35
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
Diversity and biostratigraphy of the late Oligocene-late Miocene sand
dollars (Echinoidea: Scutelliformes) of Argentina and Uruguay
Claudia J. del Río
1
Sergio Martínez
2
*
1. Museo Argentino de Ciencias Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina,
Buenos Aires, Argentina; claudiajdelrio@gmail.com
2. Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; smart@fcien.edu.uy (*Correspondence).
Received 19-V-2020. Corrected 21-VIII-2020. Accepted 07-IX-2020.
ABSTRACT
Introduction: Scutelliforms were diverse and widespread in shallow marine environments during Neogene
times in South America. Nevertheless, they have almost never been used as biostratigraphic tools. Objective:
To provide a refined stratigraphic frame useful for calibrating temporal dimensions of scutelliform diversity
from Argentina and Uruguay and its correlation with the molluscan assemblages previously proposed. Methods:
A detailed survey of their geographic and stratigraphic provenance was carried out. We revised both the bibli-
ography and collections (institutional and from our own field work). Results: The group is represented by 14
species belonging to six genera, and four assemblages were identified. Numerical dates of the Neogene marine
rocks obtained recently allowed their placement in a chronological scheme: “Iheringiella” sp. A is restricted
to the late Oligocene, the genera Camachoaster and “Eoscutella” and the species Monophoraster telfordi to
the early Miocene, Abertella gualichensis and Abertella miskellyi to the middle Miocene, and Monophoraster
duboisi, Amplaster coloniensis and Amplaster ellipticus to the late Miocene. Non-lunulate scutelliforms are not
restricted to the late Oligocene as previously supposed. The oldest occurrence of the genus Monophoraster cor-
responds to the early Miocene, and along with Iheringiella are long-living taxa that embrace the 25.3 Ma-18.1
Ma (Iheringiella patagonensis) and approximately 15 Ma-6.48 Ma (Monophoraster darwini) intervals. The
presence of Iheringiella in the early Miocene of northeastern Patagonia is corroborated, reaching there its north-
ernmost distribution. Monophoraster darwini has a temporal range from the late Miocene (where it was previ-
ously thought to be restricted) back to the middle Miocene, since this is the species yielded in the well-known
and discussed “Monophoraster and Venericor Beds”. Conclusions: The Paleogene-Neogene scutelliforms of
Argentina and Uruguay range from the late Oligocene to the late Miocene. There is a good correspondence
among the numerical ages, molluscan biozones and scutelliform assemblages.
Key words: Echinoidea; Scutelliformes; sand dollars; Paleogene; Neogene; Argentina; Uruguay.
del Río, C.J., & Martínez, S. (2021). Diversity and
biostratigraphy of the late Oligocene-late Miocene
sand dollars (Echinoidea: Scutelliformes) of
Argentina and Uruguay. Revista de Biología Tropical,
69(S1), 35-50. DOI 10.15517/rbt.v69iSuppl.1.46324
In the Southwestern Atlantic region, a
thick, shallow marine sedimentary sequence
characterized by a highly diverse molluscan
fauna is exposed, associated with sometimes
dense concentrations of scutelliforms. While
the molluscs attracted the attention of pale-
ontologists since the 19th century by means
of d’ Orbigny’s (1842) and Darwin’s (1839,
1846) publications, echinoids remained largely
ignored. It was not until the last few decades
that the taxonomic knowledge and the geo-
graphic and stratigraphic provenance of south-
ern South American scutelliforms increased and
improved, pointing to a diverse and widespread
DOI 10.15517/rbt.v69iSuppl.1.46324
36
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
group that was abundant in the shallow marine
environments during Neogene times.
Echinoids, and particularly scutelliforms,
have almost never been used as biostratigraphic
tools in South America. The scarce references
dealing with this group as stratigraphic tools
are those of Ameghino (1898, 1906), Iher-
ing (1897, 1900, 1907, 1927), and Ortmann
(1902), who claimed that the “one-holed”
genus Monophoraster was restricted to the late
Miocene of Patagonia (“Entrerriense strata”)
and the “non-holed” Iheringiella to the Oligo-
cene (“Patagoniense strata”).
Ongoing numerical dating provides a
refined stratigraphic frame extremely useful in
calibrating the temporal dimensions of scutel-
line diversity and its correlation with the mol-
luscan assemblages proposed by del Río (1988,
2004). In order to attain this goal, we performed
a synthesis of the available information, bring-
ing together the highly dispersed taxonomic
bibliography with every stratigraphic and geo-
graphic distribution adequately documented.
This analysis indicates that scutelliforms are
stratigraphically constrained in this region, and
that along with the molluscan assemblages,
they are useful in the correlation of marine
units from different Patagonian basins.
Antecedents: Early collections from east-
ern Patagonia were made by Charles Darwin
during the voyage of the “HMS Beagle” along
the Patagonian coast in 1833-1834, and by Car-
los Ameghino during his 15 field trips between
1886 and 1903. In the course of the Princ-
eton Expedition (1896-1899) John B. Hatcher
made a large collection in the surroundings of
Argentino, Pueyrredón, and Posadas lakes in
western Patagonia.
Darwin collected sand dollars from the stra-
ta later known as San Julián and Puerto Madryn
Formations, mentioned as Scutella in his “Jour-
nal…” (Darwin, 1839) and “Geological obser-
vations...” (Darwin, 1846). Based on Darwin´s
specimens, Desor (1847) described three nomi-
nal species in a brief account, naming them as
Monophora darwini, Echinarachnius juliensis,
and Scutella patagonensis. Subsequently, Cot-
teau (1884) added Monophora duboisi from
the Paraná Formation, a unit exposed in north-
eastern Argentina. Lahille (1898) synonymized
Desor´s E. juliensis and S. patagonensis under
a new and monotypic genus: Iheringia (type
species: Iheringia patagonensis). Homonymy
problems led Berg (1898) and Lambert and
Thiéry (1921) to change Iheringia to Iheringi-
ella and Monophora to Monophoraster.
Thereafter, and for many years, scutel-
liforms from Argentina and Uruguay were
believed to be represented by only three spe-
cies: the one-holed Monophoraster darwini
and M. duboisi, and the non-holed Iheringiella
patagonensis (e.g. Loriol, 1901; Loriol,1902;
Ortmann, 1902; Mortensen, 1948; Bernasconi,
1959; Durham, 1966). The genus Amplaster
was added to these by Martínez (1984) to hold
the late Miocene Uruguayan species Amplas-
ter coloniensis. Later, the middle Miocene
Amplaster alatus Rossi de Garcia and Levy,
1989 and the late Miocene Amplaster ellip-
ticus Mooi, Martínez and Parma, 2000 were
also included in this genus. Abertella, a genus
that had been thought to be restricted to North
America, was discovered in the Argentinean
middle Miocene by Martínez, Reichler and
Mooi (2005) and later, another new species
of this age was described by Kroh, Mooi, del
Río and Neumann (2013). Mooi, Martínez
and del Río (2016) increased the specific rich-
ness of Monophoraster through the inclusion
of the new species, Monophoraster telfordi
(early Miocene), and Mooi, Martínez, del Río
and Ramos (2018) described another non-
holed genus from the Neogene of Argentina:
Camachoaster.
There remain some controversial species:
Eoscutella” mirandae, which as discussed
by Mooi et al. (2018) is not an Eoscutellidae
but probably an Abertellidae, and two unde-
scribed taxa that further increase the rich-
ness of the group (“Iheringiella” sp. A and
Iheringiella” sp. B).
In total, since the three species were rec-
ognized in the early 20th century, the group
now includes 14 species distributed in six gen-
era and four families that are endemic to the
American continent.
37
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
MATERIALS AND METHODS
We carried out a bibliographic analysis that
retained only those references with adequate
descriptions or illustrations concerning South
American scutelliforms, and re-examined more
than 300 specimens housed in different institu-
tions, including their types when available.
To the previously known classic fossilifer-
ous sites mentioned in the geological literature,
we add other new ones (Fig. 1).
The repositories and their acronyms are as
follows:
CASG: California Academy of Sciences, Geo-
logy collection, San Francisco, USA.
CIRGEO-PI: Centro de Investigaciones en
Recursos Geológicos, currently housed at
MACN-Pi, Ciudad Autónoma de Buenos
Aires, Argentina.
CPBA: Cátedra de Paleontología de la Univer-
sidad de Buenos Aires, Ciudad Autónoma
de Buenos Aires, Argentina.
FCDP: Departamento de Paleontología, Facul-
tad de Ciencias, Universidad de la Repú-
blica, Montevideo, Uruguay.
MACN-Pi: Colección Paleoinvertebrados,
Museo Argentino de Ciencias Naturales
Bernardino Rivadavia, Ciudad Autónoma
de Buenos Aires, Argentina.
MAS-Pi: Museo de Ciencias Naturales y Antro-
pológicas “Pro. Antonio Serrano”, Paraná,
Argentina.
MB: Museum für Naturkunde, Berlin, Germany.
MCZ: Museum of Comparative Zoology, Cam-
bridge, Massachusetts, USA.
MNA-CPO: Museo Nacional de Antropolo-
gía, Colección Paleontológica Oliveras,
currently housed at the Museo Nacional
de Historia Natural, Montevideo, Uruguay.
PRI: Paleontological Research Institution, Itha-
ca, USA.
SEGEMAR: Servicio Geológico Minero
Argentino, San Martín, Buenos Aires,
Argentina.
RESULTS
Stratigraphic setting of scutelliform
beds: The shallow marine late Oligocene-late
Miocene sedimentary sequence exposed in
Argentina and Uruguay is represented by the
San Julián Formation (late Oligocene in the
Austral Basin, early Miocene in the Mazarredo
Sub-basin), El Chacay, Estancia 25 de Mayo
and Monte León Formations (early Miocene,
Austral Basin), Chenque Formation (early
Miocene-middle Miocene, San Jorge Basin),
Gaiman, Bajo del Gualicho, Vaca Mahuida
Formations, and the “Isla Escondida Beds”
(middle Miocene) and the Puerto Madryn,
Río Negro, Paraná and Camacho Formations
(late Miocene).
An important framework for the analysis
is made up of the late Paleogene-Neogene
molluscan assemblages and their relative ages
proposed by del Río (1988, 2004). Late Mio-
cene molluscs were gathered in the Aequi-
pecten paranensis Zone (del Río, 1988), and
the late Oligocene-middle Miocene ones were
separated by del Río (2004) into five informal
assemblages known as: 1) Panopea sierra-
na-Parinomya patagonensis Assemblage (PP)
(late Oligocene); three assemblages of early
Miocene age: 2) Jorgechlamys centralis-Retic-
ulochlamys borjasensis Assemblage (JR), 3)
Reticulochlamys zinsmeisteri-Struthiolarella
patagoniensis-Pleuromeris cruzensis Assem-
blage (RSP), and 4) Pseudoportlandia glabra-
Antimelatoma quemadensis Assemblage (PA);
and the middle Miocene: 5) Nodipecten sp.-
Venericor abasolensis-Glycymerita camarone-
sia Assemblage (NVG).
These assemblages were subjected to
numerical dating, and the results support their
relative ages. As shown in Fig. 2, the PP, PA
and RSP Assemblages are restricted to the
Eastern sector of the Austral Basin and have
not yet been identified in Western Patagonia.
The PP Assemblage is recognized in the San
38
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
Fig. 1. Late Oligocene-late Miocene localities with scutelliforms in Argentina and Uruguay. 1. Yacimiento La Rinconada;
2. Puesto Astorga; 3. Barranca Final; 4. Paraná-Diamante area; 5. Barranca de los Loros; 6. Cerro Bautista; 7. El Manzano;
8. Arroyo de las Limetas; 9. San Pedro; 10. El Doradillo; 11. Cerro Prismático; 12. Eje Tentativo; 13. Punta Piaggio-Punta
Pirámides area; 14. Lote 39; 15. Salina Grande; 16. Estancia San Lorenzo; 17. Cerro Avanzado; 18. Bahía Craker; 19.
Trelew; 20. Isla Escondida; 21. surroundings of Camarones; 22. Pico Salamanca; 23. Estancia Busnadiego; 24. Punta
Maqueda-Punta Delgada; 25. Punta Casamayor-Cañadón El Lobo; 26. Punta Nava; 27. Cerro Blanco; 28. Estancia
Floradora; 29. Playa La Mina; 30. Playa Drake/Punta Cuevas; 31. Oven Point; 32. Cerro Pan de Azúcar; 33. Meseta Chica;
34. Darwin Section; 35. Yegua Quemada-Jack Harvey creeks; 36. Río Zeballos; 37. Río Tarde-Veranada Cárcamo-Laguna
Oriental; 38. Shell-Gap; 39. upper Chalía river; 40. Estancia La Laurita; 41. Estancia Quién Sabe.
39
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
Julián Formation (25.32 Ma-22.7 Ma), and the
PA and RSP ones are restricted to the Monte
León Formation (19.36 Ma-17.91 Ma).
The JR Assemblage embraces the early
Miocene deposits of the San Julián Formation
in the Mazarredo Sub-basin and the basal Para-
sequences 1 and 2 of the Chenque Formation
in the San Jorge Basin (19.69 Ma-15.68 Ma).
On the basis of its paleontological content, the
JR Assemblage was correlated with the PA and
RSP Assemblages by del Río (2004), a correla-
tion later supported by numerical ages obtained
by Parras, Dix and Griffin (2012) and Cuitiño,
Scasso, Ventura-Santos and Mancini (2015a).
The NVG Assemblage was recognized
by del Río (2004) in Parasequence 5 of the
Chenque Formation, and in the Gaiman and
Camarones Formations, and in the lower and
middle section of the Bajo del Gualicho For-
mation. There are no numerical ages for these
units, but the NVG is considered as of middle
Miocene age.
Finally, the Aequipecten paranensis Zone
is recognized in the Puerto Madryn, Bar-
ranca Final, Río Negro (Facies Balneario La
Lobería), Paraná and Camacho Formations that
embrace the interval 11.4-6.60 Ma (del Río,
Martínez, McArthur, Thirwall, & Pérez, 2018).
Fig. 1 shows the fossiliferous localities
with sand dollars, Figure 2 the lithostratigraphic
units mentioned above, Fig. 3 the geographical
and temporal distribution of the studied taxa,
Fig. 2. Chronostratigraphic chart of late Oligocene-late Miocene marine units based on
87
Sr/
86
Sr data calculated by: 1. Parras
et al. (2012); 2. Cuitiño et al. (2015b); 3. Cuitiño et al. (2012); 4. Cuitiño et al. (2015a); 5. del Río et al. (2018); 6. Palazzesi
et al. (2014); (*) no isotopic data available for these units. Abbreviations: PP = Panopea sierrana-Parinomya patagonensis
Assemblage; RSP = Reticulochlamys zinsmeisteri-Struthiolarella patagoniensis-Pleuromeris cruzensis Assemblage;
JR = Jorgechlamys centralis-Reticulochlamys borjasensis Assemblage; NVG = Nodipecten sp.-Venericor abasolensis-
Glycymerita camaronesia Assemblage (modified from del Río et al., 2018).
40
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
Fig. 3. Temporal and geographic distribution of late Oligocene-late Miocene scutelliforms of Argentina and Uruguay
(fossiliferous sites in Fig. 1).
41
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
Fig. 4 the correspondence between molluscan
assemblages and scutelliforms. The appendix
1 includes the positively identified materials
with their temporal, lithostratigraphic, and geo-
graphic locations.
Late Oligocene: Fig. 5. This interval is
represented by the San Julián Formation where
sand dollars are very frequent found, contained
in rocks exposed in two areas near to each
other: the Bajo de San Julián (lower Gran Bajo
Member), and the surroundings of the San
Julián Port (upper Meseta Chica Member).
The Gran Bajo Member (Meseta Chica, Pan
de Azúcar, Manatial Salado) contains one of
the densest concentrations of scutelliforms in
Patagonia, represented by Iheringiella patago-
nensis and by two as yet undescribed new
species (“Iheringiella” sp. A and “Iheringiella
sp. B). Dated at 24.40 Ma and 25.32 Ma (late
Oligocene) (Parras et al., 2012), these beds
record the oldest proven occurrence of scu-
telliforms in Patagonia, and are constituted
by matrix- and bioclast-supported calcareous
bioclastic sandstones (facies Gmm of Parras &
Casadío, 2005) deposited below fair-weather
wave-base, in lower shoreface to offshore envi-
ronments. In the Meseta Chica section, sand
dollars are exceptionally abundant and found
in multi-event deposits where monospecific
beds with well-preserved imbricated or chaoti-
cally oriented entire tests are intercalated with
monospecific, thin horizons of brachiopods,
Zygochlamys geminata, or oysters in life posi-
tion. A similar dense concentration is present in
the surroundings of the San Julián Port (Playa
La Mina, Oven Point, Playa Drake/Punta Cue-
vas). In this area, the Meseta Chica Member
was dated by Sr- isotope chronostratigraphy
at 22.7 Ma to 23.53 Ma (Parras et al., 2012)
and is characterized by multi-event, massive,
medium, ochreous sandstones that contain in
Fig. 4. Correspondence between the temporal range of the studied scutelliforms and that of the molluscan assemblages.
Abbreviations in Results.
42
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
situ accumulations of I. patagonensis and the
undescribed species, “Iheringiella” sp. B.
Early Miocene: Fig. 6. Marine deposits of
early Miocene age are widely exposed in the
eastern (Monte León Formation) and western
(Estancia 25 de Mayo and El Chacay Forma-
tions) sectors of the Austral Basin, and in the
San Jorge Basin (lower Chenque Formation
and San Julián Formation).
In contrast to the San Julián Formation,
scutelliforms are not frequent in the Monte
León Formation, where they are represent-
ed only by I. patagonensis recovered from
the finely laminated siltstones and sandstones
exposed at the Darwin Section, suggesting a
subtidal- or even intertidal environment (Par-
ras & Griffin, 2009), deposited between 19.36
Ma-19.27 Ma ago (Parras et al., 2012). Ihering-
iella patagonensis is also recorded from the
uppermost beds of the unit exposed at Yegua
Quemada and Jack Harvey, both localities
being correlated with the Las Cuevas section,
dated at 17.91 Ma (Parras et al., 2012).
Largely correlated with the San Julián
Formation in its type area (southern Austral
Basin), the age of the marine rocks exposed
in the Mazarredo Sub-basin of Bellosi (1995)
(San Jorge Basin) are today recognized as
early Miocene (del Río et al., in prep.), and
correlated with the Monte León Formation at
its type locality (southeastern Austral Basin).
Exposures in Punta Casamayor-Cañadón El
Lobo-Punta Nava area consist of 40 m thick
yellowish fine to medium sandstones and silt-
stones capped by calcareous shell-beds, where
echinoids are represented by I. patagonensis,
Hypechinus patagonensis, Schizaster sp., and
Isechinus praecursor, associated with abun-
dant, articulated specimens of the pectinids
Zygochlamys jorgensis and Jorgechlamys cen-
tralis. The same deposits are exposed at Cerro
Blanco where the base of the San Julián For-
mation is represented by massive yellowish
medium sandstones containing “Eoscutella
mirandae followed by highly fossiliferous
sandstones containing I. patagonensis associ-
ated with Neoinoceramus ameghinoi, J. cen-
tralis, J. juliania, and brachiopods (Parma,
1985). The I. patagonensis reference from
Cerro Blanco was not included in our database
because the material was not illustrated and
there are no specimens in the collections. This
record is considered unconfirmed herein.
Fig. 5. Representative scutelliforms from the late Oligocene of Argentina, aboral and oral surfaces shown in each pair of
figures for a given species. A. Iheringiella patagonensis, PRI 66829, Oven Point. B. Iheringiella patagonensis MACN-Pi
5144, Pan de Azúcar. C.Iheringiella” sp. A, MACN-Pi w/n, Meseta Chica. D.Iheringiella” sp. B, MACN-Pi w/n, Meseta
Chica. E.Iheringiella” sp. B, CPBA 20181, Playa La Mina. Scale bar = 10 mm.
43
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
The Chenque Formation is composed of
a 500 m thick marine sedimentary sequence
exposed in the surroundings of Punta Maqueda
(Parasequence 2 of Bellosi, 1995) northwards
to the Comodoro Rivadavia region (Parase-
quences 1-5). Its lowermost strata (Parase-
quences 1 and 2) were dated by Sr-isotope
chronostratigraphy by Cuitiño et al. (2015a) to
between 19.69 Ma-15.68 Ma (early Miocene-
basal middle Miocene). The Chenque Forma-
tion exposed at Punta Maqueda is represented
by a 12 m thick intercalation of grayish fine
sandstones with ochreous and greenish, mod-
erately fossiliferous sandstones, deposited in
a distal lower shoreface environment at the
base, to a middle shoreface environment at
the top of the section. One thin bed, up to 15
cm thick and composed of very fine-grained
sandstones, contains one of the most diverse
assemblages of echinoderms in the Neogene of
Argentina and Uruguay. These are represented
by patches of asteroids (Astropecten sp.), the
ophiuroid Ophiocrossota kollembergorium, the
spatangoid Brisaster iheringi, the non-lunulate
scutelliform Camachoaster maquedensis, and
the lunulate Monophoraster telfordi. These
taxa are recorded in thin, autochthonous assem-
blages in life position, deposited in distal-
middle shoreface environments, dominated by
a low hydraulic energy regime and affected by
sporadic, weak storms. Laterally associated
is a less diverse but abundant fauna, mainly
made up of census assemblages of the bivalves
Atrina magellanica and Crassostrea hatcheri
in life position, and thin, chaotically oriented
accumulations of the pectinids Swiftopecten
iheringi, Z. jorgensis, Pixiechlamys quemaden-
sis, and the gastropod Trophon santacruzensis.
Fig. 6. Representative scutelliforms from the early Miocene of Argentina, aboral and oral surfaces shown in each pair of
figures for a given species. A-G. Iheringiella patagonensis. A. CPBA 16492, Punta Lobo. B. PRI 4530, Punta Nava. C.
MACN 4547, Yegua Quemada. D. PRI 66838, Pueyrredón Lake. E. PRI 66836, Shell-Gap. F. PRI 66834, Río Chalía. G.
PRI 83920, Estancia La Laurita. H.Iheringiella” sp. B, PRI 83635, Estancia La Laurita. I.Iheringiella” sp. B, MACN-Pi
w/n, Estancia Floradora. J. Camachoaster maquedensis MACN-PI 5809 (Holotype), Punta Maqueda (modified from Mooi
et al., 2018). K. Monophoraster telfordi, MACN-PI 5807 (Holotype), Punta Maqueda (modified from Mooi et al., 2016). L.
Eoscutella” mirandae, CPBA 12901 (Holotype), Cerro Blanco. Scale bar = 10 mm.
44
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
The Estancia 25 de Mayo and El Chacay
Formations are exposed in the Western Austral
Basin. The former unit crops out in the Lago
Argentino area and was dated by Cuitiño et al.
(2012), who proposed an
87
Sr/
86
Sr age ranging
between 20 to 19 Ma. Sand dollars are rare and
recorded in the lowermost beds of the Quien
Sabe Member (Estancia Quien Sabe, Estancia
La Laurita), which is composed of shell beds
and highly bioturbated sandstones deposited in
shallow, moderately low energy environments
(Cuitiño & Scasso, 2010). The recognized
scutelliforms are I. patagonensis and “Iheringi-
ella” sp. B, associated with a poorly preserved
and rich molluscan fauna mainly represented
by C. hatcheri, Panopea nucleus, Panopea
panis, undetermined cardids, Austrocallista
australis, Ameghinomya argentina, Miomelon
petersoni, Valdesia cuevensis, Valdesia dalli,
and Perissodonta ameghinoi.
The El Chacay Formation, exposed
between the Lago Buenos Aires to the north
and the Lago Posadas to the south, was dated
by Cuitiño,Ventura-Santos, Muruaga and Scas-
so (2015b) between 20.3 Ma to18.1 Ma, and
scutelliforms are slightly more common and
diverse than in the Estancia 25 de Mayo For-
mation. The assemblages mostly come from
the highly bioturbated sandy beds intercalated
with bioclastic horizons placed at the lower
middle part of the unit (Facies B, lithofacies
Smb of Cuitiño et al., 2015b), deposited in
a lower shoreface environment (Cuitiño et
al., 2015b). Main fossiliferous exposures are:
Río Zeballos, Río Tarde, Veranada Cárcamo,
Laguna Oriental and Shell-Gap. Iheringiella
patagonensis is associated with the echinoids
Platipygus posthumus, Isechinus praecursor
and Brisaster sp. (Chiesa, Parma & Camacho,
1995), and to a rich molluscan fauna repre-
sented by C. hatcheri, Z. jorgensis, A. argen-
tina, P. nucleus, Valdesia collaris, Perissodonta
ameghinoi, Cirsotrema rugulosa, M. petersoni,
and Miomelon orbignyana.
Middle Miocene: Fig. 7. Marine beds of
this age correspond to the uppermost strata of
the Chenque Formation and to other lithostrati-
graphic units that have not yet been studied
in detail: Vaca Mahuida, Bajo del Gualicho,
Gaiman, and Camarones Formations, and the
Isla Escondida Beds. Except for the Chenque
Formation, there are no numerical dates for
these units, and in some cases there are still
discrepancies about their relative ages. The
presence of the NVG molluscan assemblage
makes them contemporaneous with the middle
Miocene upper beds of the Chenque Forma-
tion. Echinoids are not frequent elements but
constitute a moderately high diversity group.
The uppermost strata of the Chenque
Formation exposed at Estancia Busnadiego
Fig. 7. Representative scutelliforms from the middle Miocene of Argentina, aboral and oral surfaces shown in each pair of
figures for a given species except in B and F. A-C. Monophoraster darwini. A. MACN-PI 4580, Estancia Busnadiego. B.
CPBA 8740, Pico Salamanca. C. MACN-Pi w/n, Bajo del Gualicho. D. Abertella gualichensis, MACN-PI 4714 (Holotype),
Bajo del Gualicho. E. Abertella miskellyi, MB E.7463 (Holotype), near Camarones City (modified from Kroh et al. 2013).
F. Amplaster alatus, SEGEMAR 15526 (Paratype), Estancia Isla Escondida. Scale bar = 10 mm.
45
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
and Pico Salamanca (Parasequence 5 of Bel-
losi, 1995) have been named as “Estratos
con Monophoraster y Venericor” by Cama-
cho (1974) and although they have not been
numerically dated, are surely younger than
the underlying Parasequence 3 (15.37 Ma),
and older than the beginning of the deposition
of the overlying continental sediments of the
Santa Cruz Formation dated to 15 Ma (Cuitiño
et al., 2015b), embracing in this way the middle
Miocene. These beds are characterized by
Monophoraster darwini, associated with the
bivalves Neovenericor austroplata, Glycymer-
ita camaronesia, A. argentina, Retotapes
striatolamellata, and the gastropods Pachy-
cymbiola ameghinoi, Penion subrecta, Perisso-
donta iheringii, and Perissodonta ameghinoi,
among the commonest species.
Exposures of the Vaca Mahuida Formation
have been recorded by Uliana and Camacho
(1975) and Concheyro (1988) south of the
Colorado River in a narrow strip that stretches
from the boundary between the Río Negro,
Neuquén and La Pampa provinces eastwards to
Lomita Colorada. These beds consist of a 50 m
thick layer of sandstones, mudstones, and mas-
sive or cross-stratified limestones, deposited
in intertidal and subtidal environments. Uliana
and Camacho (1975) found a poorly diversified
and scarce marine assemblage at Yacimiento
La Rinconda, represented by the molluscs N.
austroplata and Torcula hautali, and identified
a scutelliform as I. patagonensis. Unfortunate-
ly, that material is lost, and illustrations pro-
vided are not conclusive. Scutelliforms from
the Vaca Mahuida Formation housed at the
Cátedra de Paleontología (Universidad de Bue-
nos Aires, Argentina) (CPBA 15842-15849)
are the only ones available for study, but these
specimens were severely encrusted, hamper-
ing a proper taxonomic assignment. For these
reasons, this material has not been included in
the appendix 1.
The Bajo del Gualicho Formation is
exposed at Salinas del Gualicho, and its lower
and middle sections were correlated by del
Río (2004) with the upper part of the Chenque
Formation on the basis of the NVG Molluscan
Assemblage. At Puesto Astorga, scutelliforms
are found in thin, intercalated monospecific
accumulations of M. darwini or Abertella gua-
lichensis, floating in massive medium sand-
stones. Upwards in the section, fragments or
entire tests of both species are found together,
associated with N. austroplata, Nodipecten
salis and Pachycymbiola arriolensis.
In the surroundings of Gaiman and Trelew
cities, the Gaiman Formation is composed of a
50 m thick succession of thin coquinas, whitish
to yellowish tuffs, tuffaceous sandstones, and
tuffaceous mudstones, deposited in a shallow,
storm-dominated marine environment. Badly
preserved tests of M. darwini are recorded
in the uppermost shell-beds associated with
N. austroplata.
Kroh et al. (2013) described Abertella
miskellyi from an old and still unknown fos-
siliferous locality in the surroundings of Cama-
rones city, where the Camarones Formation is
exposed containing the typical NVG Molluscan
Assemblage represented by N. austroplata, G.
camaronesia and T. hautali.
There is little agreement among authors in
identifying the marine “Isla Escondida beds”.
The sedimentary succession exposed in this
area consists of a 150 m thick intercalation of
whithish, ochreous, and yellowish sediments
represented by tuffs, tuffaceous sandstones,
tuffaceous mudstones, sandy tuffs, and poorly
fossiliferous beds. Rossi de García and Levy
(1989) described Amplaster alatus from the
upper section, species later discussed by Mooi,
Martínez and Parma (2000). Amplaster alatus
is associated with N. austroplata, G. cama-
ronesia, and T. hautali, placing the unit in the
middle Miocene.
Late Miocene: Fig. 8. During the late
Miocene, a new transgression of the sea, a
product of various events spread over a large
area from Cabo Buentiempo (southernmost
Argentina) northwards to Uruguay. Its deposits
have been intensely studied and are recognized
as Puerto Madryn, Barranca Final, Río Negro
(Facies Balneario La Lobería), Paraná, and
Camacho Formations.
46
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
The Puerto Madryn Formation records
one of the most abundant and dense accumula-
tions of scutelliform tests in the Neogene of
Patagonia, similar to those observed in the late
Oligocene San Julián Formation at Bajo San
Julián. The molluscan assemblage belongs to
the Aequipecten paranensis Zone (del Río,
1988), recently dated to between 11.4-9.25 Ma
(del Río et al., 2018). The only known scutel-
liform species is M. darwini, which is evenly
distributed from the base to the top of the
unit. Composition and taphonomy of the fos-
siliferous concentrations have been discussed
by del Río, Martínez and Scasso (2001), who
described two types of taphonomic accumula-
tions of scutelliforms: the MO Assemblage (M.
darwini and oysters) and the OMA Assemblage
(oysters, M. darwini, Aequipecten paranensis).
The first type is constituted by up to 4 cm
thick census assemblages of entire tests in life
position in medium to fine sandstones or in
heterolithic beds, deposited in a shallow and
very high-energy environment, with strong
wave action, in upper shoreface settings situ-
ated just seawards of the breaking wave zone.
The OMA Assemblage is not as common as the
MO Assemblage and is represented by highly
fragmented tests that may be part of autochtho-
nous single-event or of allochthonous multi-
event, time-averaged accumulations that infill
large erosive tidal channels of high-energy
shoreface environments.
The Barranca Final Formation and the
Facies Balneario La Lobería (Río Negro For-
mation) crop out in the cliffs situated along the
northern littoral of San Matías Gulf. The base
of the section at Balneario La Lobería consists
of 2 m of barren, ochreous, cross-stratified,
medium sandstones, overlain by 7 m of yel-
lowish, massive, fine sandstones, and yields
well preserved M. darwini in life position
associated with A. paranensis, Ostrea sp., and
Pododesmus camachoi. These beds have been
recently dated to 7.08-6.55 Ma by del Río et
al. (2018) using Sr-isotope chronostratigraphy.
The Barranca Final Formation, located 117
km west from Balneario La Lobería, consists
of an intercalation of mudstones, very fine
sandstones, and thin fossiliferous strata that
yield M. darwini, A. paranensis, Moirechlamys
actinodes, and oysters. According to Palazzesi
et al. (2014), the sediments were deposited in a
low-energy shallow marine/estuarine environ-
ment, dated in 9.61 Ma (lower section) to 6.48
Ma (middle part of the section).
Numerical values recently obtained by
del Río et al. (2018) place the Paraná Forma-
tion between 7.55-6.67 Ma. Scutelliforms are
scarce, being represented by Monophoraster
duboisi, A. alatus (mentioned herein for the
Fig. 8. Representative scutelliforms from the late Miocene of Argentina and Uruguay, aboral and oral surfaces shown
in each pair of figures for a given species except in E and F. A. Monophoraster darwini, FCDP 1789, Eje Tentativo. B.
Monophoraster darwini (col. Cuitiño thesis w/n), Barranca Final. C. Monophoraster duboisi, MNHN B33423, Paraná.
D. Abertella sp., MAS-Pi 511, Paraná. E. Amplaster coloniensis, MNA-CPO 3426 (Holotype), Barranca de los loros. F.
Amplaster ellipticus, MNA-CPO 3425 (Paratype), San Pedro. Scale bar = 10 mm.
47
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
first time from this unit), and by an undescribed
new species of Abertella (Pérez et al., 2011)
(Fig. 8D) from Punta Gorda Sur (Diamante),
where a 2.5 m thick intercalation of sandstones
and mudstones are capped by a 30 cm thick
amalgamated shell bed that contains Anadara
bonplandeana, Crassostrea cf. rhizophorae, A.
paranensis, Leopecten oblongus, and Chionop-
sis munsterii (del Río et al., 2018).
The Camacho Formation (7.20 Ma-6.92
Ma) yields a richer assemblage than the Paraná
Formation, represented by M. duboisi, A. ala-
tus, Amplaster ellipticus, and Amplaster col-
oniensis, contained in shallow, subtidal pelitic
and sandy rocks, usually deposited by storms
(Martínez, 1994).
DISCUSSION
Fig. 4 shows the temporal distribution of
scutelliforms and its correlation with the mol-
luscan assemblages. No Paleogene-Neogene
scutelliforms older than the late Oligocene or
younger than the late Miocene have been found
or mentioned in the literature for the studied
area. The oldest occurrences belong to the
abundantly represented Iheringiella patago-
nensis in the Southern Austral Basin (San
Julián Formation, ca 25 Ma-23 Ma), associated
with the less common “Iheringiella” sp. A and
Iheringiella” sp. B, approximately 25-23 Ma.
Iheringiella patagonensis survived until 18 Ma
(Monte León, El Chacay and Estancia 25 de
Mayo Formations). This species is also record-
ed in northern Patagonia (San Jorge Basin,
Mazarredo Sub-basin), in the San Julián For-
mation dated to 21 Ma (del Río et al., in prep.),
which represents the northernmost occurrence
of this species.
Around 18 Ma, scutelliforms were widely
distributed in Patagonia and represented by
the surviving Iheringiella patagonensis and
Iheringiella” sp. B (Austral Basin), along with
Camachoaster maquedensis and Monopho-
raster telfordi (San Jorge Basin), this being
the oldest and southernmost known occur-
rence for the genus Monophoraster. At this
point it is important to emphasize that in
contrast to previous claims (e.g. Ameghino,
1898; Ameghino,1906; Ihering, 1897; Ihering,
1900; Ihering, 1907; Ihering, 1927; Ortmann,
1902; Teisseire, 1928; Bernasconi, 1959),
the non-holed genus Iheringiella was coeval
with the one-holed Monophoraster during the
early Miocene.
Iheringiella was extinct by the end of the
early Miocene, but Monophoraster, Amplaster,
and Abertella diversified to make up the char-
acteristic middle Miocene genera of northern
Patagonia, surviving into the late Miocene.
Monophoraster darwini and I. patagonensis
constituted long-living taxa, existing approxi-
mately from 15 Ma to 6.48 Ma and 25.3 Ma
to18.1 Ma, respectively. This temporal range is
longer than that estimated by molecular studies
in Recent related scutellines such as Mellita
and Encope (Coppard et al., 2013; Coppard,
2016; Coppard and Lessios, 2017), leaving
open a question concerning possible existence
of cryptic species among the fossil taxa.
Monophoraster darwini and Monopho-
raster duboisi are the youngest representatives
of the Monophoraster lineage, and along with
Amplaster coloniensis, Amplaster ellipticus
and Amplaster alatus characterized the latest
Miocene beds represented by the Paraná and
Camacho Formations exposed in northeastern
Argentina and Uruguay.
As can be concluded from the data sum-
marized above, the scutelliform species rich-
ness increased from three (two undescribed)
species in the late Oligocene to five in the
early Miocene and to six in the late Miocene.
Fig. 4 shows that Monophoraster embraces the
entire Miocene, discarding its importance as a
precise biostratigraphic tool. However, occur-
rences of Iheringiella (late Oligocene-early
Miocene), “Eoscutella” (early Miocene), and
Abertella and Amplaster (middle Miocene-late
Miocene), point to a more restricted interval,
and prove to be slightly better biostratigraphi-
cally constrained. On the other hand, at the
species level, the group as a whole turns
out to be a useful temporal indicator, since
there are taxa restricted to the late Oligocene
(“Iheringiella” sp. A), to the early Miocene
48
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
(Camachoaster maquedensis, Eoscutella
mirandae, Monophoraster telfordi), to the mid-
dle Miocene (Abertella gualichensis, Abertella
miskellyi) and to the late Miocene (M. duboisi,
A. ellipticus, A. coloniensis).
When compared with the molluscan zones,
the middle and late Miocene scutelliform gen-
era Amplaster and Abertella correlate with the
NVG Assemblage (middle Miocene) and the
Aequipecten paranensis Zone (late Miocene).
Camachoaster and “Eoscutella” are restricted
to the early Miocene, with the early Miocene
JR Assemblage (San Jorge Basin and Mazar-
redo Sub-basin) and the PA and RSP Assem-
blages (Austral Basin). Only one taxon seems
to be restricted to the late Oligocene PP Assem-
blage (“Iheringiellasp. A).
Ethical statement: authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are
fully and clearly stated in the acknowledge-
ments section. A signed document has been
filed in the journal archives.
ACKNOWLEDGEMENTS
M. Tanuz, Beatriz Aguirre-Urreta from the
Universidad de Buenos Aires, M. Longobucco
from the Museo Argentino de Ciencias Natura-
les and Alejandra Rojas (Facultad de Ciencias,
UdelaR) assisted with material housed in the
mentioned institutions, J. Cuitiño and L. Pérez
kindly provided specimens for study, A. Kroh
and R. Mooi gave us permission to include
their photos in the present paper, and A. Oleinik
assisted us with the bibliography. The sug-
gestions of the reviewers Andreas Kroh, Rich
Mooi and James Nebelsick, were very useful
for improving the manuscript.
RESUMEN
Diversidad y bioestratigrafía de las galletas de mar
(Echinoidea: Scutelloida: Scutellifomes) del Oligoceno
tardío-Mioceno tardío de Argentina y Uruguay
Introducción: Realizamos una síntesis actualizada
de la composición taxonómica de las asociaciones de escu-
télidos del Oligoceno tardío-Mioceno tardío de Argentina
y Uruguay. Objetivo: Ubicar los escutélidos en un marco
estratigráfico refinado, a los efectos de observar su diversi-
dad a lo largo del tiempo y la correlación de sus ensambles
con los ya conocidos de moluscos. Métodos: Revisamos
en detalle la procedencia geográfica y estratigráfica de los
ejemplares y su asignación taxonómica, basándonos tanto
en la bibliografía como en colecciones institucionales y
producto de nuestras campañas de colecta. Resultados:
El grupo está representado por 14 especies agrupadas en
seis géneros, siendo identificadas en cuatro ensambles. Las
edades numéricas recientemente obtenidas permitieron su
ubicación en un esquema cronológico: “Iheringiella” sp.
A se restringe al Oligoceno tardío, Camachoaster y “Eos-
cutella”, y Monophoraster telfordi al Mioceno temprano,
Abertella gualichensis y Abertella miskellyi al Mioceno
medio, y Monophoraster duboisi, Amplaster coloniensis y
Amplaster ellipticus al Mioceno tardío. Los escutélidos sin
lúnula no están restringidos al Oligoceno tardío como se
suponía. Monophoraster aparece en el Mioceno temprano
y junto con Iheringiella abarcan largos períodos de tiempo,
encontrándoselos entre los 25.3 Ma-18.1 Ma (Iheringiella
patagonensis) y aproximadamente los 15 Ma-6.48 Ma
(Monophoraster darwini). Se corrobora la presencia de
Iheringiella en el Mioceno temprano del noreste de Pata-
gonia, donde alcanza su punto más septentrional. Mono-
phoraster darwini se encuentra desde el Mioceno medio
hasta el Mioceno tardío (lapso para el cual previamente se
consideraba restringido), ya que se trata de la especie pre-
sente en los bien conocidos “estratos con Monophoraster y
Venericor”. Conclusiones: Los escutélidos del Paleógeno-
Neógeno de Argentina y Uruguay se encuentran desde el
Oligoceno tardío hasta el Mioceno tardío. Hay una buena
correspondencia entre las edades numéricas, las biozonas
de moluscos y los ensambles de escutélidos.
Palabras clave: Echinoidea; Scutelliformes; galletas de
mar; Paleógeno; Neógeno; Argentina; Uruguay.
REFERENCES
Ameghino, F. (1898). Sinopsis Geológico-Paleontológica.
Segundo Censo de la República Argentina. Tomo 1.
49
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
Territorio. Buenos Aires, Argentina: Taller tipográfi-
co de la Penitenciaría Nacional.
Ameghino, F. (1906). Les formations sedimentaires du
Crétacé superieur et du Tertiare de Patagonie, avec un
parallèle entre leur faunes mammologiques et celles
de l’ancien continent. Anales del Museo Nacional de
Historia Natural de Buenos Aires, 15(3), 1-568.
Bellosi, E. (1995). Paleobiogeografía y cambios ambienta-
les de la Patagonia central durante el terciario medio.
Boletín de Informaciones Petroleras, 44, 50-83.
Berg, A. (1898). Substitución de nombres genéricos.
Comunicaciones del Museo Nacional de Buenos
Aires, 1, 16.
Bernasconi, I. (1959). Equinoideos fósiles de la colección
del Museo Argentino de Ciencias Naturales. Physis,
21(61), 137-176.
Camacho, H.H. 1974. Bioestratigrafía de las formaciones
marinas del Eoceno y Oligoceno de la Patagonia.
Anales de la Academia Nacional de Ciencias Exac-
tas, Físicas y Naturales, 26, 39-57.
Chiesa, J.O., Parma, S.G., & Camacho, H.H. (1995).
Invertebrados marinos de la Formación El Cha-
cay (Eoceno), Provincia de Santa Cruz, Argentina.
Sistemática y bioestratigrafía. Monografías de la
Academia Nacional de Ciencias Exactas, Físicas y
Naturales, 11, 17-68.
Concheyro, G.A. (1988). Estudio bioestratigráfico de las
sedimentitas del Terciario que aflora en las proximi-
dades de Colonia Catriel. Provincia del Río Negro
(Graduate thesis). Universidad de Buenos Aires,
Argentina.
Cotteau, M.G. (1884). Échinides nouveaux ou peu con-
nus. Bulletin de la Société Zoologique de France,
7, 1-185.
Cuitiño, J.I., & Scasso, R.A. (2010). Sedimentología y
paleoambientes del Patagoniano y su transición a
la Formación Santa Cruz al sur del lago Argentino,
Patagonia Austral. Revista de la Asociación Geológi-
ca Argentina, 66(3), 406-417.
Cuitiño, J I., Pimentel, M.M.,Ventura-Santos, R., & Scas-
so, R.A. (2012). High resolution isotopic ages for
the early Miocene “Patagoniense” transgression in
Southwest Patagonia: Stratigraphic implications.
Journal of South American Earth Sciences, 38,
110-122.
Cuitiño, J.I., Scasso, R.A., Ventura-Santos, R., & Mancini,
L.H. (2015a). Sr Ages for the Chenque Formation in
the Comodoro Rivadavia region (Golfo San Jorge
Basin, Argentina): Stratigraphic implications. Latin
American Journal of Sedimentology and Basin Analy-
sis, 22(1), 3-12.
Cuitiño, J.I., Ventura-Santos, R., Muruaga, P.J., & Scasso,
R.A. (2015b). Sr-stratigraphy and sedimentary evo-
lution of early Miocene marine foreland deposits in
the northern Austral (Magallanes) Basin, Argentina.
Andean Geology, 42(3), 364-385.
Darwin, C. (1839). Journal and remarks. 1832-1836. The
narrative of the surveying voyages of his Majesty´s
ships Adventure and Beagle between the years
1826 and 1836, describing their examination of the
southern shores of South America, and the Beagle´s
circumnavigation of the globe, 3, 1-615.
Darwin, C. (1846). Geological observations on the volca-
nic Islands and parts of South America visited during
the voyage of H.M.S.“Beagle”. London: Appleton.
del Río, C.J. (1988). Bioestratigrafía y cronoestratigrafía de
la Formación Puerto Madryn (Mioceno medio). Pro-
vincia del Chubut - Argentina. Anales de la Academia
Nacional de Ciencias Exactas, Físicas y Naturales de
Buenos Aires, 40, 231-254.
del Río, C.J. (2004). Tertiary marine molluscan Assem-
blages of Eastern Patagonia (Argentina): A biostra-
tigraphic analysis. Journal of Paleontology, 78(6),
1097-1122.
del Río, C.J., Martínez, S.A., & Scasso, R.A. (2001).
Nature and origin of spectacular marine Mioce-
ne shell-beds of Northeastern Patagonia (Argenti-
na): Paleoecological and bathymetric significance.
Palaios, 16, 3-25.
del Río, C.J., Martínez, S.A., McArthur, J.M., Thirwall,
M.F., & Pérez, L. (2018). Dating late Miocene mari-
ne incursions across Argentina and Uruguay with
Sr-isotope stratigraphy. Journal of South American
Earth Sciences, 85, 312-324.
Desor, E. (1847). Sur quelques oursins fossiles de la Pata-
gonie. Bulletin de la Société Géologique de France,
2(4), 287-288.
Durham, J.W. (1966). Clypeasteroids. In R.C. Moore (Ed.),
Treatise on Invertebrate Paleontology. Pt. U(2). Echi-
nodermata 3 (pp. 450-491). Lawrence: Geological
Society of America and University of Kansas Press.
D’Orbigny, A.D. (1842). Voyage dans l’ Amérique meri-
dionale (le Brésil, la République Orientale de l’
Uruguay, la République Argentine, la Patagonie, la
République du Chile, la République de Bolivie, la
République du Pérou), executé pendant les années
1826-1833. 3, Géologie, 4, Paléontologie. Paris: P.
Bertrand.
Ihering, H. von. (1897). Os molluscos dos terrenos ter-
ciarios de Patagonia. Revista do Museu Paulista, 2,
217-382.
Ihering, H. von. (1900). The history of the Neotropical
region. Science, 12, 857-864.
50
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 35-50, March 2021 (Published Mar. 30, 2021)
Ihering, H. von. (1907). Les mollusques fossiles du Tertiai-
re et du Crétacé Supérieur de l’ Argentine. Anales del
Museo Nacional de Buenos Aires, 3(7),1-611.
Ihering, H. von. (1927). Die Geschichte des Atlantischen
Ozeans. Jena: Fischer.
Kroh, A., Mooi, R., del Río, C.J., & Neumann, C. (2013).
A new late Cenozoic species of Abertella (Echinoi-
dea: Clypeasteroida) from Patagonia. Zootaxa, 3608,
369-378.
Lahille, F. (1898). Notes sur le nouveau genre de scute-
llides Iheringia. Revista del Museo de la Plata, 8,
439-451.
Lambert, J., & Thiéry, P. (1921). Essai de nomenclature
raisonneé des échinides, 5. Paris: Chaumont.
Loriol, P. de. (1901). Notes pour servir a l’étude des
échinodermes. Bulletin de la Société Geologique de
France, 2(9), 37-40.
Loriol, P. de. (1902). Notes pour servir à l’étude des
échinoderms. Bulletin de la Société Geologique de
France, 2(10), 1-52.
Martínez, S. (1984). Amplaster coloniensis n.g. n.sp.
(Echinoidea, Monophorasteridae) del Mioceno de
Uruguay. Memoria del III Congreso Latinoamericano
de Paleontología, 3, 505-508.
Martínez, S. (1994). Bioestratigrafía (Invertebrados) de la
Formación Camacho (Mioceno, Uruguay) (Doctoral
thesis). Universidad de Buenos Aires, Argentina.
Martínez, S., Reichler, V., & Mooi, R. (2005). A new
species of Abertella (Echinoidea: Scutellina) from
the Gran Bajo del Gualicho Formation (Late Early
Miocene-Early Middle Miocene), Río Negro Pro-
vince, Argentina. Journal of Paleontology, 79(6),
1229-1233.
Mooi, R., Martínez, S.A., & Parma, S.G. (2000). Phyloge-
netic systematics of Tertiary Monophorasterid sand
dollars (Clypeasteroida: Echinoidea) from South
America. Journal of Paleontology, 74(2), 263-281.
Mooi, R., Martínez, S.A., & del Río, C.J. (2016). A new
South American Miocene species of ‘one-holed’ sand
dollar (Echinoidea: Clypeasteroida: Monophorasteri-
dae). Zootaxa, 4173(1), 45-54.
Mooi, R., Martínez, S.A., del Río, C.J., & Ramos, M.I.F.
(2018). Late Oligocene–Miocene non-lunulate sand
dollars of South America: Revision of abertellid taxa
and descriptions of two new families, two new gene-
ra, and a new species. Zootaxa, 4369(3), 301-326.
Mortensen, T. (1948). A monograph of the Echinoidea. IV,
2. Clypeastroida. Copenhagen: C.A. Reitzel.
Ortmann, A. (1902). Tertiary Invertebrates. Reports of the
Princeton University Expedition to Patagonia, 4(2),
45-332.
Palazzesi, L., Barreda, V.D, Cuitiño, J.I., Guler, M.V.,
Tellería, M.C., & Ventura-Santos, R. (2014). Fossil
pollen records indicate that Patagonian desertification
was not solely a consequence of Andean uplift. Natu-
re Comunications, 5, 1-8.
Parma, S.G. (1985). Eoscutella Grant y Hertlein (Echino-
dermata: Clypeasteroida) en el Patagoniano (Tercia-
rio inferior) de la Provincia de Santa Cruz, República
Argentina. Ameghiniana, 22(1-2), 35-41.
Parras, A., & Casadío, S. (2005). Taphonomy and sequence
stratigraphic significance of oyster-dominated con-
centrations from the San Julián Formation, Oligocene
of Patagonia, Argentina. Palaeogeography, Palaeo-
climatology, Palaeoecology, 217(1-2), 47- 66.
Parras, A., & Griffin, M. (2009). Darwin´s Great Pata-
gonian Tertiary Formation at the mouth of the Río
Santa Cruz: a reappraisal. Revista de la Asociación
Geológica Argentina, 64(1), 70-82.
Parras, A., Dix, G.R., & Griffin, M. (2012). Sr-isotope
chronostratigraphy of Paleogene-Neogene marine
deposits: Austral Basin, southern Patagonia (Argen-
tina). Journal of South American Earth Sciences, 37,
122-135.
Pérez, L.M., Martínez, S., & Parma, S.G. (2011). Aber-
tella Durham, 1955 (Echinoidea: Scutellina) en la
Formación Paraná (Mioceno Tardío). Reunión Anual
de Comunicaciones de la Asociación Paleontológica
Argentina (Luján, 2011), Resúmenes, 46-47.
Rossi de García, E., & Levy, R. (1989). Presencia de
Amplaster n. sp. (Echinodermata, Clypeasteroida)
en el Terciario de Patagonia. 4 Congreso Argentino
de Paleontología y Bioestratigrafía, Actas, 4, 89-92.
Teisseire, A. (1928). Contribución al estudio de la geología
y paleontología de la República Oriental del Uru-
guay. Región de Colonia. Anales de la Universidad,
37(122), 319-469.
Uliana, M.A., & Camacho, H.H. (1975). Estratigrafía y
Paleontología de la Formación Vaca Mahuida (Pro-
vincia de Río negro). Actas 1 Congreso Argentino
de Paleontología y Bioestratigrafía, Tucumán, 2,
357-373.
See Digital Appendix at: / Ver Apéndice digital en: revistas.ucr.ac.cr