584 10 Dry lowlands forest
EOP033 Río Santa Rosa 616 778 / 9 613 980 33 Dry lowlands forest
EOP034 Río Arenillas 610 219 / 9 599 417 16 Dry lowlands forest
EOP035 Río Blanco 612 989 / 9 593 984 140 Dry lowlands forest
EOP036 Río Raspas 634 907 / 9 623 093 62 Dry lowlands forest
EOP037 Río San Agustín 633 089 / 9 623 505 50 Dry lowlands forest
EOP038 Río Palenque 639 395 / 9 626 001 90 Dry lowlands forest
EOP039 Río Siete 645 910 / 9 656 355 339 Foothill forest
EOP040 Río Pagua 637 895 / 9 658 807 20 Dry lowlands forest
EOP041 Río Bonito 638 800 / 9 656 191 38 Dry lowlands forest
EOP042 Río S/N (sector Cerro Azul) 641 597 / 9 611 712 1 131 Foothill forest
EOP043 Río Chilola 641 029 / 9 615 874 467 Foothill forest
EOP044 Río Dumari 637 322 / 9 616 378 267 Dry lowlands forest
EOP045 Río Buenavista 627 402 / 9 627 751 25 Dry lowlands forest
EOP046 Río Pivir 657 912 / 9 617 313 2 427 Montane forest
EOP049 Río Casacay 642 629 / 9 632 185 116 Dry lowlands forest
EOP050 Río Colorado 640 334 / 9 644 898 205 Dry lowlands forest
EOP051 Río San Jacinto 640 162 / 9 64 6942 126 Dry lowlands forest
EOP053 Río Changana 634 296 / 9 645 282 14 Dry lowlands forest
EOP054 Río Jubones 625 443 / 9 639 749 28 Dry lowlands forest
EOP055 Río Cune 653 296 / 9 632 175 349 Foothill forest
EOP057 Río Huizho 639 771 / 9 632 039 63 Dry lowlands forest
Vegetation in the low-elevation band consists of lowland dry forest and lowland deciduous forests (Sierra, 1999). Defining
characteristics of rivers in this band include stony substrates, silt, and sand with a strong flow rate. Evergreen forests
dominate the mid-elevation band (Sierra, 1999), and rivers have a lower proportion of sand than those rivers located in the
low-elevation band. At high elevation, evergreen forests dominate and rivers have a relatively slower flow rate. Upper basin
areas are comprised of well-preserved and minimally disturbed forest (Villamarín & Villamarín-Cortez, 2018) while mid and
lower elevations within the drainages have a high degree of agricultural exploitation and urban development.
117
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
(Jollife & Cadima, 2016). The PCA was per-
formed in Primer6 (Clarke & Warwick, 1994).
Calculating Chironomid Diversity: Esti-
mates of diversity were calculated at the genus
level using Hill numbers (Chao et al., 2014;
Chao & Jost, 2015). Values for diversity (
q
D)
can be interpreted as the effective number of
chironomid genera. Hill numbers of order q
represent richness (q= 0), exponential of Shan-
non’s entropy (q= 1) and the inverse Simpson
concentration (q= 2). Results are illustrated as
a continuous function of the parameter q (Chao
& Jost, 2015). The analysis was performed in
the iNext interactive web application (Hsieh,
Ma, & Chao, 2016).
Evaluating associations among Chiron-
omidae community and environmental fac-
tors: To determine the relationship between
chironomid community assembly and envi-
ronmental variables, we performed a Canon-
ical Correspondence Analysis (CCA) using
CANOCO software (Braak Ter & Barendregt,
1998). This technique determines the linear
combination of environmental variables and
community data that maximizes their correla-
tion (Borcard, Gillet, & Legendre, 2011) and
species order along the canonical axes indi-
cates their ecological optimum (Borcard et al.,
2011). Statistical significance was evaluated
using a Monte Carlo permutation procedure
(9999 permutations) (Braak Ter & Barendregt,
1998). Species ranking in the bottom 10 % of
abundances were removed prior to analysis to
prevent noise from rare taxa.
To understand genera-level contributions
to Bray-Curtis similarities among each eleva-
tional band, we performed a percentage of sim-
ilarity analysis (SIMPER; PRIMER6) (Clarke
& Warwick, 1994).
To understand the relationship among
distance, elevation and environmental vari-
ables on community composition, we applied
a Spearman rank correlation to the environ-
mental and biological dissimilarity matrices
and tested the statistical significance using
randomly permuted matrices (RELATE; 9999
permutations; Primer 6). Previously, the envi-
ronmental variables were normalized, while
the biological data were transformed using
log (x + 1), the distance and the elevation data
were not transformed. Three environmental
dissimilarity matrices were constructed using
environmental variables and site-level differ-
ences in geographic distance and elevation. The
community similarity matrix was comprised
of abundances of chironomid morphospecies.
Dissimilarities among environmental variables
were calculated using Euclidean distances
while Bray-Curtis similarity was applied to the
community matrix.
RESULTS
Environmental Variables: Environmental
variables exhibited substantial variation among
the three elevation bands (Table 2). Across all
elevational bands pH was consistently neutral
with little variation. Unusually high dissolved
oxygen content at low elevations was observed
in select sites such that mean values indicate
hyperoxic conditions. Conductivity was rela-
tively low at higher elevations and highest at
mid elevation, especially in sites exposed to
runoff from agriculture. Similarly, total dis-
solved solids were highest at lower elevations.
As expected, temperature was negatively cor-
related with the elevation.
The first principal component (PC1)
explained 37 % of the variance and dissolved
oxygen and conductivity weighed most heavily
(Fig. 2, Table 3). The second principal compo-
nent (PC2) explained 29.6 % of the variance
and pH and elevation weighed most heavily. In
general, higher loadings on PC1 and PC2 are
indicative of healthier aquatic environments.
Variation in samples from rivers in higher
elevations was attributed to variation in PC2,
whereas samples from middle elevations varied
more along PC1. Samples from low elevation
sites exhibited substantial variation across both
axes (Fig. 2).
Patterns in Chironomidae Abundance &
Diversity: For the three common subfamilies,
118
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
densities at higher elevation were consistently
lower densities than densities at lower eleva-
tion (Fig. 3A). For the three elevation gradi-
ents, Chironominae was the most abundant
subfamily, with a marked increase at mid-ele-
vations. Tanypodinae was consistently the least
abundant subfamily across elevation gradients.
In contrast, Chironominae was the most abun-
dant in lower-elevation rivers.
There were 37 unique Chironomid genera
sampled and the greatest richness was observed
at high elevations (
0
D= 30) followed by low
elevation (
0
D = 30) and mid elevation (
0
D = 26)
TABLE 2
Mean values and standard deviations (SD) of environmental variables measured from studied sites
at el Oro province in Southwestern Ecuador
Environmental Variables
Low elevation N = 17 Middle elevation N = 14 High elevation N = 9
Mean SD Mean SD Mean SD
Elevation (m.a.s.l.) 62.7 48.1 475.8 225.7 1 323.3 438.8
PH 7.3 0.5 7.1 0.3 7.4 0.5
Dissolved Oxygen (mg/L) 13.8 6.7 11.4 2.7 12.2 1.8
Conductivity (µS/cm) 122.9 86.2 646.0 293.5 71.5 24.3
Temperature (°C) 25.1 2.0 23.0 2.3 19.6 2.3
Total Dissolved Solids (mg/L) 58.0 42.3 39.9 21.2 33.7 11.7
TABLE 3
Factor loadings and variance explained from Principal
Component Analysis (PCA) on environmental variables
from the studied sites at El Oro province,
in Southwestern Ecuador
PC 1 PC 2
% Variance of each component 37 29.6
% Accumulated Variance 37 66.5
Variables
Elevation 0.284
0.561
pH 0.388
-0.548
Dissolved Oxygen
0.656
-0.364
Conductivity
-0.581 -0.503
Fig. 2. PCA of the environmental variables and rivers from Southwestern Ecuador. The green dots correspond to the rivers
from higher elevations, the blue dots correspond to the rivers in the middle elevation, and the black dots to rivers from
lower elevations.
119
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
(Fig. 4). Patterns of diversity were similar to
patterns of richness except for measures of
Simpson diversity for the low elevation (high:
q
1
= 9.55, q
2
= 4.99; mid: q
1
= 7.2, q
2
= 4.14;
low: q
1
= 7.86; q
2
= 3.92). However, differences
in diversity between the elevation categories
were not significant (F= 0.024, DF= 2, P >
0.05). The most dominant subfamilies included
Orthocladiinae (18 genera), Chironominae (11
genera), and Tanypodinae (8 genera). Pat-
terns of richness for the most representative
subfamilies varied by elevation (Fig. 3B).
Orthocladiinae was well represented across all
rivers, but the greatest richness was found in
rivers at higher elevation (> 1 000 m). Chirono-
minae richness was highest at mid-elevation,
followed by Orthocladiinae, and Tanypodinae.
The occurrence of Tanypodinae and Ortho-
cladiinae decreased with increasing elevation.
Fig. 3. A. Chironomids subfamilies densities of high,
middle, and low elevations from Southwestern Ecuador.
B. Chironomid subfamilies richness from Southwestern
Ecuador. The green bars correspond to high elevation
rivers; the blue ones correspond to mid-elevation rivers and
the black ones to low elevation rivers.
Fig. 4. Diversity observed using Hill numbers (q
0
= Richness, q
1
= Shannon diversity and q
2
= Simpsons Diversity) from
Southwestern Ecuador. Green dotted lines correspond to rivers of the high elevations; blue dots correspond to rivers of
middle elevations, and black dots correspond to rivers of low elevations.
120
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
Tanypodinae was present in low densities at the
three elevation bands. Orthocladiinae richness
and density showed a clear trend to increase
with the elevation.
Relationships among Chironomidae
community and environmental variables:
In the Canonical Correspondence Analysis
(CCA), conductivity and dissolved oxygen
weighed heavily on the first axis, while pH and
elevation weighed on the second axis (Fig. 5A).
Rivers with high dissolved oxygen concentra-
tions, and low conductivity values are associ-
ated with the abundance of Parametriocnemus,
Cricotopus f4, Cricotopus sp3., Cricotopus
(Isocladius), Oliveiriella, Onconeura, Alotany-
pus, and Pentaneura (Fig. 5A). Rivers charac-
terized by high conductivity values, and low
oxygen dissolved concentrations are associated
with Cricotopus sp., Rheotanytarsus, Tanytar-
sus, Chironomus and Group Harnischia. While
several genera showed a preference for particu-
lar environmental conditions, others showed
no preference, primarily those generally dis-
tributed throughout the environmental gradient
such as Polypedilum, Oliveiriella, Cricotopus
f6, Hudsonimyia, Rheotanytarsus and Larsia
(Fig. 5A). The distribution of the sampling sites
in the ACC shows that the composition of the
chironomid community is influenced mainly
by the local characteristics of each site since
it does not show a significant separation in the
two-dimensional plane (Fig. 5B).
Spearman rank correlations (RELATE)
among Chironomid communities and water
quality parameters were not strongly nor sig-
nificantly correlated (P= 0.113; P= 0.0963).
Similarly, geographical distance (P= 0.049; P=
0.2267) and elevation (P= 0.042; P= 0.6976)
did not exhibit significant correlation to chiron-
omid community composition. The analyses
conducted in each elevation band do not show
correlation with the environmental characteris-
tics. Nevertheless, the Low Band (P = 0.098; P
= 0.217) had a better correlation, followed by
the High band (P= 0.056; P= 0.381) and the
Mid Band (P= -0.079; P= 0.742).
The SIMPER analysis revealed similar
distribution patterns to de CCA specially in the
dominant genera as is the case of Polypedilum,
Fig. 5. CCA of the environmental variables and genera of the Chironomidae family A. ▲: Othocladiinae genus; x:
Tanypodinae genus; +: Chironominae genus. B. ▲: correspond to the locations of the upper elevation range; ■: to those of
the middle elevation range and ●: of the lower elevation range).
121
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
Chironomus, Group Harnischia, Cricitopus,
Tanytarsus (Table 4).
DISCUSSION
There is a strong influence of elevation
and conductivity on rivers from Southwestern
Ecuador. Elevation also tends to be associated,
directly and indirectly, with other environ-
mental components such as the productivity,
composition of the river bed substrate and veg-
etation, type of allochthonous material inputs
from adjacent ecosystem, and structure of
the river channel (Scheibler, Pozo, & Paggi,
2008; Acosta & Prat, 2010; Oviedo-Machado
& Reinoso-Flórez, 2018). While the variables
mentioned were not measured in our study, our
analyses reveal high environmental variation
that could influence both, biotic and abiotic
components, and define the composition and
structure of the chironomid community, espe-
cially variables that change along the gradient.
The positive relationship between tem-
perature and elevation is to be expected and
in turn affects processes of decomposition. In
lower elevations, microbial activity tends to be
higher (Acosta & Prat, 2010), which has impli-
cations on measured environmental variables
and the biological communities that inhabit the
rivers. Further, biomes in lower elevations are
predominantly dry (Briceño, Iniguez-Gallardo,
& Ravera, 2016; Escribano-Ávila, 2016) and
TABLE 4
SIMPER (Percentage of Similarity) analysis results for genus among studied sites grouped by elevation bands. In bold are
the values of the percentage of contribution of each genus to the similarity among sites of the same elevation band
Low elevation sites Middle elevation sties High elevation sites
Similarity 18.89 23.9 16.11
Genus
% Contrib. % Contrib. % Contrib.
Polypedilum
27.02 29.39
30.41
Tanytarsus
6.62
6.83
5.98
Pseudochironominii
4.2
9.75
4.29
Dicrotendipes
3.99
- -
G. Harnischia
3 1.28
3.06
Stenochironomus
1.83
0.83 0.95
Chironomus
- 0.16
0.61
Rheotanytarsus
-
9.44
8.5
Endotribelos
4.37
- -
Cricotopus sp.
17.65
8.38 6.15
Oliveriella
5.17
3.96 2.16
Parametriocnemus
3.66
- -
Stictocladius
2.57
- -
Género 1
1.01
- -
Cricotopus sp3.
0.69 0.47
5.45
Cricotopus (Isocladius)
-
2.86
0.2
Cricotopus f4
- -
1.76
Cricotopus f6
-
0.62
-
Onconeura
- -
0.84
Larsia
12.74
- 12.2
G. Thienemannimyia
2.7
12.03
6.24
Alotanypus
2.27
11.28
6.79
Pentaneura
0.5 0.77
3.69
Hudsonimyia
-
1.96
0.73
122
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
inputs of allochthonous material differ from
those of the highlands, where the riparian forest
vegetation contributes to high and continuous
inputs of organic matter.
It is well known that temperature is a
strong driver for the distribution of macroin-
vertebrates along latitudinal and elevational
gradients (Dos Santos et al., 2018; Prat et al.,
2018). The distribution of chironomids has
been associated with temperature gradients
elsewhere (Acosta & Prat, 2010) including
Oliveiriella, Paraheptagya, Limaya and Paro-
chlus (Prat et al., 2011; Prat et al., 2018). In
our case, Chironominae was the most frequent
and dominant subfamily rivers at lower eleva-
tions while Orthocladiinae was more prevalent
in rivers at higher elevations. Temperature is
also strongly associated with oxygen solubility
(Jacobsen, 2003; Verberk, Bilton, Calosi, &
Spicer, 2011) such that the high-temperature
recorded in low elevation bands explain dis-
solved oxygen results in rivers sampled at
lower elevations. The considerable decrease in
oxygen at low elevation sites could be attribut-
able to the quantity of fine sediments with a
high organic load (López & Talero, 2015; Prat
et al., 2018; Sierpe & Sunico, 2019) and while
unusually high levels of dissolved oxygen at
other sites may be the result of eutrophication
(Harper & Phillips, 1992; Benjumea & Wills,
2007; Minaudo, Meybeck, Moatar, Gassama,
& Curie, 2015).
High and low elevation areas have similar
Chironomidae richness. Diversity was greatest
at high elevations due to the higher abundance
of more common species which is likely attrib-
utable to the greater water quality. At lower
elevations, the diversity of rare or unique spe-
cies is virtually zero compared to the other
elevations. In these lower sites we found spe-
cies capable of withstanding high tempera-
tures or reduced oxygen which indicates either
adaptations or phenotypic plasticity. Also, at
lower elevations, less geographical barriers
are found, which can contribute to a wider
distribution of the species. Rivers at low eleva-
tions are impacted by inputs from agricultural,
urban and mining practices especially gold
extraction (Villamarín & Villamarín-Cortez,
2018). We observed reduced diversity at mid-
elevation with much more stable communities
and unique genera relative to low-lying areas.
Studies in Ecuador are limited on this
taxonomic group and still under study (Roback
& Coffman, 1983; Prat, Acosta, Villamarín,
& Rieradevall, 2018; Hamerlik, da Silva, &
Jacobsen, 2019), a recent research by Hamer-
lik et al. (2019), identified 16 genera in the
upper Andean area of the Antisana Volcano
compared to the 30 genera found in our study.
Consequently, lowlands of the Andes can hold
a higher diversity of chironomids.
At subfamily level, we observed changes
in richness, abundance and diversity along
the elevation gradient, being Chironominae
the most dominant subfamily at lower eleva-
tions, characterized by lower dissolved oxygen
content and dominance of fine sediments with
high organic content (Acosta & Prat, 2010;
López & Talero, 2015).
While distribution patterns of subfamilies
have already been described, few studies take
place at genus level. We show that taxonomic
resolution reveals distinctive patterns of chi-
ronomid distribution along elevation gradients.
Our results suggest a clear turnover pattern
of dominant groups along the elevation gra-
dient considering the subfamily taxonomic
level as a boundary. However, several gen-
era showed specific preferences for particular
environmental conditions.
Orthocladiinae was more diverse at high
elevations. This might be due to the rocky
substrate, periphyton developed in rocks, low
or medium flow rates with steeper slopes,
which increases oxygen availability in rivers
at higher elevations. Hence, the trend of sub-
family composition relates to elevation, tem-
perature, dissolved oxygen, and total dissolved
solids. Therefore, different larvae morphotypes
of Cricotopus, Parametriocnemus, Oliveiri-
ella and Stictocladius, were mainly found on
high-elevation sites, which are characterized
by rivers with lower temperatures and stable
flow channels (Acosta & Prat, 2010; Hamerlik
et al., 2019); with rock and pebble substrates
123
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
(Oviedo-Machado & Reinoso-Flórez, 2018)
and fed mainly on algae and fine particulate
matter (Caleño, Rivera-Rondon, & Ovalle,
2018; Oviedo-Machado & Reinoso-Flórez,
2018).
The subfamily Chironominae tends to
increase its richness and abundance at lower
elevation areas (Acosta & Prat, 2010). As a
consequence, some genera have developed
adaptations, such as hemoglobin generation,
to optimize the use of limited amount of
oxygen available in these rivers (Oviedo-
Machado & Reinoso-Flórez, 2018). As the
elevation decreases, environmental characteris-
tics changed in our study sites. In lower eleva-
tion areas, temperature, flow, conductivity,
and dissolved solids increase. The increase in
water temperature reduces the availability of
dissolved oxygen, resulting in an increase in
chironomid genera with adaptations to these
conditions. The genera Chironomus, Steno-
chironomus, Tanytarsus, Rheotanytarsus, and
Polypedilum were dominant in lower-elevation
rivers. Several of them are considered tolerant
to low dissolved oxygen in water (López &
Talero, 2015) and generally inhabit pool areas
where fine sediment accumulates (Caleño et
al., 2018). A clear example of this is the prox-
imity found by in the CCA of the genera Tany-
tarsus and Rheotanytarsus to localities with
high concentrations of conductivity, which
correlated with the total dissolved solids, that
tend to accumulate in river pools as they use
this type of substrate to build houses (Caleño et
al., 2018; Oviedo-Machado & Reinoso-Flórez,
2018; Prat & García-Roger, 2018).
On other hand, there are changes in the
composition and abundance community whiles
the elevation increase. That is the case of
Tanypodinae that depends on the availability
of prey as they are predators of other macro-
invertebrates or other chironomids (Caleño
et al., 2018). Genera such as Alotanypus and
Thienemannimyia (Subfamily Tanypodinae)
were more abundant in areas with high dis-
solved solids while Hudsonimyia, Larsia, and
Pentaneura seem to have preferences for sites
with less dissolved solids at higher-elevation.
Tanypodins are known to be carnivorous chi-
ronomids with a preference for macroinver-
tebrates and animals (Caleño et al., 2018).
Therefore, their distribution relates to both
environmental characteristics and food avail-
ability. While tanypodins are predators, there
are some species that consume two types of
food (they feed on detritus and diatoms) when
prey is scarce (Da Silva & Ekrem, 2016).
In conclusion, the composition of the chi-
ronomid community showed changes in rela-
tion to the local environmental characteristics
measured, acting as a diversity driver of the
composition of Chironomidae. Chironomids
have a high dependence on local environmental
factors such as dissolved oxygen, pH, conduc-
tivity, and elevation. Nevertheless, the eleva-
tion and temperature were the most important
factors determining the chironomid community
composition. Moreover, the elevation acted as
a biogeographical barrier, with certain genera
restricted to high areas and others in low-lying
areas. Additionally, higher elevations are more
diverse due to a combination of environmental
characteristics and better-preserved drainages.
Ethical statement: authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are
fully and clearly stated in the acknowledge-
ments section. A signed document has been
filed in the journal archives.
ACKNOWLEDGMENTS
This study was conducted within the
framework of the project “Development of
Guides of Mammals, Fish, Aquatic Macroin-
vertebrates and Flora with emphasis on Orchids
and Bromeliads of el Oro Province” pro-
posed by the GAD of el Oro and the INA-
BIO and the project AMB.CVF.17.03 from the
University of the Americas, Ecuador. Special
thanks to the Ministry of Environment of
Ecuador for providing the necessary permits
124
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
(No. 004-IC-FLO-FAU-DPAEO-ME) for the
development of this project. To Nacís Prat for
the taxonomic review of the samples. To Mateo
Vega for the support in the generation of maps,
Daniel Padilla-Jiménez, Juan Manuel Guerra,
Nicole Cerón, Angie Ramírez, Daniel Donoso,
Carlo Escobar, Trujillo Sofía, Stephanie Flores,
Freddy Narváez, Alisson Pérez, and Andrea
Vaca for their support in the work of labo-
ratory and field.
RESUMEN
Controladores de diversidad y distribución altitu-
dinal de quironómidos (Diptera: Chironomidae) en los
Andes ecuatorianos. Introducción: Los quironómidos
(Diptera: Chironomidae) son los insectos acuáticos de
mayor diversidad y distribución mundial. A pesar de su
prevalencia en los sistemas lóticos, se sabe poco acerca de
su ecología y diversidad, especialmente de especies tropi-
cales en relación con otros taxones de insectos acuáticos,
particularmente en etapas inmaduras. Objetivo: Caracteri-
zar la diversidad de quironómidos a través de un gradiente
altitudinal en el suroeste de Ecuador, además de identificar
los parámetros fisicoquímicos asociados con su compo-
sición. Métodos: Las muestras se recolectaron utilizando
una red Surber en cuarenta ríos dentro de cuatro cuencas
hidrográficas en los Andes Sur del Ecuador, en ecosistemas
de bosques montanos y secos de tierras bajas abarcando
un gradiente altitudinal de 3 120 m.s.n.m. Se midie-
ron las variables fisicoquímicas: oxígeno, conductividad,
sólidos disueltos totales, temperatura y pH. Resultados:
En general, las variables ambientales se correlacionaron
fuertemente con la composición de las comunidades de
quironómidos. La variación en la comunidad de quironómi-
dos se asoció fuertemente con el oxígeno, la conductividad
y el pH. La presencia de los géneros Parametriocnemus,
Cricotopus f4, Cricotopus sp3, Cricotopus (Isocladius),
Oliveiriella, Onconeura, Alotanypus y Pentaneura se aso-
ció a temperaturas bajas, alto oxígeno disuelto y baja con-
ductividad, mientras que Cricotopus sp., Rheotanytarsus,
Tanytarsus y Chironomus se asociaron con alta conductivi-
dad y bajas concentraciones de oxígeno disuelto. El análisis
RELATE mostró que las características ambientales locales
determinan la composición de la comunidad de quironómi-
dos. Conclusiones: La similitud entre los factores ambien-
tales locales se correlacionó fuertemente con la similitud
entre los conjuntos de Chironomidae, especialmente con
variables como la concentración de oxígeno, el pH y la
conductividad, cuyas variables están altamente correlacio-
nadas con el uso de la tierra y la vegetación dominante en
las cuencas hidrográficas muestreadas.
Palabras clave: Andes tropicales; variables ambientales;
patrones de diversidad.
REFERENCES
Acosta, R., & Prat, N. (2010). Chironomid assemblages in
high altitude streams of the Andean region of Peru.
Fundamental and Applied Limnology, 177(1), 57-79.
DOI: 10.1127/1863-9135/2010/0177-0057
Armitage, P.D., Cranston, P.S., & Pinder, C.V. (1995). The
Chironomidae Biology and ecology of non-biting
midges. London, United Kingdom: Chapman & Hall.
Ashe, P., Murray, D.A., & Reiss, F. (1987). The zoo-
geographical distribution of Chironomidae (Insecta:
Diptera). Annales de Limnologie, 23(1), 27-60. DOI:
10.1051/limn/1987002
Benjumea, C., & Wills, Á. (2007). Evaluación de la estrati-
ficación térmica y su relación con el oxígeno disuelto
del agua en la ciénaga Cachimbero, municipio de
Cimitarra, Santander. Revista Facultad de Ingeniería,
41, 48-65.
Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical
Ecology with R. Cham, Switzerland: Springer. DOI:
10.1007/978-3-319-71404-2
Braak Ter, C., & Barendregt, P. (1998). CANOCO. Refe-
rence and Manual user´s guide to Canoco for Win-
dows: Software for Canonical Community Ordination
(Version 4). New York, United States of America:
Microcomputer power.
Briceño, J., Iniguez-Gallardo, V., & Ravera, F. (2016). Fac-
tores que influyen en la apreciación de servicios eco-
sistémicos de los bosques secos del sur del Ecuador.
Revista Ecosistemas, 25(2), 46-58. DOI: 10.7818/
RE.2014.25-2.00
Caleño, Y., Rivera-Rondon, C.A., & Ovalle, H. (2018).
Hábitos alimentarios de quironómidos (Diptera: chi-
ronomidae) en Lagos del Páramo de Chingaza,
Colombia. Revista de Biologia Tropical, 66(1), 136-
148. DOI: 10.15517/rbt.v66i1.28951
Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H.,
Colwell, R.K., & Ellison, A.M. (2014). Rarefaction
and extrapolation with Hill numbers: A framework
for sampling and estimation in species diversity
studies. Ecological Monographs, 84(1), 45-67. DOI:
10.1890/13-0133.1
Chao, A., & Jost, L. (2015). Estimating diversity and
entropy profiles via discovery rates of new species.
873-882. DOI: 10.1111/2041-210X.12349
Clarke, K., & Gorley, R. (2006). PRIMER v6: User
Manual/Tutorial (Plymouth Routines in Multivariate
Ecological Research). PRIMER-E. Plymouth, United
Kingdom: Plymouth Marine Laboratory.
Clarke, R., & Warwick, R. (1994). Change in marine
communities: an approach to statistical analysis
and interpretation. Plymouth, United Kingdom:
Primer-E Ltd.
125
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
Da Silva, F.L., & Ekrem, T. (2016). Phylogenetic rela-
tionships of nonbiting midges in the subfamily Tan-
ypodinae (Diptera: Chironomidae) inferred from
morphology. Systematic Entomology, 41(1), 73-92.
DOI: 10.1111/syen.12141
Dos Santos, D.A., Molineri, C., Nieto, C., Zuñiga, M.C.,
Emmerich, D., Fierro, P., … Domínguez, E. (2018).
Cold/Warm stenothermic freshwater macroinverte-
brates along altitudinal and latitudinal gradients in
Western South America: A modern approach to an
old hypothesis with updated data. Journal of Biogeo-
graphy, 45(7), 1571-1581. DOI: 10.1111/jbi.13234
Encalada, A., Alexander S. Flecker, N., Poff, L., Suárez, E.,
Herrera, G., Ríos-Touma, B., … Anderson, E. (2019).
A global perspective on tropical montane rivers. Sien-
ce, 365, 1124-1129. DOI: 10.1126/science.aax1682
Epler, J.H. (2001). Identification Manual for the lar-
val Chironomidae (Diptera) of North and South
Carolina. A guide to the taxonomy of the midges of
the Southeastern United States, including Florida.
Palatka, United States of America: North Carolina
Department of Environment and Natural Resources.
Escribano-Ávila, G. (2016). El bosque seco neotropical
de la provincia Ecuatoriana: un pequeño gran des-
conocido. Ecosistemas: Revista Científica y Técnica
de Ecología y Medio Ambiente, 25(2), 1-4. DOI:
10.7818/re.2014.25-2.00
Hamerlik, L., da Silva, F.L., & Jacobsen, D. (2019).
Chironomidae (Insecta: Diptera) of Ecuadorian
Highaltitude Streams: A Survey and Illustrated
Key. Florida Entomologist, 101(4), 663-675. DOI:
10.1653/024.101.0404
Hanson, P., Springer, M., & Ramirez, A. (2010). Introduc-
ción a los grupos de macroinvertebrados acuáticos.
Revista de Biología Tropical, 58(4), 3-37.
Harper, D.M., & Phillips, G. (1992). Eutrophication of
Freshwaters: Principles, Problems and Restoration.
London, United Kingdom: Chapman & Hall.
Hsieh, T.C., Ma, K.H., & Chao, A. (2016). iNEXT: An R
package for rarefaction and extrapolation of species
diversity (Hill numbers). Hsin-Chu, Taiwan: Institute
of Statistics, National Tsing Hua University.
Jacobsen, D. (2003). Altitudinal changes in diversity of
macroinvertebrates from small streams in the Ecua-
dorian Andes. Archiv Für Hydrobiologie, 158(2),
145-167. DOI: 10.1127/0003-9136/2003/0158-0145
Jollife, I.T., & Cadima, J. (2016). Principal component
analysis: A review and recent developments. Phi-
losophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences,
374(2065), 1-16. DOI: 10.1098/rsta.2015.0202
Lencioni, V., Cranston, P.S., & Makarchenko, E.A. (2018).
Recent advances in the study of chironomidae: An
overview. Journal of Limnology, 77(1), 1-6. DOI:
10.4081/jlimnol.2018.1865
López, R.H., & Talero, G.M. (2015). Densidad Larval de
Chironomidae (Insecta: Diptera) en un Meandro del
Río Bogotá (Cajicá, Colombia) Durante La Niña
2011. Revista Facultad de Ciencias Básicas, 11(1),
48-67. DOI: 10.18359/rfcb.381
Manson, J.R., Wallis, S.G., & Hope, D. (2001). A conserva-
tive semi-Lagrangian transport model for rivers with
transient storage zones. Water Resources Research,
37(12), 3321-3329.
Minaudo, C., Meybeck, M., Moatar, F., Gassama, N., &
Curie, F. (2015). Eutrophication mitigation in rivers:
30 Years of trends in spatial and seasonal patterns
of biogeochemistry of the Loire River (1980-2012).
Biogeosciences, 12(8), 2549-2563. DOI: 10.5194/
bg-12-2549-2015
Mittermeier, R., Myers, N., Thomsen, J., da Fonse-
ca, G., & Olivieri, S. (1998). Biodiversity Hots-
pots and Major Tropical Wilderness Areas:
Approaches to Setting Conservation Priorities.
Conservation Biology, 12(3), 516-520. DOI:
10.1046/j.1523-1739.1998.012003516.x
Ossa, P., Prat, N., Castaño, G., Ospina, E., Rodriguez, G.,
& Rivera, F. (2018). Genus 1 sp . 2 (Diptera: Chiro-
nomidae): The Potential Use of its Larvae as Bioin-
dicators. Environmental Analysis & Ecology Studies,
4(3), 1-10. DOI: 10.31031/EAES.2018.04.000589
Oviedo-Machado, N., & Reinoso-Flórez, G. (2018). Ecolo-
gical aspects of Chironomidae larvae (Diptera) of the
Opia river (Tolima, Colombia). Revista Colombiana
de Entomología, 44(1), 101-109. DOI: 10.25100/
socolen.v44i1.6546
Paggi, A. (2003). Los Quironómidos (Diptera) y su empleo
como bioindicadores. Biología Acuática, 21, 50-57.
Prat, N., Acosta, R., Villamarín, C., & Rieradevall, M.
(2018). Guía para el reconocimiento de las larvas de
Chironomidae (Diptera) de los ríos Altoandinos de
Ecuador y Perú. Clave para la determinación de los
principales morfotipos larvarios. Barcelona, Spain:
Grupo de Investigación F.E.M.
Prat, N., & García-Roger, E. (2018). Are there so many
congeneric species of chironomid larvae in a small
stream? Journal of Limnology, 77(s1), 65-80. DOI:
10.4081/jlimnol.2018.1757
Prat, N., Paggi, A., Ribera, C., Acosta, R., Ríos-Touma,
B., Villamarín, C., … Rieradevall, M. (2018). The
Cricotopus (Oliveiriella) (Diptera: Chironomidae) of
the High Altitude Andean Streams, with Description
of a New Species, C. (O.) rieradevallae. Neotro-
pical Entomology, 47(2), 256-270. DOI: 10.1007/
s13744-017-0548-5
126
Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 113-126, March 2021
Prat, N., Rieradevall, M., Acosta, R., & Villamarín, C.
(2011). Guía para el reconocimiento de las larvas
de Chironomidae (Diptera) de los ríos Altoandinos
de Ecuador y Perú. Clave para la determinación de
los géneros. Barcelona, Spain: Grupo de Investiga-
ción F.E.M., Departamento de Ecología Universidad
de Barcelona.
Prat, N., Ríos-Touma, B., Acosta, R., & Rieradevall, M.
(2009). Los macroinvertebrados como indicadores
de calidad de las aguas. In E. Domínguez & H.
Fernández (Eds.), Macroinvertebrados bentónicos
sudamedamericanos. Sistemática y Biología (1
st
ed.,
pp. 631-654). Argentina: Fundación Miguel Lillo.
Ríos-Touma, B., Acosta, R., & Prat, N. (2014). The Andean
Biotic Index (ABI): revised tolerance to pollution
values for macroinvertebrate families and index per-
formance evaluation. Revista de Biología Tropical,
62, 249-273.
Ríos-Touma, B., & Ramírez, A. (2019). Multiple stressors
in the Neotropical region: Environmental impacts in
biodiversity hotspots. In S. Sabater, A. Elosegi, & R.
Ludwing (Eds.), Multiple stressors in river ecosys-
tems: Status, Impacts and Prospects for the Future
(pp. 205-220). Amsterdam, Netherlands: Elservier.
Roback, S.S., & Coffman, W.P. (1983). Results of the
Catherwood Bolivian- Peruvian Altiplano Expedition
Part II. Aquatic Diptera including Montane Dia-
mesinae and Orthocladiinae (Chironomidae) from
Venezuela. Proceedings of the Academy of Natural
Sciences of Philadelphia, 135, 9-79.
Ruiz-Moreno, J., Ospina-Torres, R., Gómez-Sierra, H., &
Riss, W. (2000). Guía para la identificación genérica
de larvas de quironómidos (Diptera: Chironomidae)
de la sabana de Bogotá. III. Subfamilias Tanypodinae
y Diamesinae. Caldasia, 22(1), 34-60.
Ruíz-Moreno, J., Ospina-Torres, R., & Riss, W. (2000).
Guía para la identificación genérica de larvas de
quironómidos (Diptera: Chironomidae) de la sabana
de Bogotá. II. Subfamilia Chironominae. Caldasia,
22(1), 15-33.
Scheibler, E., Pozo, V., & Paggi, A. (2008). Distribución
espacio-temporal de larvas de Chironomidae (Dip-
tera) en un arroyo andino (Uspallata, Mendoza,
Argentina). Revista de La Sociedad Entomológica
Argentina, 67(3-4), 45-58.
Sierpe, C., & Sunico, A. (2019). Familia Chironomidae
(Orden Díptera) utilizada como bioindicador para
la determinación de calidad ambiental de la cuenca
del Río Gallegos (Santa Cruz, Argentina). Informes
Científicos Técnicos - UNPA, 11(2), 92-105. DOI:
10.22305/ict-unpa.v11i2.789
Sierra, R. (1999). Propuesta preliminar de un sistema de
clasificación de vegetación para el Ecuador con-
tinental. Quito, Ecuador: Proyecto INEFA/GEF y
EcoCiencia.
Verberk, W., Bilton, D., Calosi, P., & Spicer, J. (2011).
Oxygen supply in aquatic ectotherms: Partial pres-
sure and solubility together explain biodiversity
and size patterns. Ecology, 98(8), 1565-1572. DOI:
10.1002/ecy.1730
Villamarín, C., Prat, N., & Rieradevall, M. (2014). Carac-
terización física, química e hidromorfológica de los
ríos altoandinos tropicales de Ecuador y Perú. Latin
American Journal of Aquatic Research, 42(5), 1072-
1086. DOI: 10.3856/vol42-issue5-fulltext-12
Villamarín, C., Rieradevall, M., & Prat, N. (2020).
Macroinvertebrate diversity patterns in tropical
highland Andean rivers. Limnetica, 39(2), 677-691.
DOI: 10.23818/limn.39.44
Villamarín, C., & Villamarín-Cortez, S. (2018). La calidad
ecológicay conservación de los ríos de la provincia
de El Oro. In J. Valdiviezo-Rivera, C. Garzón-
Santomaro, D. Inclán, D. González, & J. Mena-Jaén
(Eds.), Ecosistemas dulceacuícolas de la provincia de
El Oro: Peces y macroinvertebrados acuáticos como
indicadores biológicos del Páramo al Manglar (pp.
215-249). Ecuador: GADPEO INABIO.