
1287
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(4): 1276-1288, October-December 2021 (Published Dec. 16, 2021)
of Ceratophyllum demersum L. on Chlorella vulgaris
Beij. Aquatic Ecology, 53(4), 651–663. https://doi.
org/10.1007/s10452-019-09715-2
Dong, J., Gao, Y., Chang, M., Ma, H., Han, K., Tao, X.,
& Li, Y. (2018). Colony formation by the green alga
Chlorella vulgaris in response to the competitor Cera-
tophyllum demersum. Hydrobiologia, 805(1), 177–
187. https://doi.org/10.1007/S10750-017-3294-0/
FIGURES/6
Dong, J., Yang, K., Li, S., Li, G., & Song, L. (2014).
Submerged vegetation removal promotes shift of
dominant phytoplankton functional groups in a eutro-
phic lake. Journal of Environmental Sciences, 26(8),
1699–1707. https://doi.org/10.1016/j.jes.2014.06.010
Ger, K. A., Urrutia-Cordero, P., Frost, P. C., Hansson, L.
A., Sarnelle, O., Wilson, A. E., & Lürling, M. (2016).
The interaction between cyanobacteria and zooplank-
ton in a more eutrophic world. Harmful Algae, 54,
128–144. https://doi.org/10.1016/j.hal.2015.12.005
Gorham, P. R., McLachlan, J., Hammer, U. T., & Kim, W.
K. (1964). Isolation and culture of toxic strains of
Anabaena flos-aquae (Lyngb.) de Bréb. SIL Procee-
dings, 1922-2010, 15(2), 796–804. https://doi.org/10.
1080/03680770.1962.11895606
Gross, E. M., Erhard, D., & Iványi, E. (2003). Allelopathic
activity of Ceratophyllum demersum L. and Najas
marina ssp. intermedia (Wolfgang) Casper. Hydro-
biologia, 506, 583–589.
Guo, N., & Xie, P. (2006). Development of tolerance aga-
inst toxic Microcystis aeruginosa in three cladoce-
rans and the ecological implications. Environmental
Pollution, 143(3), 513–518. https://doi.org/10.1016/j.
envpol.2005.11.044
Harel, M., Weiss, G., Lieman-Hurwitz, J., Gun, J.,
Lev, O., Lebendiker, M., Temper, V., Block, C.,
Sukenik, A., Zohary, T., Braun, S., Carmeli, S.,
& Kaplan, A. (2013). Interactions between Sce-
nedesmus and Microcystis may be used to clarify
the role of secondary metabolites. Environmental
Microbiology Reports, 5(1), 97–104. https://doi.
org/10.1111/j.1758-2229.2012.00366.x
Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G.,
Wilhelm, S. W., Wood, S. A., & Paerl, H. W. (2016).
A review of the global ecology, genomics, and
biogeography of the toxic cyanobacterium, Micro-
cystis spp. Harmful Algae, 54, 4–20. https://doi.
org/10.1016/j.hal.2015.12.007
Hillebrand, H., Dürselen, C. D., Kirschtel, D., Polling-
her, U., & Zohary, T. (1999). Biovolume calcu-
lation for pelagic and benthic microalgae.
Journal of Phycology, 35(2), 403–424. https://doi.
org/10.1046/j.1529-8817.1999.3520403.x
Hilt, S., & Gross, E. M. (2008). Can allelopathically active
submerged macrophytes stabilise clear-water states
in shallow lakes? Basic and Applied Ecology, 9(4),
422–432. https://doi.org/10.1016/j.baae.2007.04.003
Ibelings, B. W., & Chorus, I. (2007). Accumulation of
cyanobacterial toxins in freshwater “seafood” and
its consequences for public health: A review. Envi-
ronmental Pollution, 150(1), 177–192. https://doi.
org/10.1016/j.envpol.2007.04.012
Körner, S., & Nicklisch, A. (2002). Allelopathic growth
inhibition of selected phytoplankton species by sub-
merged macrophytes. Journal of Phycology, 38(5),
862–871. https://doi.org/10.1046/j.1529-8817.2002.
t01-1-02001.x
Leitão, E., Ger, K. A., & Panosso, R. (2018). Selecti-
ve grazing by a tropical copepod (Notodiaptomus
iheringi) facilitates Microcystis dominance. Fron-
tiers in Microbiology, 9, 301. https://doi.org/10.3389/
FMICB.2018.00301/BIBTEX
Li, Y., & Li, D. (2012). Competition between toxic Micro-
cystis aeruginosa and nontoxic Microcystis wesen-
bergii with Anabaena PCC7120. Journal of Applied
Phycology, 24(1), 69–78. https://doi.org/10.1007/
s10811-010-9648-x
Li, B., Liu, Y., Zhang, H., Liu, Y., Liu, Y., & Xie, P.
(2021). Research progress in the functionalization of
microcystin-LR based on interdisciplinary technolo-
gies. Coordination Chemistry Reviews, 443, 214041.
https://doi.org/10.1016/j.ccr.2021.214041
Marinho, M. M., Souza, M. B. G., & Lürling, M. (2013).
Light and Phosphate Competition Between Cylin-
drospermopsis raciborskii and Microcystis aerugi-
nosa is Strain Dependent. Microbial Ecology, 66(3),
479–488. https://doi.org/10.1007/s00248-013-0232-1
Markou, G., Vandamme, D., & Muylaert, K. (2014).
Microalgal and cyanobacterial cultivation: The
supply of nutrients. Water Research, 65, 186–202.
https://doi.org/10.1016/j.watres.2014.07.025
Menezes, R. F., Attayde, J. L., & Rivera Vasconcelos, F.
(2010). Effects of omnivorous filter-feeding fish
and nutrient enrichment on the plankton commu-
nity and water transparency of a tropical reser-
voir. Freshwater Biology, 55, 767–779. https://doi.
org/10.1111/j.1365-2427.2009.02319.x
Mohamed, Z. A. (2017). Macrophytes-cyanobacteria
allelopathic interactions and their implications for
water resources management – A review. Limno-
logica, 63, 122–132. https://doi.org/10.1016/j.
limno.2017.02.006
Moura, A. N., Aragão-Tavares, N. K., & Amorim, C. A.
(2018). Cyanobacterial blooms in freshwater bodies
from a semiarid region, Northeast Brazil: A review.
Journal of Limnology, 77(2), 179–188. https://doi.
org/10.4081/jlimnol.2017.1646