762
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(2): 755-762, April-June 2021 (Published June 30, 2021)
C., Paredes-Sabja, D., & Rodríguez, C. (2020).
Origin, genomic diversity and microevolution of the
Clostridium difficile B1/NAP1/RT027/ST01 strain in
Costa Rica, Chile, Honduras and Mexico. Microbial
Genomics, 6(5), e000355. https://doi.org/10.1099/
mgen.0.000355
Khan, F.Y., & Elzouki, A.N. (2014). Clostridium difficile
infection: a review of the literature. Asian Pacific
Journal of Tropical Medicine, 7(1), S6–S13. https://
doi.org/10.1016/S1995-7645(14)60197-8
Kouhsari, E., Abbasian, S., Sedighi, M., Yaseri, H.F.,
Nazari, S., Bialvaei, A.Z., Dahim, P., Mirzaei,
E.Z., & Rahbar, M. (2018). Clostridium difficile
infection: a review. Reviews in Medical Micro-
biology, 29, 103–109. https://doi.org/10.1097/
MRM.0000000000000135
Leggett, M.J., McDonnell, G., Denyer, S.P., Setlow, P., &
Maillard, J.Y. (2012). Bacterial spore structures and
their protective role in biocide resistance. Journal
of Applied Microbiology, 113, 485–498. https://doi.
org/10.1111/j.1365-2672.2012.05336.x
Loo, V.G. (2015). Environmental interventions to control
Clostridium difficile. Infectious Disease Clinics, 29,
83–91. https://doi.org/10.1016/j.idc.2014.11.006
López-Ureña, D., Quesada-Gómez, C., Montoya-Ramírez,
M., Gamboa-Coronado, M.D.M., Somogyi, T., Rodrí-
guez, C., & Rodríguez-Cavallini, E. (2016). Predomi-
nance and high antibiotic resistance of the emerging
Clostridium difficile genotypes NAP
CR1
and NAP9 in
a Costa Rican hospital over a 2-year period without
outbreaks. Emerging Microbes and Infections, 5(1),
1–5. https://doi.org/10.1038/emi.2016.38
Martin, J., Monaghan, T.M., & Wilcox, M.H. (2016). Clos-
tridium difficile infection: epidemiology, diagnosis
and understanding transmission. Nature Reviews:
Gastroenterology & Hepatology, 13, 206–216.
https://doi.org/10.1038/nrgastro.2016.25
Murillo, T., Ramírez-Vargas, G., Riedel, T., Overmann, J.,
Andersen, J.M., Guzmán-Verri, C., Chaves-Olarte,
E., & Rodríguez, C. (2018). Two groups of cocircu-
lating, epidemic Clostridiodes difficile strains micro-
diversify through different mechanisms. Genome
Biology and Evolution, 10(3), 982–998. https://doi.
org/10.1093/gbe/evy059
O’Connor, J.R., Johnson, S., & Gerding, D.N. (2009).
Clostridium difficile infection caused by the epidemic
B1/NAP1/027 strain. Gastroenterology, 136, 1913–
1924. https://doi.org/10.1053/j.gastro.2009.02.073
Paredes-Sabja, D., Shen, A., & Sorg, J.A. (2014). Clos-
tridium difficile spore biology: sporulation, ger-
mination, and spore structural proteins. Trends
in Microbiology, 22(7), 406–416. https://doi.
org/10.1016/j.tim.2014.04.003
Phetcharaburanin, J., Hong, H.A., Colenutt, C., Bianconi,
I., Sempere, L., Permpoonpattana, P., Smith, K.,
Dembek, M., Tan, S., Brisson, M.C., Brisson, A.R.,
Fairweather, N.F., & Cutting, S.M. (2014). The spore-
associated protein BclA1 affects the susceptibility of
animals to colonization and infection by Clostridium
difficile. Molecular Microbiology, 92(5), 1025–1038.
https://doi.org/10.1111/mmi.12611
Pizarro-Guajardo, M., Calderón-Romero, P., Castro-Cór-
doba, P., Mora-Uribe, P., & Paredes-Sabja, D. (2016).
Ultrastructural variability of the exosporium layer of
Clostridium difficile spores. Applied and Environ-
mental Microbiology, 82(7), 2202–2209. https://doi.
org/10.1128/AEM.03410-15
Pizarro-Guajardo, M., Olguín-Araneda, V., Barra-Carrasco,
J., Brito-Silva, C., Sarker, M., & Paredes-Sabja,
D. (2014). Characterization of the collagen-like
exosporium protein, BclA1, of Clostridium difficile
spores. Anaerobe, 25, 18–30. https://doi.org/1016/j.
anaerobe.2013.11.003
Quesada-Gómez, C., Gamboa-Coronado, M.D.M., Rodrí-
guez-Cavallini, E., Du, T., Mulvey, M.R., Villalobos-
Zúñiga, M., Boza-Cordero, R., & Rodríguez, C.
(2010). Emergence of Clostridium difficile NAP1
in Latin America. Journal of Clinical Microbio-
logy, 48(2), 669–670. https://doi.org/10.1128/
JCM.02196-09.
Quesada-Gómez, C., López-Ureña, D., Acuña-Amador, L.,
Villalobos-Zuñiga, M., Du, T., Freire, R., Guzmán-
Verri, C., Gamboa-Coronado, M.D.M., Lawley, T.D.,
Moreno, E., Mulvey, M.R., Brito, G.A., Rodríguez-
Cavallini, E., Rodríguez, C., & Chaves-Olarte, E.
(2015). Emergence of an outbreak-associated Clos-
tridium difficile variant with increased virulence.
Journal of Clinical Microbiology, 53(4), 1216–1226.
https://doi.org/10.1128/JCM.03058-14
Rineh, A., Kelso, M.J., Vatansever, F., Tegos, G.P., &
Hamblin, M.R. (2014). Clostridium difficile infec-
tion: molecular pathogenesis and novel therapeutics.
Expert Review of Anti-infective Therapy, 12(1), 131–
150. https://doi.org/10.1586/14787210.2014.866515
Roberts, A.P., & Mullany, P. (2016). Clostridium difficile
Methods and Protocols. Humana Press.
Turner, N.A., & Anderson, D.J. (2020). Hospital infec-
tion control: Clostridoides difficile. Clinics in
Colon and Rectal Surgery, 33, 98–108. https://doi.
org/10.1055/s-0040-1701234
Ungurs, M., Wand, M., Vassey, M., O-Brien, S., Dixon, D.,
Walker, J., & Sutton, J.M. (2011). The effectiveness
of sodium dichloroisocyanurate treatments against
Clostridium difficile spores contaminating stainless
steel. American Journal of Infection Control, 39(3),
199–205. https://doi.org/10.1016/j.ajic.2010.07.015
Vohra, P., & Poxton, I.R. (2011). Efficacy of decontami-
nants and disinfectants against Clostridium difficile.
Journal of Medical Microbiology, 60, 1218–1224.
https://doi.org/10.1099/jmm.0.030288-0