811
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
Histology and structure of the testicles in three species of Atelopus
frogs (Anura: Bufonidae) endemic to the Sierra Nevada
de Santa Marta, Colombia
Arantxa Sánchez-Ferreira
1*
; https://orcid.org/0000-0001-7571-7952
Edgar Javier Rincón-Barón
2
; https://orcid.org/0000-0003-1347-171X
Luis Alberto Rueda-Solano
1,3
; https://orcid.org/0000-0001-6968-0719
1. Universidad del Magdalena, Facultad de Ciencias Básicas, Grupo de Investigación en Biodiversidad y Ecología
Aplicada, calle 32 No 22-08, Santa Marta, Colombia; biologaarantxasanchez@gmail.com (Correspondence*)
2. Universidad de Santander, Facultad de Ciencias de la Salud, Grupo de Investigación Agroambiente y Salud-
MICROBIOTA, calle 70 No 55-210, Campus Universitario Lagos del Cacique, Bucaramanga, Colombia;
ed.rincon@mail.udes.edu.co
3. Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia; biologoluisrueda@gmail.com
Received 19-XI-2020. Corrected 11-V-2021. Accepted 20-VII-2021.
ABSTRACT
Introduction: Testicular histology constitutes one of the least explored aspects in frogs of the genus Atelopus.
This taxonomic group shows an alarming population decline; therefore, its reproductive biology is one of the
greatest topics of interest for its conservation.
Objective: To describe the testicular morphology and the spermatogenetic lineage cells in adult males of
Atelopus laetissimus, Atelopus nahumae, and Atelopus carrikeri in the Sierra Nevada de Santa Marta, Colombia.
Methods: During June – July 2017 and 2018, sampling was conducted in the localities of San Lorenzo and
Páramo Cebolletas, Sierra Nevada de Santa Marta (SNSM), to collect 15 adult males, 5 per species. Testes
samples were fixed in Bouin to be processed by the standard paraffin-embedding technique. Histological sec-
tions (3 μm) were stained with Hematoxylin-eosin and Mallory-Heidenhain-Azan-Gomori’s. For the description
and photographic register of the germ cells, the photonic microscopy technique was used with the differential
interference contrast system.
Results: The testes are oval organs, compact, light yellow color, and with little vascularization. Externally, they
are surrounded by a thin albuginea tunic constituted by regular dense connective tissue. Inside this layer, they are
composed of numerous seminiferous tubules of hexagonal contour, in which germ cell cysts are distinguished at
different stages of spermatogenesis (spermatogonia I and II, spermatocyte I and II, and early and late spermatids)
and spermiogenesis (spermatozoa in fascicles and free spermatozoa). Separating the seminiferous structures is
the interstitial tissue in which Leydig cells and blood vessels stand out. Additionally, in the cranial part of the
testis, the Bidders organ was found, formed by two distinguishable regions, the cortex and the medulla. In the
cortex, there are previtellogénic oocytes of different sizes surrounded by a monolayer of flat follicular cells.
For its part, the medullary region is the connective tissue that nourishes the oocytes and is constituted by blood
capillaries.
Conclusions: The gonads of the three species analyzed present a cystic cellular organization similar to other
anurans, where all stages of spermatogenesis and spermiogenesis were identified, possibly indicating a con-
tinuous reproductive activity. Likewise, the Bidders organ is reported for the first time in the three Atelopus
species, which allows suggesting a possible sexual reversion in case of a population decrease of females as a
reproductive strategy.
Key words: spermatogenic cells; histology; bidders organ; sexual reversal; testes.
Sánchez-Ferreira, A., Rincón-Barón, E. J., & Rueda-Solano,
L. A. (2021). Histology and structure of the testicles
in three species of Atelopus frogs (Anura: Bufonidae)
endemic to the Sierra Nevada de Santa Marta, Colombia.
Revista de Biología Tropical, 69(3), 811-828. https://doi.
org/10.15517/rbt.v69i3.44727
https://doi.org/10.15517/rbt.v69i3.44727
812
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
In anurans, the male reproductive system is
made up of the testes and a group of ducts that
conduct spermatozoa to the outside (Oliveira
et al., 2002). The testes are paired organs
with an ovoid shape that are located in the
abdominal cavity (Oliveira & Vicentini, 1998;
Pierantoni et al., 2002). Internally they present
two compartments, the germinal and the inter-
stitial. In the first, they are organized by semi-
niferous tubules (Duellman & Trueb, 1994)
where in turn there are cysts of spermatogonia,
spermatocytes, spermatids, and spermatozoa
morphofunctionally associated with Sertoli
cells (Chavadej et al., 2000; Oliveira et al.,
2002). For its part, the interstitium is the tissue
between the seminiferous structures formed by
collagen fibers, blood vessels, Leydig cells,
and other connective tissue elements (Pudney,
1995; Yoshida, 2016). There are several find-
ings related to the morphophysiology of the
reproductive system in anurans. Among these,
some have focused on aspects such as sperm
cell morphology (Carezzano & Cabrera, 2010;
Carezzano et al., 2013), the reproductive cycle
(Ortiz & Díaz-Páez, 2001), plasma androgen
level (Delgado et al., 1989), hormonal stimu-
lants (Aguilar-Miguel et al., 2009), and their
relationship with the development of second-
ary sexual characteristics (Rastogi et al., 1986;
Kaptan & Murathanoğlu, 2008).
The morphology of spermatogenic cells is
widely described within the order Anura and
has been found to be similar (Delgado et al.,
1989; Ko et al., 1998; Oliveira & Zieri, 2005).
For the Neotropics, little has been studied about
the processes of spermatogenesis and spermio-
genesis in this group of organisms (Carezzano
et al., 2013). It has been evidenced that the
majority of anurans present a testis with cystic
cellular organization, although with differences
in aspects such as pigmentation and thickness
of the albuginea tunic (Carlos & Matta, 2009;
Guillama et al., 2014). Dark pigmentation in
the testes has been described in some species
and is caused by cells called melanocytes that
are randomly distributed in the albuginea tunic
and the interstitium (Aoki et al., 1969; Oliveira
et al., 2002; Guillama et al., 2014). These cells
present association with some organs and struc-
tures mainly of the vascular system and the
reproductive system, which generates intra-and
inter-specific differences, for this reason, little
is known to date about the function and role of
these pigments at the gonadal level (Oliveira &
Zieri, 2005; Franco-Belussi et al., 2009).
A unique aspect of the family Bufonidae
is the presence of Bidders organ (BO) in the
cranial part of the testis (Vitale-Calpe, 1969;
Petrini & Zaccanti, 1998), whose existence
has led to think of males as possible hermaph-
rodites (Ponse, 1927). This structure has been
described in several species of neotropical
distribution (King, 1907; Ponse, 1927; Alex-
ander, 1932; Brown et al., 2002; Farias et al.,
2002; Calisi, 2005). Historically this organ has
been considered a rudimentary ovary (Petrini
& Zaccanti, 1998) in which only previtello-
génic oocytes are formed under natural condi-
tions; on the contrary, laboratory experiments
have shown that oocytes can reach mature
vitellogénic stages (Pancak-Roessler & Norris,
1991; Tanimura & Iwasawa, 1992; Scaia et
al., 2011). The BO has been reported in males
and females of the same species with a similar
histological morphology (Pancak-Roessler &
Norris, 1991; Tanimura & Iwasawa, 1992;
Duellman & Trueb, 1994; Farias et al., 2002);
in the case of females, it is lost during the
early phase of development while in males
it remains throughout their life (King, 1908;
Ponse, 1927; McDiarmid, 1971). Likewise, it is
indicated that it is better developed in juveniles
than in adults, where in some species it can
degenerate during sexual maturity (McDiar-
mid, 1971). Although Bidders organ has been
extensively studied, little is known about its
functionality (Caroli, 1925; Brown et al., 2002;
Silberschmidt-Freitas et al., 2015).
The genus Atelopus (Duméril & Bibron,
1841), toads, or harlequin frogs, include about
100 species distributed in moist lowland and
highland forests, from Costa Rica to Bolivia
(Frost, 2021). In Colombia there are about
45 spp, which are mostly endemic, being the
country with the greatest number and diversity
of this taxon (Frost, 2021). In Latin America,
813
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
previous studies within the genus focus on
distribution patterns (La Marca et al., 2005;
Cusi et al., 2017), population dynamics (Tarvin
et al., 2014), and aspects of its natural history
such as ecology (Lötters, 1996), reproductive
biology (Lynch, 1986), territoriality (Crump,
1988), and emerging diseases (Lampo et al.,
2017). In addition, some works on phylogenetic
relationships and biogeography have included
this genus (Lötters, 1996; Pramuk et al., 2008;
Lötters et al., 2011). In Colombia, the issues
addressed in the genus Atelopus have focused
on ecological aspects such as foraging behavior
(Rueda-Solano & Warkentin, 2016), substrate
use (Granda-Rodríguez & Del Portillo-Mozo,
2007), thermal ecology (Rueda-Solano et al.,
2016a), coloration type (Rueda-Solano, 2008;
Rueda-Solano, 2012), tadpole morphology
(Rueda-Solano et al., 2015; Pérez-González
et al., 2020), monitoring (Gómez-Hoyos et
al., 2014), and diseases caused by the chytrid
fungus (Rueda-Solano et al., 2016b; Flechas et
al., 2017). Several authors have studied impor-
tant aspects of reproductive biology associated
mainly with the breeding season, reproductive
effort, and the interspecific amplexus (Pérez-
González et al., 2017; Rocha-Usuga et al.,
2017). However, other issues such as gonadal
morphology (McDiarmid, 1971; Siqueira et al.,
2013), sexual maturity (La Marca et al., 1989),
and mating patterns (Barrantes-Cartín, 1986;
Crump, 1988; Lötters, 1996; Karraker et al.,
2006) are still unknown to most representatives
of the genus. This group of harlequin frogs is
one of the most endangered in the world (La
Marca et al., 2005), whose populations have
decreased in high mountain habitats, including
areas with little intervention (Pounds & Crump,
1994; Pounds et al., 2006). Turning the five
endemic frog species that inhabit the Sierra
Nevada de Santa Marta (SNMS) into objec-
tives of great interest for the conservation of
the genus (IUCN, 2021), among which are the
three species under study.
This investigation describes for the first
time the testicular morphology in adult males
of Atelopus laetissimus Ruiz-Carranza et al.,
1994, Atelopus nahumae Ruiz-Carranza et al.,
1994, and Atelopus carrikeri Ruthven, 1916
to know part of their reproductive cycle, pro-
viding information on the histological and
structural characteristics of the spermatogenic
cells. Additionally, possible intersexuality is
suggested by the presence of Bidders organ
in the cranial part of the testis. It is necessary
to highlight that currently, these species are at
threat of extinction that is why knowing part
of its reproductive biology will contribute
to its conservation.
MATERIALS AND METHODS
Study area: Three sites were sampled at
different altitudes in the SNSM in the depart-
ment of Magdalena in Northern Colombia
(Fig. 1A).
Initially the locality of A. carrikeri which
corresponds to the Páramo de Cebolletas (3
500 m.a.s.l) located on the Sevilla River to the
West of the SNSM (10°54’03” N & 73°55’05”
W) and to the East in the San Pedro de la Sierra
district in Ciénaga-Magdalena (Fig. 1A, Fig.
1B). The popuation of A. laetissimus, located
in the Pascual stream (2 100 - 2 200 m.a.s.l.),
San Pedro de la Sierra, SNSM (10°54’3.70” N
& 73°55’4.50” W) (Fig. 1A, Fig. 1C). Finally,
the A. nahumae specimens that occur at the
headwaters of the Gaira river (1 560 m.a.s.l.),
Serranía de San Lorenzo, SNSM (11°10’2.0” N
& 74°10’41.5” W) (Fig. 1A, Fig. 1D).
Field sampling and specimen data: Five
field studies were carried out during June-July
2017 and 2018 according to the reproductive
season of the species (Carvajalino-Fernández
et al., 2008; Granda-Rodríguez et al., 2008;
Rocha-Usuga et al., 2017), locating adult males
by body size, vocalizations, and the presence
of nuptial pad (Sinsch, 1988; Duellman &
Trueb, 1994; Carezzano et al., 2013). To find
the organisms, the active search method and
the recording by visual encounter were applied
(Crump & Scott, 1994), with an exploration
time that ranged from 6 pm to 11 pm for 3
days in the San Lorenzo sector and 4 days in
the Cebolletas sector. The capture was carried
814
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
out manually with the permission of the Cor-
poración Autónoma Regional del Magdalena,
resolution No 0425 of 2015. The 15 adult males
collected (Atelopus laetissimus N = 5; Atelopus
nahumae N = 5, and Atelopus carrikeri N =
5) were transported to the laboratory in plastic
containers with little water to avoid desicca-
tion (Carezzano et al., 2013). The sacrifice of
the organisms occurred by anesthesia, through
abdominal rubbing with Garhocaine gel (based
on 20 % Benzocaine) (Phuge & Gramapurohit,
2013). Subsequently, an incision was made
in the abdominal wall to remove the gonads
for anatomical and morphological analysis. It
is worth mentioning that each specimen was
treated as established by the Ethics Committee
for the correct handling of organisms, approval
CICUAL No C.FUA. 17_006 of 2017, Uni-
versidad de los Andes, Bogotá-Colombia. The
supporting vouchers were deposited at the
Universidad del Magdalena in Santa Marta-
Colombia with catalogue number CBUMAG:
ANF:01019 - CBUMAG: ANF:01023, CBU-
MAG: ANF:01028, CBUMAG: ANF:01036.
Histological analysis: Testes were
removed and fixed in Bouin’s solution for 48 h
at room temperature (Phuge & Gramapurohit,
2013); subsequently preserving them in 70
% ethyl alcohol. After this period, they were
washed in distilled water to remove the excess
Boiun. They were then dehydrated in the grad-
ual series of ethanols (70 %, 80 %, 90 %, 96 %)
for 4 hours at each step and two final steps in
100 % ethanol, a 4-hour change, and a 12-hour
change (Hopwood, 1990; Pikle et al., 2017).
Rinsing was carried out in two steps by xylol
also at 4 h and 12 h (Guillama et al., 2014).
The infiltration-inclusion was performed in
Paraplast plus (Mc Cormick ®) for 12 h at
Fig. 1. Geographical location of the sampled localities in the Sierra Nevada de Santa Marta- Magdalena, Northern Colombia,
and images of the study species. A. Altitudinal distribution of the localities: San lorenzo-location of Atelopus nahumae,
San Pedro-location of Atelopus laetissimus and Páramo Cebolletas-location of Atelopus carrikeri. B. Atelopus carrikeri. C.
Atelopus laetissimus. D. Atelopus nahumae.
815
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
55 °C (Asenjo at al., 2011) and from this,
cross-sections were obtained with LEICA RM
2125 ® rotary microtome, of 3 μm-thick. The
sections were stained with Hematoxylin-Eosin
(Luna, 1968) and Mallory-Heidenhain-Azan-
Gomori’s (Gomori, 1939; Clark, 1973). The
sections obtained were examined with a Nikon
80i eclipse® and Nikon eclipse Ni photonic
microscope equipped with a differential inter-
ference contrast (DIC) system. Also, some sec-
tions were analyzed with fluorescence, using
the DAPI-FITC-Texas triple band excitation
filter which incorporates an excitation filter
with narrow band pass windows in the violet
(395 to 410 nm), blue (490 to 505 nm), and
green (560 to 580 nm) spectral regions. The
images were digitized with a Nikon DS-Fi1®
camera using the NIS-Elements software ver-
sion 4.30.02. In the course of the study, it was
found that the processes of spermatogenesis
and spermiogenesis occurred similarly in the
three Atelopus species analyzed, therefore,
for the detailed description of the germ cells
the species that provided the best illustrations
were chosen.
RESULTS
The testes are located in the abdominal
cavity, ventral to the kidneys joined to them
by a membrane, the gonadal mesenterium or
mesorchium. In general, they are oval-shaped,
compact, light yellow organs, and with little
vascularization (Fig. 2A). Fatty bodies are
found in their cranial extremity, with several
thin extensions of color yellowish and slightly
translucent (Fig. 2B).
Histologically, the testes are lined by the
albuginea tunic, a thin layer of regular dense
connective tissue in which collagen fibers and
blood vessels predominate. The tunic is thin
and has no pigment cells. Inside this layer,
numerous seminiferous tubules of hexagonal
contour are distinguished in which germ cell
cysts can be observed at different times of
spermatogenesis and spermiogenesis (Fig. 3,
Fig. 4). In cysts, cells unite in the same state
of differentiation, indicating that they have
synchrony of development (Fig. 3A, Fig 4A).
Surrounding the seminiferous tubules is the
interstitial tissue consisting of loose connective
tissue formed by Leydig cells (testosterone-
producing) and loose blood capillaries (Fig.
3B). Leydig cells have a rounded or oval-
contour nucleus and the chromatin is slightly
condensed; at the same time, they can be seen
separately or in groups near the blood vessels
(Fig. 3B).
Germ cells were identified according
to morphology, degrees of nuclear material
Fig. 2. Anatomical aspect of the testis and Bidder’s organ in Atelopus laetissimus. A. Location of the testicle and Bidders
organ. B. Association with other organs present in the abdominal cavity. BO: bidders organ; FB: fatty bodies; L: lung; LI:
liver; S: stomach; T: Testicle.
816
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
Fig. 3. Aspect of the testicular anatomy in Atelopus carrikeri during the breeding season A. General view of the male gonad
with abundant seminiferous tubules B. Detail of the interstitial tissue between two seminiferous tubules showing Leydig cells
and blood capillaries. Figures A and B stained with Hemtaoxilin-eosin (photon microscopy with the differential interference
contrast-DIC system). C. Primary spermatogonia, in the field with a DAPI-FITC-Texas triple band excitation filter. One per
cyst is seen near the wall of the seminiferous tubule. D-H. Seminiferous tubules with spermatogenic cell cysts at different
stages of development. Mallory-Heidenhain-Azan-Gomori’s stain (photon microscopy with the differential interference
contrast-DIC system). AT: albuginea tunic; BV: blood vessels; BZ: bundle of spermatozoas; C1: primary spermatocytes;
C2: secondary spermatocytes; G1: primary spermatogonia; G2: secondary spermatogonia; IT: interstitial tissue; L: leydig
cells; ST: seminiferous tubule; T1: early spermatids; T2: late spermatids; TW: tubular wall; Z: spermatozoa in the lumen.
817
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
condensation, and cystic arrangement (Fig. 3C,
Fig. 3D, Fig. 3E, Fig. 3F, Fig. 3G, Fig. 3H, Fig.
4A, Fig. 4B, Fig. 4C, Fig. 4D, Fig. 4E, Fig. 4F,
Fig. 4G, Fig. 4H). Spermatogonia are the cells
that initiate the spermatogenic process and
undergo multiple mitotic divisions that give
rise to a large clonal population of germ cells.
Of these, two types were identified: primary
spermatogonia (I) and secondary spermatogo-
nia (II). The former are the largest cells with
a rounded contour, large polymorphic nucleus,
and mostly euchromatic (Fig. 3C). They are
usually very close to the seminiferous tubule
wall and are arranged one per cyst (Fig. 3C).
From their mitotic division, secondary sper-
matogonia originate, cells that do form cysts
and are smaller than the primary. Regarding
their morphocytological characteristics, they
present the basophilic cytoplasm, small spheri-
cal nuclei, and scarcely heterochromatic (Fig.
3D, Fig. 3E, Fig. 4G, Fig. 4H).
In relation to the next stage of devel-
opment, two classes of spermatocytes were
identified: primary spermatocytes (I) and sec-
ondary spermatocytes (II). Primary spermato-
cytes originate from the mitotic differentiation
of secondary spermatogonia and constitute the
most abundant phase during the spermatogen-
esis process. These are cells with oval contour,
large euchromatic nucleus, without nucleolus,
and abundant cytoplasm (Fig. 3D, Fig. 3E, Fig.
3F, Fig. 3G, Fig. 3H, Fig. 4B, Fig. 4C, Fig. 4D,
Fig. 4E, Fig. 4F, Fig. 4H). Generally, they are
observed in different phases of the first meiotic
division, presenting various degrees of conden-
sation in the chromatin. These cells differ from
spermatogonia II because they are larger and
the cysts are larger. For their part, secondary
spermatocytes are haploid cells that are distin-
guished by being smaller than their predeces-
sors (spermatocytes I). They have basophilic
nuclei, with a rounded contour, condensed
chromatin, and the cytoplasm is translucent
without any granulations (Fig. 3D, Fig. 3E, Fig.
3F, Fig. 3G, Fig. 3H, Fig. 4B, Fig. 4C, Fig. 4D,
Fig. 4E, Fig. 4F, Fig. 4G, Fig. 4H).
Continuing with the development phases,
spermatids are the result of the second meiotic
division and their cell population has a wide
variety of shapes ranging from spherical to
elongated (Fig. 3E, Fig. 4D). In the analyzed
species were found in two stages: early sper-
matids (I) and late spermatids (II). Early sper-
matids have a round shape, spherical nucleus,
slightly compressed, and condensed chromatin
(Fig. 3E, Fig. 3H, Fig. 4D). These differ from
spermatocytes II because they are smaller and
with denser chromatin. Late spermatids are
elongated cells with an elongated nucleus and
condensed chromatin (Fig. 3D, Fig. 3E, Fig.
3F, Fig. 3G, Fig. 4D, Fig. 4E, Fig. 4G). In some
preparations, they are seen to have weakly
stained flagella (Fig. 3E, Fig. 4D). Spermatids
undergo the spermiogenesis process to give rise
to spermatozoa, which are the most elongated
and basophilic cells of the germ lineage; their
characteristics include a compact nucleus and
reduced cytoplasm. These were observed at
two moments of spermiogenesis, in the first
phase, they form compact groups like fascicles
due to their association with Sertoli cells, in
such that the proximal part that contains the
nucleus is associated with these nourishing
cells and the distal part that corresponds mainly
to the flagellum is located towards the lumen
of the cyst (Fig. 3F, Fig. 3G, Fig. 3H, Fig. 4B,
Fig. 4C, Fig. 4D, Fig. 4E, Fig. 4F). In the sec-
ond stage, they completely lose the fascicular
arrangement and are free towards the lumen of
the seminiferous tubules (Fig. 3F, Fig. 4B, Fig.
4F, Fig. 4G).
Additionally, the specimens of the three
analyzed species presented a Bidders organ in
the cranial part of the testis (Fig. 5A, Fig. 5B).
This organ in vivo appears yellow and
slightly translucent (data not illustrated). His-
tologically, it is made up of two regions: the
cortex and the medulla (Fig. 5C, Fig. 5D). The
medulla is the intermediate tissue that nourish-
es the oocytes, which constitutes a loose irregu-
lar connective tissue with numerous blood
capillaries (Fig. 5D). In the cortex, there are
abundant previthellogenic oocytes of different
sizes, surrounded by a layer of follicular cells
(Fig. 5C). Follicular cells form a simple flat
epithelium (Fig. 5E). For their part, oocytes
818
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
Fig. 4. Aspect of the testicular anatomy in Atelopus nahumae during the breeding season. A. General view of the male
gonad with abundant seminiferous tubules. B-H. Seminiferous tubules with spermatogenic cell cysts at different stages of
development. Photomicrographs stained with Mallory-Heidenhain-Azan-Gomori’s (photon microscopy with the differential
interference contrast-DIC system). AT: albuginea tunic; BZ: bundle of spermatozoas; C1: primary spermatocytes; C2:
secondary spermatocytes; G2: secondary spermatogonia; ST: seminiferous tubule; T1: early spermatids; T2: late spermatids;
TW: tubular wall; Z: spermatozoa in the lumen.
819
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
Fig. 5. Morphophysiology of Bidders organ in Atelopus carrikeri and Atelopus nahumae. A-B. Location of the Bidders
organ in the cranial portion of the testis. C. Cortex region with previtellogénic oocytes. D. Region of the medulla formed by
connective tissue and blood capillaries. E-F. Different-sized previtellogénic oocytes surrounded by a simple flat epithelium.
G-H. Atretic oocytes with nuclear and cytoplasmic disintegration (*). Sections stained with Mallory-Heidenhain-Azan-
Gomori’s and Hematoxylin-eosin staining (photon microscopy with the differential interference contrast-DIC system).
Photomicrographs A, F-H of A. carrikeri individuals and images B-E of A. nahumae specimens. BO: bidders organ; BV:
blood vessels; C: cytoplasm; CO: cortex; CT: connective tissue; FC: follicular cells; M: medulla; N: nucleus; n: nucleolus;
PO: previtellogénic oocytes; ST: seminiferous tubule. The scalloped nuclear envelope of atretic oocytes ().
820
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
are large cells, with an acidophilic nucleus
and prominent nucleoli (Fig. 5C, Fig. 5D, Fig.
5G, Fig. 5H). There were also abundant atretic
oocytes with nuclear and cytoplasmic disinte-
gration (Fig. 5G, Fig. 5H). The nuclear mem-
brane of oocytes in the atresia process appears
undulating and the nucleus loses its oval shape
(Fig. 5G, Fig. 5H). In general, the absence of
some type of specialized tissue that separates
the Bidders organ from the testicular region is
appreciated, beyond the connective tissue that
nourishes them. Therefore, bidderian oocytes
are close to the seminiferous tubules with cysts
in different spermatogenic stages.
DISCUSSION
The testicular architecture of A. laetis-
simus, A. nahumae, and A. carrikeri presented
great similarity with the descriptions of other
species of the same family such as Rhinel-
la arenarum (Cavicchia & Moviglia, 1983),
Anaxyrus woodhousii (Atherton, 1974), and
Bufo bufo (Falconi et al., 2004). Germline cells
exhibited intense spermatogenic activity and
cyst arrangement, being a common appearance
in anurans and a predictive property of anamni-
otic testicular evolution (Atherton, 1974; Lofts,
1974). Cysts form a hematotesticular barrier
that provides an optimal microenvironment for
germ cell maturity and is a diagnostic feature of
the Anura order (Cavicchia & Moviglia, 1983).
In general, all stages of spermatogenesis were
identified, although there was a predominance
of spermatids (early and late) and spermatozoa
(in fascicles and free), which confirmed sexual
maturity and reproductive activity of the organ-
isms (Iturriaga et al., 2012; Pacheco-Florez
& Ramírez-Pinilla, 2014). This suggests that
the analyzed species may present continuous
spermatogenic activity (Burgos & Mancini,
1948; Oliveira et al., 2002), as occurs in most
species of neotropical distribution where all
cell stages are present throughout the year
(Rastogi, 1976; Lofts, 1987; Oliveira et al.,
2002). However, to corroborate this hypothesis,
it would be necessary to carry out samplings in
non-reproductive seasons.
The morphocytological characteristics of
the primary spermatogonia analyzed in this
work are similar to those reported in the lit-
erature for various groups of anurans (King,
1907; Cavicchia & Moviglia, 1983; Oliveira
& Vicentini, 1998). In contrast, for some spe-
cies like Peltophryne fustiger, Pelophylax ridi-
bunda, and Dendropsophus minutus primary
spermatocytes constitute the largest cells (Kap-
tan & Murathanoğlu, 2008; Sanz-Ochotorena
et al., 2008; Ferreira & Mehanna, 2012). In
relation, to the next stage of development that
includes secondary spermatogonia, a phase
of intense cell division that remains until the
formation of early spermatids (Lofts, 1974;
Rastogi et al., 1988) it was possible to verify
great similarity with the descriptions of other
species including Pseudis limellum (Ferreira et
al., 2008). These are generally more basophilic
cells than primary spermatogonia (Jamieson,
2003), which contrasts with what was observed
in R. arenarum (Burgos & Fawcett, 1956;
Cavicchia & Moviglia, 1983) and D. minutus
(De Souza-Santos & De Oliveira, 2008). At
the same time, secondary spermatogonia were
one of the scarcest cell types in the sections
analyzed and even in the testes of some species
it has not been found (Asenjo et al., 2011; Itur-
riaga et al., 2012).
In this research, it was observed that pri-
mary spermatocytes were commonly larger
than secondary spermatogonia, which is due
to the growth phase they experience dur-
ing prophase I (Salas & Martino, 2008). In
this period, chromatin presents a variation in
the degree of condensation, being a common
aspect with our observations and in the descrip-
tions of other anurans (Ortiz & Díaz-Páez,
2001; Villagra et al., 2014). Additionally, they
were distinguished in greater numbers than
secondary spermatocytes as reported in other
taxonomic groups (Ferreira et al., 2008). On the
other hand, the secondary spermatocytes were
observed smaller and with denser chromatin
than their congeners, the primary spermato-
cytes. These cytological characteristics are
similar to some representatives of the family
Bufonidae (Echeverría & Maggese, 1987) and
821
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
other species like Calyptocephalella gayi (Her-
mosilla et al., 1983) and Ceratophrys cultripes
(Báo et al., 1991).
In this work, two stages are described for
spermatids in a manner consistent with what
some authors have found (Ortiz & Díaz-Páez,
2001; Oliveira et al., 2002). Initially, they were
rounded cells that lengthened as they matured,
once in the late spermatid phase, they no longer
form cysts but are organized into fascicles as
observed in this study (Lofts, 1974; Oliveira
et al., 2002). However, in other taxa such as
P. ridibunda three stages of development have
been described, which includes an intermediate
phase (Kaptan & Murathanoğlu, 2008). The
morphological and histological characteristics
of the spermatozoa and their arrangement in
the seminiferous tubules did not vary in rela-
tion to that described in other works (Taboga
& Dolder, 1991; Scheltinga et al., 2002). In
this investigation, the Sertoli cells could not be
observed, perhaps due to the lack of detail in
the sections or of more histological sections,
a fact that contrasts with most studies where
they have been described morphofunctionally
associated with spermatogenic cells (Carez-
zano et al., 2013). Nevertheless, late spermatid
bundles were observed in the analyzed prepa-
rations, which indicates the presence of these
nourishing cells.
The albuginea tunic did not present pig-
ment cells in a common way with most anurans
(Duellman & Trueb, 1986; Franco-Belussi et
al., 2009). However, the presence of pigments
has been recorded in several species including
some of the genus Atelopus like A. varius, A.
longirostris, and A. senex (McDiarmid, 1971;
Franco-Belussi et al., 2009; Guillama et al.,
2014). Sanz-Ochotorena et al. (2011) describe
pigments in the testes of four Cuban anurans
and attribute them a protective function against
anthropogenic contamination and solar radia-
tion. Additionally, McDiarmid (1971) suggests
that they could be associated with the reproduc-
tive condition or with protection from ultravio-
let light. On the other hand, it is considered that
the melanin present in testicular melanocytes
can protect male gametes from oxidative stress
(Galván et al., 2011). However, this type of
hypothesis would need more studies, given
the testes are located in the abdominal cavity
protected by other tissues, which would not
imply the need to develop pigments to pro-
tect themselves from some cytotoxic effect
caused by ultraviolet radiation. Other findings
in anurans relate these pigments to an extracu-
taneous pigmentation system that is present in
several organs in addition to the primary sexual
characteristics, where the mode of appearance
and the number of melanocytes is highly vari-
able among species (Oliveira & Zieri, 2005).
Accordingly, Franco-Belussi et al. (2009) stud-
ied the testes of seventeen species of the Lep-
todactylidae, finding that the distribution of
melanocytes was variable, and therefore there
were differences in the degree of pigmentation
of the gonads, proposing that it could be an
intrinsic characteristic of the species or physi-
ological response. Therefore, the role of these
testicular pigments is still unknown, and more
exhaustive investigations are required taking
into account ecological, histological, and phy-
logenetic aspects in the genus Atelopus.
The presence of the Bidders organ is reg-
istered for the first time in the analyzed species,
which has been reported in other species of
the genus Atelopus (Griffiths, 1954; Griffiths,
1959; McDiarmid, 1971). Likewise, it is pres-
ent in most lineages of the family Bufonidae
(Ponse & Guyénot, 1927; Alexander, 1932;
Brown et al., 2002; Falconi et al., 2007) exclud-
ing Melanophryniscus (Echeverría, 1997; Pelo-
so et al., 2012) and Truebella (Graybeal &
Cannatella, 1995). Although certain authors
consider the Bidders organ a synapomorphy of
the clades derived from bufonids, the findings
in the species A. laetissimus, A. nahumae, and
A. carrikeri are contradictory since the genus
Atelopus constitutes an early divergent lineage
of bufonids (Pramuk et al., 2008). So, it is a
character shared only by part of the family
(Frost et al., 2006). Atelopus is a monophyletic
group (Lötters et al., 2011), related to other
genera of the family in which BO has been
described, such as Osornophryne, Peltophryne,
Bufo, and Rhinella (Graybeal & Cannatella,
822
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
1995; Pramuk, 2006; Pyron & Wiens, 2011;
Pereyra et al., 2021). Therefore, the anatomical,
morphological, and histological characteristics
seen in BO are similar to those recorded in
other investigations where the presence of this
structure has been detected (Griffiths, 1954;
Griffiths, 1959; Silberschmidt-Freitas et al.,
2015; Copa, 2019). Our findings indicate that
the BO does not reach the formation of viable
oocytes and, on the contrary, they enter atresia
and are reabsorbed, which is similar to that
registered in Bufo bufo, Rhinella icterica, Rhi-
nella marina, and Peltophryne empusa (Zac-
canti & Gardenghi, 1968; Farias et al., 2002;
Abramyan et al., 2010; Copa, 2019). However,
some authors described the presence of vitel-
logénic oocytes in the BO of some bufonids as
R. marina and R. arenarum during the breeding
season (McCoy et al., 2008; Scaia et al., 2011).
Additionally, Lambert et al. (2019) reported
that some adult males of the Rana clamitans
changed sex and another group of organisms
presented oocytes in their testes (inter-sex) in
pristine conditions, despite this, the factors that
can cause this sexual reversal is unknown.
In the Bidders organ, abundant degenerat-
ed and atretic oocytes were identified similarly
with other bufonids, such as R. marina and
R. arenarum (Brown et al., 2002; Scaia et al.,
2011). This could be due to the lack of stimuli
to continue its development or to the absence
of a specialized tissue that separates the BO
from the testicles (Silberschmidt-Freitas et al.,
2015). The latter would be explained by the
hormonal regulation of some androgens that
can cause oocyte degeneration and at the same
time inhibit the uptake of estradiol for vitel-
logenesis to occurs (Calisi, 2005). Despite this,
different studies consensus that oogenesis is not
completed in males under natural conditions
(Silberschmidt-Freitas et al., 2015). Our find-
ings on the presence of the Bidders organ in
the three Atelopus species studied, allow us to
suggest that males may possibly present sexual
reversion because this organ could be used in
the case of a population decrease in females as
a possible strategy reproductive. Considering
that this taxonomic group is highly threatened,
further research in this direction could contrib-
ute to understanding the stability of their popu-
lations and their current conservation status.
Additionally, research on the morphohistology
of the testis is important to have a broader
understanding of the reproductive biology of
the genus Atelopus and of neotropical anurans
in general, for which literature is scarce.
Ethical statement: authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are
fully and clearly stated in the acknowledge-
ments section. A signed document has been
filed in the journal archives.
ACKNOWLEDGMENTS
We thank the Universidad de Santander
(UDES), the Biotechnology Laboratory of the
University Research Headquarters -SIU- of
the Universidad de Antioquia (UdeA), and the
Biodiversity and Applied Ecology Research
Group (GIBEA) of the Universidad del Mag-
dalena. Thanks to Universidad de los Andes
(Colombia) internal scholarship INV-2018-34-
1281 and Colciencias Grant/Convocatoria 757
of 2016 for providing financial support to the
project ‘‘Adaptive Implications of the Mating
System and Female-Guarding in Harlequin
Frogs (Bufonidae: Atelopus)’’. This study was
part of Arantxa Sánchez-Ferreira’s Bachelor›s
thesis in Biological Sciences, directed by Luis
Alberto Rueda-Solano (Beto Rueda).
RESUMEN
Histología y estructura de los testículos en tres especies
de ranas Atelopus (Anura: Bufonidae) endémicas de
la Sierra Nevada de Santa Marta, Colombia
Introducción: La histología testicular constituye uno de los
aspectos menos explorados en las ranas del género Atelo-
pus. Este grupo taxonómico ostenta un declive poblacional
alarmarte, es por ello, que su biología reproductiva resulta
uno de los temas de mayor interés para su conservación.
823
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
Objetivo: Describir la morfología testicular y las células
del linaje espermatogénico en machos adultos de Atelopus
laetissimus, Atelopus nahumae y Atelopus carrikeri en la
Sierra Nevada de Santa Marta, Colombia.
Métodos: Durante Junio - Julio de 2017 y 2018 se realiza-
ron muestreos en las localidades de San Lorenzo y Páramo
Cebolletas, Sierra Nevada de Santa Marta (SNSM), para
recolectar 15 machos adultos, 5 por especie. Las mues-
tras de testículo se fijaron en Bouin para ser procesadas
mediante la técnica estándar de inclusión en parafina. Las
secciones histológicas (3 μm) se tiñeron con Hematoxilina-
eosina y Mallory-Heidenhain-Azan-Gomori’s. Para la des-
cripción y registro fotográfico de las células germinales, se
utilizó la técnica de microscopía fotónica con el sistema de
contraste diferencial de interferencia.
Resultados: Los testículos son órganos ovalados, com-
pactos, de color amarillo claro y con poca vascularización.
Externamente, están rodeados por una delgada túnica
albugínea constituida por tejido conectivo denso regular.
Al interior de esta capa se componen por numerosos
túbulos seminíferos de contorno hexagonal, en los que se
distinguen quistes de células germinativas en diferentes
etapas de la espermatogénesis (espermatogonia I y II,
espermatocito I y II y espermátidas tempranas y tardías) y
espermiogénesis (espermatozoides en fascículos y esper-
matozoides libres). Separando las estructuras seminíferas
se halla el tejido intersticial en el que se destacan las células
de Leydig y los vasos sanguíneos. Adicionalmente, en la
parte craneal del testículo se encontró el órgano de bidder
formado por dos regiones diferenciables, la corteza y la
medula. En la corteza se aprecian ovocitos previtelogénicos
en diferente tamaño rodeados por una monocapa de células
foliculares planas. Por su parte, la región medular es el
tejido conectivo que nutre los ovocitos y está constituido
por capilares sanguíneos.
Conclusiones: Las gónadas de las tres especies analizadas
presentan una organización celular quística de manera
similar con otros anuros, donde se identificó todos los esta-
dios de la espermatogénesis y espermiogénesis indicando
posiblemente una actividad reproductiva continua. Así
mismo, se reporta por primera vez el órgano de bidder en
las tres especies de Atelopus, lo cual permite sugerir una
posible reversión sexual en caso de una disminución pobla-
cional de las hembras como una estrategia reproductiva.
Palabras clave: células espermatogénicas; histología;
órgano de bidder; reversión sexual; testículos.
REFERENCES
Abramyan, J., Wilhelm, D., & Koopman, P. (2010). Mole-
cular characterization of the Bidder’s organ in the
cane toad (Bufo marinus). Journal of Experimental
Zoology Part B: Molecular and Developmental Evo-
lution, 314(6), 503–513.
Aguilar-Miguel, X., Legorreta, G., & Casas-Andreu, G.
(2009). Reproducción ex situ en Ambystoma granu-
losum y Ambystoma lermaense (Amphibia: Ambysto-
matidae). Acta Zoológica Mexicana, 25(3), 443–454.
Alexander, G. (1932). Bidder’s organ in Bufo melanostictus
Schneider. Copeia, 1932(2), 78–80.
Aoki, A., Vitale-Calpe, R., & Pisano, A. (1969). The testi-
cular interstitial tissue of the amphibian Physalaemus
fuscumaculatus. Zeitschrift für Zellforschung und
Mikroskopische Anatomie, 98(1), 9–16.
Asenjo, A., Siu-Ting, K., & Pino, J. (2011). Morfometría de
testículos y células germinales de Allobates femoralis
(Boulenger 1883) (Dendrobatidae: Anura: Amphi-
bia). The Biologist, 9(2), 167–175.
Atherton, R. W. (1974). A gradient analysis of spermato-
genesis in the toad Bufo woodhousei Girard (1854).
Herpetologica, 30(3), 240–244.
Báo, S. N., Dalton, G. C., & de Oliveira, S. F. (1991). Sper-
miogenesis in Odontophrynus cultripes (Amphibia,
Anura, Leptodactylidae): Ultrastructural and cyto-
chemical studies of proteins using E-PTA. Journal of
Morphology, 207(3), 303–314.
Barrantes-Cartín, U. (1986). Observaciones de campo
del comportamiento reproductivo de Atelopus senex
(Anura: Bufonidae) (No. 597.87 B268o) (Tesis de
Licenciatura). Universidad de Costa Rica, Costa
Rica.
Brown, F. D., Del Pino, E. M., & Krohne, G. (2002).
Bidders organ in the toad Bufo marinus: effects of
orchidectomy on the morphology and expression
of lamina-associated polypeptide 2. Development,
Growth & Differentiation, 44(6), 527–535.
Burgos, M. H., & Fawcett, D. W. (1956). An electron
microscope study of spermatid differentiation in the
toad, Bufo arenarum Hensel. The Journal of Biophy-
sical and Biochemical Cytology, 2(3), 223–240.
Burgos, M. H., & Mancini, R. E. (1948). Ciclo espermato-
génico anual del Bufo arenarum Hensel. Revista de
la Sociedad Argentina de Biología, 24(3), 328–36.
Calisi, R. M. (2005). Variation in Bidders Organ volume is
attributable to reproductive status in Bufo woodhou-
sii. Journal of Herpetology, 39(4), 656–660.
Carezzano, F. J., & Cabrera, M. R. (2010). Morfohistología
del testículo de Physalaemus biligonigerus (Amphi-
bia, Leiuperidae) en un ecosistema agrícola. Boletín
de la Asociación Herpetológica Española, 21, 39–42.
Carezzano, F., Urquiza, S. P., Dorflinger, K., & Alonso, M.
(2013). Testicular morphohistology of Odontophry-
nus americanus (Dumeril & Bibrón, 1841) (Anura,
Odontophrynidae) of Argentina. The Biologist, 11(1),
119–129.
824
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
Carlos, J., & Matta, S. L. P. D. (2009). Microscopic
morphology and testis morphometry of captivity-
bred Adult bullfrogs (Lithobates catesbeianus Shaw,
1802). Brazilian Archives of Biology and Technology,
52(6), 1461–1472.
Caroli, A. (1925). Variaciones y anomalías del órgano
Bidder como contribución al hermafroditismo de la
gónada anuribiana. Atti Accademia dei Fisiocritici di
Siena, 9, 555–581.
Carvajalino-Fernández, J. M., Cuadrado-Peña, B., & Ramí-
rez-Pinilla, M. P. (2008). Additional records of Ate-
lopus nahumae and Atelopus laetissimus from Sierra
Nevada de Santa Marta, Colombia. Actualidades
Biológicas, 30(88), 97–103.
Cavicchia, J. C., & Moviglia, G. A. (1983). The blood–
testis barrier in the toad (Bufo arenarum hensel):
A freeze-fracture and lanthanum tracer study. The
Anatomical Record, 205(4), 387–396.
Chavadej, J., Jerareungrattana, A., Sretarugsa, P., &
Sobhon, P. (2000). Structure and development of the
testis of bullfrog Rana catesbeiana, and their changes
during seasonal variation. Science Asia, 26, 69–80.
Clark, G. (1973). Staining procedures: used by the Biologi-
cal stain commission (3
rd
Ed.). Williams and Wilkins.
Copa, J. P. (2019). Comparación del estado gonadal de
ambos sexos de Peltophryne empusa (Anura: Bufoni-
dae) en dos estaciones del año (Tesis de Bachillera-
to). Universidad de la Habana de Cuba, Cuba.
Crump, M. L. (1988). Aggression in harlequin frogs:
male-male competition and a possible conflict of
interest between the sexes. Animal Behaviour, 36(4),
1064–1077.
Crump, M. L., & Scott, N. J. (1994). Visual encou-
nter surveys. In W. R. Heyer, M. A. Donnelly,
R. W. McDiarmid, L. C. Hayek, & M. S. Foster
(Eds.), Measuring and Monitoring Biological Diver-
sity, Standard Methods for Amphibians (pp. 84–92).
Smithsonian Institution Press.
Cusi, J. C., Barboza, A. C., Vredenburg, V. T., & von May,
R. (2017). New distribution records and conservation
status of Atelopus seminiferus Cope, 1874: A Critica-
lly Endangered harlequin frog from Northern Peru.
Amphibian & Reptile Conservation, 11(1), 17–24.
De Souza-Santos, L. R., & De Oliveira, C. (2008). Histo-
logical aspects and structural characteristics of the
testes of Dendropsophus minutus (Anura, Hylidae).
Micron, 39(8), 1266–1270.
Delgado, M. J., Gutierrez, P., & Alonso-Bedate, M. (1989).
Seasonal cycles in testicular activity in the frog, Rana
perezi. General and Comparative Endocrinology,
73(1), 1–11.
Duellman, W. E., & Trueb, L. (1986). Biology of Amphi-
bians. Johns Hopkins University Press.
Duellman, W. E, & Trueb, L. (1994). Biology of Amphi-
bians. Johns Hopkins University Press.
Echeverría, D. D. (1997). Aspectos de la reproducción
in-vitro y del desarrollo larval de Melanophryniscus
stelzneri (Weyenbergh, 1875) (Anura, Bufonidae),
con comentarios acerca del órgano de Bidder. Alytes,
15(4), 158–170.
Echeverría, D. D., & Maggese, M. C. (1987). Desarrollo
del testículo en Bufo arenerum (Anura, Bufonidae).
Ciclos espermatogénicos y variaciones estacionales
en los sapos juveniles. Revista del Museo Argentino
de Ciencias Naturales Bernardino Rivadavia, 14(9),
125–138.
Falconi, R., Dalpiaz, D., & Zaccanti, F. (2004). Ultrastruc-
tural aspects of gonadal morphogenesis in Bufo bufo
(Amphibia Anura) 1. Sex differentiation. Journal of
Experimental Zoology Part A: Comparative Experi-
mental Biology, 301(5), 378–388.
Falconi, R., Dalpiaz, D., & Zaccanti, F. (2007). Morpho-
logical Aspects of Gonadal Morphogenesis in Bufo
bufo (Amphibia anura): Bidders Organ Differentia-
tion. The Anatomical Record: Advances in Integrative
Anatomy and Evolutionary Biology, 290(7), 801–813.
Farias, C. F., Carvalho-e-Silva, S. P., & de Brito-Gitirana,
L. (2002). Bidders organ of Bufo ictericus: a light
and electron microscopy analysis. Micron, 33(7-8),
673–679.
Ferreira, A., & Mehanna, M. (2012). Seasonal testicular
changes in Dendropsophus minutus peters, 1872
(Anura, hylidae). Biocell, 35(2), 57–62.
Ferreira, A., Mehanna, M., & Prado, C. (2008). Morpho-
logic and morphometric analysis of testis of Pseudis
limellum (Cope, 1862) (Anura, Hylidae) during the
reproductive cycle in the Pantanal, Brazil. Biocell,
32(2), 185–194.
Flechas, S. V., Paz, A., Crawford, A. J., Sarmiento, C.,
Acevedo, A. A., Arboleda, A., Bolívar-García, W.,
Echeverry-Sandoval, C. L., Franco, R., Mojica, C.,
Muñoz, A., Palacios-Rodríguez, P., Posso-Terranova,
A. M., Quintero-Marín, P., Rueda-Solano, L. A.,
Castro-Herrera, F., & Amézquita, A. (2017). Current
and predicted distribution of the pathogenic fun-
gus Batrachochytrium dendrobatidis in Colombia, a
hotspot of amphibian biodiversity. Biotropica, 49(5),
685–69.
Franco-Belussi, L., Zieri, R., De Souza Santos, L. R.,
Moresco, R. M., & De Oliveira, C. (2009). Pigmen-
tation in anuran testes: anatomical pattern and varia-
tion. The Anatomical Record: Advances in Integrative
Anatomy and Evolutionary Biology, 292(2), 178–182.
825
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
Frost, D. R. (2021). Amphibian Species of the World: an
Online Reference (Version 6.1, Electronic Database).
American Museum of Natural History. https://amphi-
biansoftheworld.amnh.org/index.php.
Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas,
A., Haddad, C. F., De Sá, R. O., Channing, A.,
Wilkinson, M., Donnellan, S. C., Raxworthy, C. J.,
Campbell, J. A., Blotto, B. L., Moler, P., Drewes, R.
C., Nussbaum, R. A., Lynch, J. D., Green, D. M., &
Wheeler, W. C. (2006). The amphibian tree of life.
Bulletin of the American Museum of Natural History,
2006(297), 1–370.
Galván, I., Møller, A. P., & Erritzøe, J. (2011). Testicular
melanization has evolved in birds with high mtDNA
mutation rates. Journal of Evolutionary Biology,
24(5), 988–998.
Gómez-Hoyos, D. A., Bolívar-García, W., Burbano-Yandi,
C. E., & García, J. L. (2014). Evaluación poblacional
y estrategia de monitoreo para Atelopus spurrelli en
el Parque Nacional Natural Utría, Colombia. Revista
de Biodiversidad Neotropical, 4(2), 104–12.
Gomori, G. (1939). Studies on the cells of the pancreatic
islets. The Anatomical Record, 74(4), 439–459.
Granda-Rodríguez, H. D., & Del Portillo-Mozo, A. G.
(2007). Evaluación poblacional de Atelopus laetis-
simus y Atelopus nahumae (anura: bufonidae) del
sector San Lorenzo, Sierra Nevada De Santa Marta
(Tesis de pregrado). Universidad del Magdalena de
Colombia, Colombia.
Granda-Rodríguez, H. D., Del Portillo-Mozo, A. G., &
Renjifo, J. M. (2008). Uso de habitat en Atelopus
laetissimus (Anura: Bufonidae) en una localidad de
la Sierra Nevada de Santa Marta, Colombia. Herpe-
totropicos, 4(2), 87–93.
Graybeal, A., & Cannatella, D. C. (1995). A new taxon of
Bufonidae from Peru, with descriptions of two new
species and a review of the phylogenetic status of
supraspecific bufonid taxa. Herpetologica, 105–131.
Griffiths, I. (1954). On the otic element in Amphibia,
Salientia. Proceedings of the Zoological Society of
London, 124(1), 35–50.
Griffiths, I. (1959). La filogenia de Sminthillus limbatus y
el estado de Brachycephalidae (Amphibia Salientia).
Proceedings of the Zoological Society of London,
132(3), 457–487.
Guillama, L. C., Reyes, Y., Ochotorena, A. S., Lara, R.,
Segura-Valdés, M. D. L., & Jiménez, L. F. (2014).
Descripción morfológica de gónadas y células sexua-
les de dos especies de ranas cubanas del géne-
ro Eleutherodactylus (Anura: Eleutherodactylidae).
Revista Cubana de Ciencias Biológicas, 3(3), 38–47.
Hermosilla, I. B., Urbina, A. P., & Cabrera, J. C. P. (1983).
Espermatogénesis en la rana chilena Caudiverbera
caudiverbera (Linne, 1758) (Anura, Leptodactyli-
dae). Boletin de la Sociedad de Biologia de Concep-
cion, 54, 103–115.
Hopwood, D. (1990). Fixation e fixatives. In J. D. Ban-
croft, A. Stevens, & R. T. David (Eds.), Theory and
Practice of Histological Techniques (3rd ed., pp.
21–42). Churchill Livingstone.
IUCN (International Union for Conservation of Nature).
(2021). The IUCN Red List of Threatened Species.
Version 2021-1. https://www.iucnredlist.org
Iturriaga, M., Rodríguez-Gómez, Y., & Sanz-Ochotorena,
A. (2012). Structural and ultrastructural descrip-
tion of the gonads of Eleutherodactylus planirostris
(Anura: Eleutherodactylidae). Herpetology Notes,
5, 281–290.
Jamieson, B. G. M. (2003). Reproductive Biology and
Phylogeny of Anura. In B. G. M. Jamienson (Ed.),
Spermatogenesis and the Mature Spermatozoon:
Form, Function and Phylogenetic Implications (Vol.
2, pp. 119–251). Science Publishers.
Kaptan, E., & Murathanoğlu, O. (2008). Annual morpholo-
gical cycles of testis and thumb pad of the male frog
(Rana ridibunda). The Anatomical Record, 291(9),
1106–1114.
Karraker, N. E., Richards, C. L., & Ross, H. L. (2006).
Reproductive ecology of Atelopus zeteki and com-
parisons to other members of the genus. Herpetolo-
gical Review, 37(3), 284–288. King, H. D. (1907).
The spermatogenesis of Bufo lentiginosus. American
Journal of Anatomy, 7(3), 345–387.
King, H. D. (1908). The structure and development of
Bidders organ in Bufo lentiginosus. Journal of Mor-
phology, 19(2), 439–468.
Ko, S. K., Kang, H. M., Im, W. B., & Kwon, H. B.
(1998). Testicular Cycles in Three Species of Korean
Frogs: Rana nigromaculata, Rana rugosa, and Rana
dybowskii. General and Comparative Endocrinology,
111(3), 347–358.
La Marca, E., García-Pérez, J. E., & Renjifo, J. M. (1989).
Una nueva especie de Atelopus (Amphibia: Anura:
Bufonidae) del Páramo de Tamá, Estado Apure,
Venezuela. Caldasia, 16(76), 97–104.
La Marca, E., Lips, K. R., Lötters, S., Puschendorf, R., Ibá-
ñez, R., Rueda-Almonacid, J. V., Schulte, R., Marty,
C., Castro, F., Manzanilla-Puppo, J., Garcia-Perez,
J. E., Bolaños, F., Chaves, G., Pounds, J. A., Toral,
A., & Young, B. E. (2005). Catastrophic population
declines and extinctions in Neotropical harlequin
frogs (Bufonidae: Atelopus) 1. Biotropica: The Jour-
nal of Biology and Conservation, 37(2), 190–201.
Lambert, M. R., Tran, T., Kilian, A., Ezaz, T., & Skelly,
D. K. (2019). Molecular evidence for sex reversal
826
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
in wild populations of green frogs (Rana clamitans).
PeerJ, 7, e6449.
Lampo, M., Señaris, C., & García, C. Z. (2017). Population
dynamics of the critically endangered toad Atelopus
cruciger and the fungal disease chytridiomycosis.
PloS one, 12(6), e0179007.
Lofts, B. (1974). Reproduction. In B. Lofts (Ed.), Physiolo-
gy of the Amphibia (1st ed., pp. 107–218). Academic
Press.
Lofts, B. (1987). Testicular function. In D. O. Norris, & R.
E. Jones (Eds.), Hormones and reproduction in fishes,
amphibians, and reptiles (pp. 283–325). Springer.
Lötters, S. (1996). The neotropical toad genus Atelopus:
Checklist, Biology, Distribution. Frank Glaw and
Miguel Vences.
Lötters, S., Van der Meijden, A., Coloma, L. A., Boistel, R.,
Cloetens, P., Ernst, R., Lehr, E., & Veith, M. (2011).
Assessing the molecular phylogeny of a near extinct
group of vertebrates: the Neotropical harlequin frogs
(Bufonidae; Atelopus). Systematics and Biodiversity,
9(1), 45–57.
Luna, L. (1968). Manual of Histologic Staining Methods of
the Armed Forces Institute of Pathology. McGraw–
Hill Book Company.
Lynch, J. D. (1986). Notes on the reproductive biology of
Atelopus subornatus. Journal of Herpetology, 20(1),
126–129.
McCoy, K. A., Bortnick, L. J., Campbell, C. M., Hamlin,
H. J., Guillette Jr, L. J., & St. Mary, C. M. (2008).
Agriculture alters gonadal form and function in the
toad Bufo marinus. Environmental Health Perspecti-
ves, 116(11), 1526–1532.
McDiarmid, R. W. (1971). Comparative morphology and
evolution of frogs of the neotropical genera Atelopus,
Dendrophryniscus, Melanophryniscus and Oreophry-
nella. Bulletin of the Los Angeles County Museum of
Natural History, 12, 1–66.
Oliveira, C., & Vicentini, C. A. (1998). Anatomical des-
cription of the Scinax fuscovarius fat bodies and
testes (Anura, Hylidae). Biociências, 6, 79–88.
Oliveira, C., Zanetoni, C., & Zieri, R. (2002). Morphologi-
cal observations on the testes of Physalaemus cuvieri
(Amphibia, Anura). Revista Chilena de Anatomía,
20(3), 263–268.
Oliveira, C., & Zieri, R. (2005). Pigmentação testicular em
Physalaemus nattereri (Steindachner) (Amphibia,
Anura) com observações anatômicas sobre o sistema
pigmentar extracutâneo. Revista Brasileira de Zoolo-
gia, 22(2), 454–460.
Ortiz, J. C., & Díaz-Páez, H. (2001). The reproductive
cycle of Pleurodema thaul (Anura, Leptodactylidae)
in central Chile. Amphibia-Reptilia, 22(4), 431–445.
Pacheco-Florez, V., & Ramírez-Pinilla, M. P. (2014).
Reproductive ecology of Geobatrachus walkeri
(Anura: Strabomantidae). Revista de Biologia Tropi-
cal, 62(1), 194–210.
Pancak-Roessler, M. K., & Norris, D. O. (1991). The
effects of orchidectomy and gonadotropins on ste-
roidogenesis and oogenesis in Bidders organs of
the toad Bufo woodhousii. Journal of Experimental
Zoology, 260(3), 323–336.
Peloso, P. L., Faivovich, J., Grant, T., Gasparini, J. L., &
Haddad, C. F. (2012). An extraordinary new spe-
cies of Melanophryniscus (Anura, Bufonidae) from
southeastern Brazil. American Museum Novitates,
3762, 1–32.
Pereyra, M. O., Blotto, B. L., Baldo, D., Chaparro, J. C.,
Ron, S. R., Elias-Costa, A. J., Iglesias, P. P., Venegas,
P. J., Thomé, M. T. C., Ospina-Sarria, J. J., Maciel,
N. M., Rada, M., Kolenc, F., Borteiro, C., Rivera-
Correa, M., Rojas-Runjaic, F. J. M., Moravec, J.,
De La Riva, I., Wheeler, W. C., ... Faivovich, J.
(2021). Evolution in the Genus Rhinella: A Total
Evidence Phylogenetic Analysis of Neotropical True
Toads (Anura: Bufonidae). Bulletin of the American
Museum of Natural History, 447(1), 1–156.
Pérez-Gonzalez, J. L., Rada, M., Vargas Salinas, F., &
Rueda-Solano, L. A. (2020). The tadpoles of two
Atelopus species (Anura: Bufonidae) from Sierra
Nevada of Santa Marta, Colombia, and comments on
relevant morphological characters in their neotropical
congeners. South American Journal of Herpetology,
15(1), 47–62.
Pérez-Gonzalez, J. L., Roach, N., & Rueda-Solano, L. A.
(2017). Atelopus carrikeri (Guajira Stubfoot Toad)
and Atelopus laetissimus (Santa Marta Harlequin
Frog). Interspecific Amplexus. Natural History Notes
Herpetological Review, 48(3), 596–687.
Petrini, S., & Zaccanti, F. (1998). The effects of aromatase
and 5 α-reductase inhibitors, antiandrogen, and sex
steroids on Bidders organs development and gona-
dal differentiation in Bufo bufo tadpoles. Journal of
Experimental Zoology, 280(3), 245–259.
Phuge, S. K., & Gramapurohit, N. P. (2013). Gonadal sex
differentiation, development up to sexual maturity
and steroidogenesis in the skipper frog, Euphlyctis
cyanophlyctis. General and Comparative Endocrino-
logy, 181, 65–71.
Pierantoni, R., Cobellis, G., Meccariello, R., Palmiero,
C., Fienga, G., Minucci, S., & Fasano, S. (2002).
The amphibian testis as model to study germ cell
progression during spermatogenesis. Comparative
Biochemistry and Physiology Part B: Biochemistry
and Molecular Biology, 132(1), 131–139.
827
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
Pikle, R. P., Jatiger, R. M., & Ganesh, C. B. (2017). Food-
deprivation-induced suppression of pituitary–testi-
cular-axis in the tilapia Oreochromis mossambicus.
International Aquatic Research, 9(3), 203–213.
Ponse, K. (l927). Les potencialités de l’organe de Bidder
des Crapauds femelles. Société de Biologie et de ses
Filiales París, 96, 595–596.
Ponse, K., & Guyénot, E. (1927). Les hypotheses concer-
nant la signification de l’organe de Bidder du Cra-
paud. Comptes Rendus des Séances et Mémoires de
la Société de Biologie Paris, 96, 777–778.
Pounds, J. A., Bustamante, M. R., Coloma, L. A., Con-
suegra, J. A., Fogden, M. P., Foster, P. N., La Marca,
E., Masters, K. L., Merino-Viteri, A., Puschendorf,
R., Ron, S. R., Sánchez-Azofeifa, G. A., Still, C.
J., & Young, B. E. (2006). Widespread amphibian
extinctions from epidemic disease driven by global
warming. Nature, 439(7073), 161–167.
Pounds, J. A., & Crump, M. L. (1994). Amphibian declines
and climate disturbance: the case of the golden toad
and the harlequin frog. Conservation Biology, 8(1),
72–85.
Pramuk, J. B. (2006). Phylogeny of south American Bufo
(Anura: Bufonidae) inferred from combined evi-
dence. Zoological Journal of the Linnean Society,
146(3), 407–452.
Pramuk, J. B., Robertson, T., Sites Jr, J. W., & Noonan,
B. P. (2008). Around the world in 10 million years:
biogeography of the nearly cosmopolitan true toads
(Anura: Bufonidae). Global Ecology and Biogeogra-
phy, 17(1), 72–83.
Pudney, J. (1995). Spermatogenesis in nonmammalian
vertebrates. Microscopy Research and Technique,
32(6), 459–497.
Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylo-
geny of Amphibia including over 2800 species, and
a revised classification of extant frogs, salamanders,
and caecilians. Molecular Phylogenetics and Evolu-
tion, 61(2), 543–583.
Rastogi, R. K. (1976). Seasonal cycle in anuran (Amphi-
bia) testis: the endocrine and environmental controls.
Italian Journal of Zoology, 43(1-2), 151–172.
Rastogi, R. K., Bagnara, J. T., Iela, L., & Krasovich, M.
A. (1988). Reproduction in the mexican leaf frog,
Pachymedusa dacnicolor. IV. Spermatogenesis: A
light and ultrasonic study. Journal of Morphology,
197(3), 277–302.
Rastogi, R. K., Iela, L., Delrio, G., & Bagnara, J. T. (1986).
Reproduction in the Mexican leaf frog, Pachymedusa
dacnicolor: II. The male. General and Comparative
Endocrinology, 62(1), 23–35.
Rocha-Usuga, A. A., Vargas-Salinas, F., & Rueda-Solano,
L. A. (2017). Not every drought is bad: quantifying
reproductive effort in the harlequin frog Atelopus
laetissimus (Anura: Bufonidae). Journal of Natural
History, 51(31-32), 1913–1928.
Rueda-Solano, L. A. (2008). Colorful harlequin frog re-
discovered in Colombia. FrogLog, Newsletters of the
UICN/SSC Amphibian Specialist Group, 86(1), 1–2.
Rueda-Solano, L. A. (2012). Atelopus carrikeri Ruthven,
1916 (Anura: Bufonidae) una especie policromatica.
Herpetotropicos: Tropical Amphibians & Reptiles,
8(1-2), 61–67.
Rueda-Solano, L. A., Navas, C. A., Carvajalino-Fernández,
J. M., & Amézquita, A. (2016a). Thermal ecology of
montane Atelopus (Anura: Bufonidae): A study of
intrageneric diversity. Journal of Thermal Biology,
58, 91–98.
Rueda-Solano, L. A., Flechas, S. V., Galvis-Aparicio, M.,
Rocha-Usuga, A. A., Rincón-Barón, E. J., Cuadrado-
Peña, B., & Franke-Ante, R. (2016b). Epidemiolo-
gical surveillance and amphibian assemblage status
at the Estación Experimental de San Lorenzo, Sierra
Nevada de Santa Marta, Colombia. Amphibian &
Reptile Conservation, 10(1), 7–19.
Rueda-Solano, L. A., Vargas-Salinas, F., & Rivera-Correa,
M. (2015). The highland tadpole of the harlequin
frog Atelopus carrikeri (Anura: Bufonidae) with an
analysis of its microhabitat preference. Salamandra,
51(1), 25–32.
Rueda-Solano, L. A., & Warkentin, K. M. (2016). Fora-
ging behavior with possible use of substrate-borne
vibrational cues for prey localization in Atelopus
laetissimus (Ruiz-Carranza, Ardila-Robayo, and
Hernández-Camacho, 1994). Herpetology Notes, 9,
191–195.
Salas, N., & Martino, A. L. (2008). Patrones de configura-
ciones meióticas en poblaciones de Odontophrynus
cordobae y O. americanus (Anura: Cycloramphidae),
en el área central de Argentina. BAG. Journal of
Basic and Applied Genetics, 19(2), 27–32.
Sanz-Ochotorena, A., Segura-Valdés, M. D. L., Rodríguez-
Gómez, Y., Lara-Martínez, R., & Jiménez-García, L.
F. (2008). Estructura y ultraestructura de la gónada
de los machos de Bufo fustiger (Anura: Bufonidae).
TIP. Revista Especializada en Ciencias Químico-
Biológicas, 11(2), 81–86.
Sanz-Ochotorena, A., Segura-Valdés, M. D. L., Rodríguez-
Gómez, Y., Lara-Martínez, R., & Jiménez-García,
L. F. (2011). Pigmentos en los testículos de cinco
anfibios endémicos de Cuba (Eleutherodactylus tur-
quinensis, E. cuneatus, E. glamyrus, Bufo longinasus
longinasus y B. longinasus cajalbanensis). Revis-
ta Especializada en Ciencias Químico-Biológicas,
14(1), 48–55.
828
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021)
Scaia, M. F., Regueira, E., Sassone, A. G., Volonteri, M. C.,
& Ceballos, N. R. (2011). The Bidder’s organ of the
toad Rhinella arenarum (Amphibia, Anura). Presence
of steroidogenic enzymes. Journal of Experimental
Zoology Part A: Ecological Genetics and Physiology,
315(8), 439–446.
Scheltinga, D. M., Jamieson, B. G., Bickford, D. P., Garda,
A. A., Báo, S. N., & McDonald, K. R. (2002). Mor-
phology of the spermatozoa of the Microhylidae
(Anura, Amphibia). Acta Zoologica, 83(4), 263–275.
Silberschmidt-Freitas, J., Franco-Belussi, L., & De Oli-
veira, C. (2015). Morphological and histochemical
studies of Bidders organ in Rhinella schneideri
(Amphibia: Anura) males. Italian Journal of Zoology,
82(4), 479–488.
Sinsch, U. (1988). El Sapo Andino Bufo spinulosus: Análi-
sis Preliminar de su orientación hacia sus lugares de
reproducción. Boletín de Lima, 10(57), 83–91.
Siqueira, S., Aguiar-Junior, O., Lima, A. P., & Recco-
Pimentel, S. M. (2013). Cytogenetics and sperm
ultrastructure of Atelopus spumarius (Anura, Bufo-
nidae) from the Brazilian Amazon. Genetics and
Molecular Biology, 36(4), 528–532.
Taboga, S. R., & Dolder, M. A. H. (1991). Análise histo-
lógica da espermatogênese de Hyla ranki (Amphibia,
Anura, Hylidae). Revista Brasileira de Ciências
Morfológicas, 8(2), 66–71.
Tanimura, A., & Iwasawa, H. (1992). Observaciones
ultraestructurales del ovario y el órgano de Bidder
en un sapo joven, Bufo japonicus formosus. Science
Reports of Niigata University: Biology, 29, 27–33.
Tarvin, R. D., Peña, P., & Ron, S. R. (2014). Changes in
population size and survival in Atelopus spumarius
(Anura: Bufonidae) are not correlated with chytrid
prevalence. Journal of Herpetology, 48(3), 291–297.
Villagra, A. L. I., Cisint, S. B., Crespo, C. A., Medina, M.
F., Ramos, I., & Fernández, S. N. (2014). Sperma-
togenesis in Leptodactylus chaquensis. Histological
study. Zygote, 22(3), 291–299.
Vitale-Calpe, R. (1969). The fine structure of the organ of
bidder in the newly differenciate male of Bufo arena-
rum. Zeitschrift für Anatomie und Entwicklungsges-
chichte, 129(1), 1–13.
Yoshida, S. (2016). From cyst to tubule: innovations in
vertebrate spermatogenesis. Wiley Interdisciplinary
Reviews: Developmental Biology, 5(1), 119–131.
Zaccanti, F., & Gardenghi, G. (1968). Osservazioni cito-
metriche su ovociti ovarici e bidde-riani di Bufo bufo
(L.) durante il ciclo sessuale annuale. Italian Journal
of Zoology, 35(3), 165–175.