487
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
Área de Conservación Guanacaste Echinoderms,
North Pacific of Costa Rica
José Leonardo Chacón-Monge
1,2,3
*
Juan Carlos Azofeifa-Solano
1
Juan José Alvarado
1,2,3
Jorge Cortés
1,2
1. Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, San José, Costa
Rica; jose.chaconmonge@ucr.ac.cr (*Correspondence), juan.azofeifa@ucr.ac.cr, juan.alvarado@ucr.ac.cr,
jorge.cortes@ucr.ac.cr
2. Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
3. Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San Pedro, San José,
Costa Rica
Recibido 29-VII-2020. Corregido 20-X-2020. Aceptado 27-X-2020.
ABSTRACT
Introduction: The study of the marine diversity of the North Pacific of Costa Rica began with isolated foreign
expeditions in the 1930s and was systematically developed in the mid-1990s by the Center for Research in
Marine Sciences and Limnology, Universidad de Costa Rica, as consequence there are now a total of 1 479
reported species in this region. Objective: Present an update to the echinoderm richness of the Guanacaste
Conservation Area. Methods: We sampled 25 localities exhaustively and estimated similarity between sites
based on the family richness and environmental heterogeneity. Results: We found 61 taxa, which represent 26
% of the echinoderm reported species for the country’s Pacific coast. Of these, 43 species are new records for
the Guanacaste Conservation Area, and seven for Costa Rica and Central American Pacific coasts. We found
three morpho-species that do not match to available descriptions of the Eastern Tropical Pacific echinoderm
species. We also found the holothuroid Epitomapta tabogae, and the ophiuroid Ophioplocus hancocki, previ-
ously thought endemic to Panama and the Galapagos Islands, respectively. The proximity of the sampled sites
and the redundancy of certain families may explain why we did not find important differences among localities.
Conclusions: The echinoderm richness of this conservation area is at least 20 % higher than previously reported,
reaching similar levels to those in other high diversity sites of the Eastern Tropical Pacific.
Key words: Murciélago Islands; Santa Elena; coastal upwelling; scientific collections; taxonomy; Echinodermata.
Chacón-Monge, J.L., Azofeifa-Solano, J.C., Alvarado,
J.J., & Cortés, J. (2021). Área de Conservación
Guanacaste Echinoderms, North Pacific of Costa
Rica. Revista de Biología Tropical, 69(S1), 487-500.
DOI 10.15517/rbt.v69iSuppl.1.46391
The North Pacific region of Costa Rica is
divided into two conservation areas, managed
by the Ministry of Environment and Energy,
Tempisque and Guanacaste. These two con-
servation areas cover part of the province of
Puntarenas and all of Guanacaste (Alvarado,
Cortés, Esquivel, & Salas, 2012). The Área de
Conservación Guanacaste (ACG), is northern-
most Costa Rica’s protected area and borders
Nicaragua. The ACG marine protected area
comprises 430 km
2
and 150 km of protected
coastline, and it includes 732 ha of Santa Elena
Bay Management Marine Area, and the Marine
Sector of Guanacaste National Park, including
DOI 10.15517/rbt.v69iSuppl.1.46391
488
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
the archipelago of the Murciélago Islands (Fig.
1). This region is subjected to strong seasonali-
ty, with a dry season that runs from December
to April, a first rainy season from May to June,
and a second from August to October. During
the dry season, the influence of northeast trade
winds increases, causing a seasonal tropical
upwelling, that exposes shallow coastal habi-
tats to cold, nutrient-rich, lower pH, and high
oxygenated waters (Alfaro & Cortés, 2012;
Cortés, Samper-Villarreal & Bernecker, 2014;
Lizano & Alfaro, 2014; Cortés, 2016).
Entirely, ACG is managed as a mega park
and operates as a conservation enterprise (Jan-
zen, 2000; Janzen & Hallwachs, 2016; Janzen
& Hallwachs, 2020). Being a world’s reference
in management as a conservation and restora-
tion area, therein remains the latest relict of
the uninterrupted and protected landscape that
integrates the more endangered and complexes
neotropical habitats (e.g., open ocean, shores,
hard and softs bottoms, rhodolites, algae beds,
and coral reefs, wetlands, mangroves, dry,
rainy and cloud forests) (WHC, 2013; Janzen
& Hallwachs, 2016; Janzen & Hallwachs,
2019). These spatial and biologic connection
becomes a sanctuary at many natural scales
(physics and organics), that engages the deep
sea and surface ocean, salty, and freshwater
systems, that extends from the rugose Pacific
shore and dry forest, to the cloud mountains, at
the Atlantic basin (SINAC, 2013; WHC, 2013;
Janzen & Hallwachs, 2016; Janzen & Hallwa-
chs, 2020). ACG was declared as a UNESCO
World Heritage site, highlighting its geogra-
phic, socio-cultural and biological importance,
in administrating and secure the preservation
of the natural resources, as well as shelter the
genetic diversity to perpetuity (Cortés & Joyce,
2020; Janzen & Hallwachs, 2020).
The management areas of the ACG marine
sector include zones with different protection
status and use categories, as areas for absolute
protection, for public, especial, and sustai-
nable use (SINAC, 2013). There are fishing
regions for semi-industrial and artisanal fishe-
ries (Villalobos-Rojas, Herrera-Correa, Gari-
ta-Alvarado, Clarke & Beita-Jiménez, 2014).
Many beaches, shores, reefs, and islets are
available for tourism, where the main acti-
vities are surfing, beach visitation, snorke-
ling, scuba, and sportfishing activities. Other
areas are oriented to conservation, education,
and or investigation due to their remarkable
attributes and importance to sustain marine
diversity, productivity, and to avoid ecological
Fig. 1. Área de Conservación Guanacaste showing sampling sites. Blue dots represent peninsular
sample sites, whereas the red ones represent archipelago sample sites.
489
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
degradation (SINAC, 2013; Villalobos-Rojas
et al., 2014). Despite that, there are pressures
like overfishing or illegal extraction of species
for aquarium and as for delicatessen (i.e., sea
cucumbers) (Toral-Granda, 2008; Villalobos-
Rojas et al., 2014). Altogether, these conditions
open up opportunities for marine conservation
management, and to establish the framework
for accurate strategies and policies, that should
be regionally implemented in order to maintain
the ecosystemic services and sustainability,
for wild and as well for human communities,
inside and beyond of protected areas (Janzen,
2000; Janzen & Hallwachs, 2016; Janzen &
Hallwachs, 2020).
The study of marine diversity in the ACG
started in the 1930s with zoological speci-
mens’ scientific collection, during international
expeditions (Cortés, 2017). However, it was
not until the mid-1990’s when the Center for
Research in Marine Sciences and Limnology
(CIMAR) of the Universidad de Costa Rica
(UCR) leads the systematic exploration of
marine environments and organisms of ACG
(Cortés, 2017). The BioMar-ACG Project, was
established to increase the knowledge of mari-
ne biodiversity in ACG. Beginning operations
in 2015, with an inter-institutional partnership
between CIMAR, the Museo de Zoología (MZ-
UCR) and the Herbario de Biología (USJ) of
the Universidad de Costa Rica, the Sistema
Nacional de Áreas de Conservación (SINAC),
and the Guanacaste Dry Forest Conservation
Fund (GDFCF) (Cortés & Joyce, 2020). Accor-
ding to the literature, there are 594 species of
marine organisms listed for ACG, of which
crustaceans, mollusks, and cnidarians, are the
richest groups (Cortés, 2017). Until now, only
15 echinoderm species have been included in
scientific publications for ACG (Cortés, 2017).
That compilation does not include ophiuroids,
although its presence is known because of
direct observations at field, samplings, and spe-
cimen collections (Granja-Fernández, Pineda-
Enríquez, Solís-Marín & Laguarda-Figueras,
2020). Is expected that, by redirecting sampling
effort, the improvement in technology, as by
the survey of deeper waters or new habitats, the
echinoderm representativeness in ACG might
increase (Cortés, 2017; Cortés & Joyce, 2020).
Recording and publishing marine biodi-
versity of echinoderms with precise taxono-
mic identifications is necessary to improve
research and management efforts in this Marine
Protected Area, and to properly evaluate the
natural response of anthropogenic impacts on
these ecosystems (Worm et al., 2006; Costello,
Michener, Gahegan, Zhang & Bourne, 2013).
An update of the research and study of echi-
noderms is presented under the BioMar-ACG
Project, to complement the ACG marine bio-
diversity baseline compilation (Cortés, 2017).
The taxonomic affinity of the collection sites
was compared, according to the area that they
belong (peninsula or archipelago), and the affi-
nity between sample sites, based on the family
richness and their environmental heterogeneity
(area, depth, and substrate).
MATERIALS AND METHODS
Sampling: Five field trips (July
2018-August 2019) were carried out to record
the richness of echinoderms in ACG, by scuba
diving. Three of the expeditions visited the
Murciélago Islands archipelago, and two visi-
ted the Santa Elena Peninsula and the surroun-
dings of Cuajiniquil Bay. A total of 25 sample
sites were visited (Fig. 1); 14 in the peninsular
area (P: north of the Santa Elena Peninsula)
and 11 in the archipelago (A: south of the Santa
Elena Peninsula). We recorded geographical
coordinates, depth, and substrate type at each
site (Table 1). The sampling sites were selected
using the criteria and the local knowledge of
the parataxonomists, BioMar-ACG Project’s
crew, and the scientific team. Echinoderms
were collected at each site between, over, and
under different substrates (algae, rocks, corals,
debris, and sand). At least one specimen of each
morpho-species found was collected, as a taxo-
nomic voucher of the site echinoderm richness.
Sample preparation and identification:
Collected specimens were deposited in plastic
containers and transferred in seawater-filled
490
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
buckets to the laboratory, then classified and
separated into groups by locality and taxono-
mic affinity. The organisms were relaxed with
menthol, magnesium chloride, and alcohol
solutions, in trays with filtered seawater. Each
specimen was identified to the lowest possi-
ble taxonomic category, based on specialized
literature for the region (Lessios, 2005; Solís-
Marín, Arriaga-Ochoa, Laguarda-Figueras,
Frontana-Uribe & Durán-González, 2009;
Granja-Fernández et al., 2014; Solís-Marín et
al., 2014; Borrero-Pérez & Vanegas-González,
2019; Granja-Fernández, Pineda-Enríquez,
Solís-Marín & Laguarda-Figueras, 2020) and
TABLE 1
Echinoderm sampling sites of the BioMar-ACG project, North Pacific of Costa Rica
Sector Code Sampling site Substrate Lat. (N) Long.(W)
Archipelago Arc El Arco, Isla San José, Murciélago Islands Boulders 10º51’07” 85º55’03”
BNe Bajo Negro, Murciélago Islands Boulders 10º49’58” 85º53’32”
BPo Bajo Pochote, Isla San José, Murciélago
Islands
Boulders 10º51’22” 85º55’27”
CBP Close to Bajo Pochote, Murciélago Islands Boulders, sand and
gravel bottom
10º51’22” 85º55’24”
Cha Mata de Chagüite, Santa Elena Peninsula Boulders, sand and
gravel bottom
10º52’30” 85º53’19”
ICc Isla Cocinera, Murciélago Islands Rocky reef 10º51’24” 85º54’05”
ICo Isla Colorada, Murciélago Islands Boulders 10º50’16” 85º52’42”
IGo Isla Golondrina, Murciélago Islands
Rocky and Pocillopora
spp. Reef
10º51’18” 85º56’26”
IPe Isla Pelada, Murciélago Islands Boulders 10º52’00” 85º53’54”
ISJ Isla San José, Murciélago Islands Boulders 10º51’10” 85º54’38”
SPe San Pedrito, Murciélago Islands Boulders, sand and
gravel bottom
10º51’16” 85º57’09”
Peninsula 4x4 Playa 4x4, Cuajiniquil Boulders 10º56’09” 85º42’27”
Ace Aceituno, Santa Elena Peninsula Boulders, sand and
gravel bottom
10º53’14” 85º54’23”
BTh Bahía Thomas, Cuajiniquil
Rocky and Pocillopora
spp. Reef
10º55’49” 85º43’16”
Cas Las Cástula, muelle de Cuajiniquil Rocky intertidal zone 10º56’56” 85º42’47”
Far Farallones, Santa Elena Peninsula Boulders, sand and
gravel bottom
10º53’14” 85º56’50”
ICa Isla Los Cabros, Bahía Santa Elena Rocky reef 10º56’29” 85º48’47”
IDa Isla David, Santa Elena Peninsula
Pocillopora spp. Reef
10º57’21” 85º43’30”
IPi Isla Pitahaya; Santa Elena Peninsula Boulders 10º56’08” 85º48’06”
Isl Islita, Cuajiniquil, Santa Elena Peninsula Rocky bottom 10º57’47” 85º41’49”
Mat Matapalito, Santa Elena Peninsula
Pocillopora spp. Reef
10º55’57” 85º47’45”
Mog Mogotes, Isla Negritos, Playa Blanca, Santa
Elena Peninsula
Boulders and sand 10º55’08” 85º53’56”
PBl Punta Blanca, Santa Elena Peninsula Sandy bottom 10º56’44” 85º55’09”
PRo Punta Roja, Santa Elena Peninsula Boulders, sand and
gravel bottom
10º52’30” 86º52’46”
Vit La Vita, Santa Elena Peninsula Boulders 10º53’18” 85º55’08”
491
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
following the taxonomic classification proposed
by WoRMS (http://www.marinespecies.org/).
The samples were tagged by site and mor-
pho-species, with an alphanumeric code. One
specimen of each morpho-species was photo-
graphed and used as a voucher for bar-coding
tissue sample extraction. Samples from all
vouchered specimens were sent to the Center
for Biodiversity Genomics, at the University
of Guelph, for DNA sequencing and barcoding
(Cortés & Joyce, 2020). That could lead us
to build a barcode library (Hebert, Cywinska,
Ball & de Waard, 2003; Janzen & Hallwachs,
2019), and will serve as a reference inventory
and as the start point for many kinds of ecolo-
gical, phylogeographic, systematic, genomic,
and evolutive studies. The samples were cata-
loged and deposited in the Museo de Zoología
(MZ-UCR) of the Centro de Investigación en
Biodiversidad y Ecología Tropical (CIBET),
Universidad de Costa Rica.
Taxonomic and spatial analysis: The
lowest taxonomic hierarchy at which all sam-
ples were identified was to family level. So,
the taxonomic affinity between sites was com-
pared at this level. The family-site similitude
was performed by cluster analysis. And the
sites affinity was compared by a Non-metric
Multidimensional Scaling Analysis (nMDS),
using the geographical area (peninsula or archi-
pelago) as groups, in addition to the family
richness, depth, and substrate type as variables
for the bidimensional model. The variance
of groups and sites was tested with a simple
one-way PERMANOVA, that compares the
spread among groups, using the average values
from the distances of individual observations
to the centroids of their own group, in a cho-
sen measure of dissimilarity (using Jaccard
distances for richness comparison). Assuming
exchangeability, where p-values are calculated
by permutation, avoiding the assumption of
normality, as well as being robust to the hete-
rogeneity of unbalanced designs, and is not
sensitive to differences in correlation structure
among groups (Anderson, 2017). These analy-
zes were performed using Past 3 software.
RESULTS
A total of 497 samples were collected,
distributed in 62 morpho-species, seven for
Asteroidea, 13 for Ophiuroidea, 31 for Holothu-
roidea and 11 for Echinoidea (Table 2). Of
these, three sea cucumber did not correspond to
any species described for the Eastern Tropical
Pacific before. We found a total 43 echinoderm
species that are new records for ACG. Inclu-
ding seven that had not been previously repor-
ted for the Central American Pacific coasts
(Isla del Coco not included) (Table 2, Table 3).
With these new records, the total number of
echinoderm species present on the Pacific coast
of Costa Rica reaches 233, and the total number
of species recorded for the country is now 306
(see Alvarado et al., 2017; Borrero-Pérez &
Vanegas-González, 2019; Cambronero-Solano,
Benavides, Solís-Marín & Alvarado, 2019;
Granja-Fernández, Pineda-Enríquez, Solís-
Marín & Laguarda-Figueras, 2020).
We found 27 echinoderm families, five
of Asteroidea, eight of Ophiuroidea, six of
Holothuroidea and eight of Echinoidea (Table
TABLE 2
Echinoderm records by Class, collected in the BioMar-ACG Project. NR-ACG = new records for the ACG;
NR-CAP = new records for the Central American Pacific (not including Isla del Coco)
Taxa
Number of
individuals
Orders Families Morpho-species
Possible
new species
NR- ACG NR-CAP
Echinodermata 497 12 27 62 3 43 7
Asteroidea 56 1 5 7 0 6 1
Ophiuroidea 159 2 8 13 0 12 1
Holothuroidea 192 4 6 31 3 15 4
Echinoidea 90 5 8 11 0 10 1
492
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
TABLE 3
Echinoderm species by site at ACG, with indication of new records. Bold = new record for the ACG; * = new record
for Costa Rica (without including Isla del Coco); ** = new record for Central America; + = First record outside the
archipelago of the Galápagos Islands; ++ = First record outside Panamá. Sampling sites are presented in Table 1
Taxa Sample site
Class Asteroidea (7 species)
Order Valvatida
Family Acanthasteridae
Acanthaster planci (Linnaeus, 1758) BPo
Family Asteropseidae
Asteropsis carinifera (Lamarck, 1816) Ace; IPy; Ica
Family Mithrodiidae
Mithrodia bradleyi Verrill, 1867* Ace; Arc; ICc; Cha; Ida
Family Oreasteridae
Nidorellia armata (Gray, 1840) Ace; Cas; CBP; Cha. ICa; IPi, ISJ
Pentaceraster cumingi (Gray, 1840)
Ace; Ica
Family Ophidiasteridae
Phataria unifascialis (Gray, 1840) Ace; BTh; CBP; Cha; ICa; ICc; ICo; IGo; IPe;
ISJ; Isl; Mog; PRo; Vit
Pharia pyramidata (Gray, 1840) Ace; BNe; BTh; CBP; ICa; ICc; IGo; IPe; IPi;
Isl; Mog; PBl; Vit
Class Ophiuroidea (13 taxa)
Order Amphilepidida
Family Amphiuridae IPi; ISJ; Mog
Family Ophiactidae
Ophiactis savignyi (Müller & Troschel, 1842) BNe; BPo; BTh; Cha; IGo; IPe; IPi; ISJ
Ophiactis simplex (LeConte, 1851) BNe; IPe; IPi; Isl
Family Ophiolepididae
Ophiolepis pacifica Lütken, 1856 ICa; IPe; Mog; PRo; SPe
Family Ophionereididae
Ophionereis annulata (Le Conte, 1851) 4x4; Ace; Arc; BNe; BPo; ICc; ICo; Cha; IGo;
IPe; IPi; ISJ; Mog; PBl; Vit
Family Hemieuryalidae
Ophioplocus hancocki Ziesenhenne, 1935**+ Cha
Family Ophiotricidae
Ophiothela mirabilis Verrill, 1867 BNe; Cha; Far; ICo; IPe; ISJ; Vit
Ophiothrix (Ophiothrix) spiculata Le Conte, 1851 4x4; Ace; BNe; BPo; BTh; Cas; CBP; Cha;
Far; ICa; ICc; IGo; IPi; Isl; Mat; Mog; PBl;
SPe; Vit
Order Ophiacanthida
Family Ophiocomidae
Ophiocoma aethiops Lütken, 1859 BTh; Cas; CBP; Cha; ICc; IPe; Isl; Mat; Mog;
Vit
Ophiocomella alexandri (Lyman, 1860) 4x4; Arc; BPo; BTh; Cas; Cha; CBP; Far; ICa;
ICc; ICo; IGo; IPe; ISJ; Isl; Mog; PBl; Vit
Family Ophiodermatidae
Ophioderma hendleri Granja-Fernández, Pineda-Enríquez, Solís-Marín &
Laguarda-Figueras, 2020
Arc; ICa; ICc; ICo; Far; IPe; IPi; Vit
Ophioderma panamense Lütken, 1859 BNe; Cas; Cha; ICa; ICc; ICo; IPe; IPi; Isl;
PRo; SPe
493
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
TABLE 3 (Continued)
Taxa Sample site
Ophioderma teres (Lyman, 1860) Ace; BTh; Cha; CBP; Far; ICa; ICc; ICo; IDa;
IPe; IPi; ISJ; PR; SPe
Class Holothuroidea (28 taxa)
Order Apodida
Family Chiridotidae
Chiridota aponocrita Clark, 1920* Ace; BNe; BPo; BTh; ICa; IGo; IPe; IPi;
ISJ; Isl; Mat; Mog; PBl
Family Synaptidae
Epitomapta tabogae Heding, 1928**++ IGo
Euapta godeffroyi (Semper, 1868) IPi; ISJ; Mat
Order Dendrochirotida
Family Cucumariidae
Cucumaria flamma Solís-Marín & Laguarda-Figueras, 1999
Cha; IDa; ICa; IPi; Cas; Arc
Neocucumis veleronis (Deichmann, 1941)
4x4; BTh; Cas; ICa; ICo; IPi; ISJ; Isl; Mat;
Mog; PBl
Pseudocnus californicus (Semper, 1868)
Cas; ICc; ICo; Far; Cha; IPi; ISJ; Isl; Mog;
PBl
Trachythyone peruana (Semper, 1868)* Ica
Family Phyllophoridae
Pentamera chierchiae (Ludwig, 1886)
Ida
Thyone bidentata Deichmann, 1941** Cas
Family Sclerodactylidae
Afrocucumis ovulum (Selenka, 1867)
IPi
Neothyone gibber (Selenka, 1867)
4x4; Ace; BPo; BTh; Cas; Cha; ICa; ICc; ICo;
IDa; IPi; ISJ; Isl;
Mog; PBl; Vit
Order Holothuriida
Family Holothuriidae
Holothuria (Cystipus) rigida (Selenka, 1867)
Ace; BPo; Cha; IPe; IPi
Holothuria (Halodeima) inornata Semper, 1868 4x4; BNe; BTh; Isl; Cas; Mog
Holothuria (Halodeima) kefersteinii (Selenka, 1867)
ICc; ICo; IGo; Isl; Vit
Holothuria (Lessonothuria) pardalis Selenka, 1867 4x4; BTh; BPo; Cas; Cha; ICa; ICo; IGo; IPi;
Isl; Mog; PBl; Pro
Holothuria (Mertensiothuria) hilla Lesson, 1830 BNe; BPo; CBP;
Holothuria (Mertensiothuria) viridiaurantia Borrero-Pérez &
Vanegas-González, 2019**
Ace; IPi; Mog
Holothuria (Platyperona) difficilis Semper, 1868 ICa; Ida
Holothuria (Selenkothuria) lubrica Selenka, 1867
4x4; Cas
Holothuria (Selenkothuria) portovallartensis Caso, 1954 4x4; Cas; Isl
Holothuria (Semperothuria) languens Selenka, 1867
IPi; Isl; PBl
Holothuria (Stauropora) pluricuriosa Deichmann, 1937 BPo; CBP; Ica
Holothuria (Thymiosycia) arenicola Semper, 1868
Ace; BNe; BPo; Cas; IGo; IPe; ISJ; Mog;
PRo; SPe
Holothuria (Thymiosycia) impatiens (Forsskål, 1775)
BNe; ICc; ICo; IPe; IPi; ISJ; Isl; Mat; PBl; Vit
Labidodemas americanum Deichmann, 1938 ICa; ICo
Labidodemas maccullochi (Deichmann, 1958) BNe; IGo; ISJ
Order Synallactida
Family Stichopodidae** CBP
Isostichopus fuscus (Ludwig, 1875) Cha; ICa; IDa; IGo; IPi; ISJ
494
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
2). Although there are some associations bet-
ween peninsular or archipelago influence sites
(R = 0.82), the taxonomic affinity at the family
level was not determined by the geographical
area. The clusters are heterogeneous, com-
paring the family richness among sites by
sector (Fig. 2). The spatial distribution of the
localities according to their taxonomic affinity
and environmental heterogeneity, also did not
reflect discrete clusters regarding the influen-
ce of the geographical area (PERMANOVA
p > 0.05, Fig. 3).
Isla David and Punta Roja showed less simi-
larity to other sample sites (Fig. 2). They pre-
sent seven and six families respectively, some
of them are rare for other localities (Mithrodii-
dae, Phyllophoridae, Stichopodidae and Cucu-
mariidae on Isla David; Ophiolepididae and
Loveniidae at Punta Roja), in combination with
widely distributed families (Ophiodermatidae,
Ophidiasteridae, Holothuriidae, Sclerodac-
tylidae) (Table 3). Another locality separated
from the rest is Farallones (Fig. 2), presenting
a particular family composition, some com-
mon in the peninsula sector and others in the
archipelago (Ophiotrichidae, Ophiodermatidae,
Ophiocomidae, Arbaciidae, and Brissidae).
Localities with greater similarity by pairs in the
peninsular sector (Pitahaya Island-Los Cabros
Island; Punta Blanca-Mogotes) have a large
number of families, some rare (Asteropseidae,
Amphiuridae, Cucumariidae, Stichopodidae,
Synaptidae, Prenasteridae and Oreasteridae in
the first peninsular pair; Amphiuridae, Ophio-
lepididae, and Cucumariidae; in the second
peninsular pair) in combination with other ones
TABLE 3 (Continued)
Taxa Sample site
Class Echinoidea (11 species)
Order Arbacioida
Family Arbaciidae
Arbacia stellata (Blainville, 1825; ?Gmelin, 1791) 4x4; Ace; BTh; Far; ICa; ICo; IPi; Mat
Order Camarodonta
Family Echinometridae
Echinometra vanbrunti A. Agassiz, 1863
4x4; BTh; Cas; ICc
Family Toxopneustidae
Toxopneustes roseus (A. Agassiz, 1863) Ace; BTh; Cas; CBP; Cha; ICa; ICc; IGo; IPi;
ISJ; Mog; PBl; Vit
Tripneustes depressus A. Agassiz, 1863 Ace; Cas; Cha
Order Cidaroida
Family Cidaridae
Eucidaris thouarsii (L. Agassiz & Desor, 1846) 4X4; Ace; BNe; BPo; BTh; Cas; CBP; Cha;
ICo; IGo; IPe; ISJ; Isl; Mat; Mog; PBl; Vit;
Order Diadematoida
Family Diadematidae
Astropyga pulvinata (Lamarck, 1816) Ace; CBP; Cha
Diadema mexicanum A. Agassiz, 1863 Ace; BTh; CBP; Cha; IPe; Mat; Mog
Order Spatangoida
Family Prenasteridae
Agassizia scrobiculata Valenciennes, 1846 BPo; IPi; Vit
Family Brissidae
Brissus obesus Verrill, 1867 BPo; CBP; ICa; ICc; IPe; IPi; ISJ; Mog; SPe;
Vit
Meoma ventricosa (Lamarck, 1816) Cha; CBP; Far; IGo; SPe
Family Loveniidae
Lovenia cordiformis A. Agassiz, 1872* Ace; CBP; IGo; Pro
495
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
Fig. 3. Non-metric Multidimensional Scaling Analysis for echinoderm family richness and habitat heterogeneity
at ACG. Based on Jaccard’s distance. Stress level of 0.18. Blue dots represent peninsular sample sites, whereas the red ones
represent archipelago sample sites.
Fig. 2. Echinoderm family richness at ACG cluster. Based on Jaccard’s index. R = 0.82. Blue codes represent peninsular
sample sites, whereas the red ones represent archipelago sample sites.
496
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
common (Table 3). The most similar sites in
the archipelago (Isla Pelada-Bajo Negro) pre-
sent a widely-distributed families in the ACG
(Table 1, Fig. 2).
DISCUSSION
The 15 echinoderm species previously
reported for the ACG (Cortés, 2017), represent
only 6% of the 226 known species for the Paci-
fic of Costa Rica (Alvarado et al., 2017). Two
of those, were not collected in our research,
the holothuroids Pseudocnus dubiosus and
Neothyone gibbosa. The presence of crinoids
in the region is still unknown, and possibly
they could be found in deeper waters near to
the continental slope that is very close to the
coast, in the area of the Mesoamerican trench
(Cortés, 2017). We found species in ACG that
have not been registered for any other coastal
locality in Costa Rica, as the sea star Mithrodia
bradleyi, and the irregular sea urchin Love-
nia cordiformis, that are also present at Isla
del Coco (Cortés, 2012). The sea cucumber
Trachythyone peruana is a new record for the
Costa Rican Pacific waters, while Chiridota
aponocrita, Thyone bidentata, and Epitomap-
ta tabogae (until now considered endemic to
Panama) are first recorded for the Central Ame-
rican mainland Pacific coasts. We also confirm
the presence of the recently described species
Holothuria (Mertensiothuria) viridiaurantia,
and Ophioderma hendleri for the ACG (Borre-
ro-Pérez & Vanegas-González, 2019; Granja-
Fernández, Pineda-Enríquez, Solís-Marín &
Laguarda-Figueras, 2020).
There is a specimen belonging to the
family Stichopodidae that does not correspond
to any known species in the region (Solís-
Marín et al., 2009). Externally, the orange
bivium is spotted whit irregular (small and
large) dark areas of pointed papillae and white
little spots on the tegument surface, in the tri-
vium the texture is smooth and the coloration
is pale cream, whit dark pelted oral tentacles
oriented to the substrate. The skin is thick and
soft, the body length is up to 30 cm, and the
maximum diameter is near to 10 cm in the
mid-posterior body region. The ossicles of the
dermic wall are mainly tables and bars, whit
some “C” and “S” bodies widely disperse. This
specimen had ten pearlfish (Carapidae) inside
its cloaca, which got out when their host died.
We speculate that when the water O
2
concen-
tration of its container dropped to hypoxia, the
stressed fish got outside.
Two other morpho-species of the family
Holothuriidae, have a combination of tables,
buttons, and perforated plaques that do not
match whit the ossicles for reported species.
One of them has a homogeneous white color
whit disperse minute yellow dots over the
bivium, as well on the tip of their podia, at
trivium. The top of the pelted oral tentacles
was yellow too. The skin is rugose, nor thin or
thick, and has neither kind of distinguishable
ossicle on dermic tissue samples. The total
length of this animal was 2 cm approx. Other
holothurid morpho-species have a combination
of characters, including light or dark green-
brown tegument surface, whit yellowish pelted
oral tentacles and projected podia on the tri-
vium, at bivium surface the skin has a rugose
appearance, the length is up to 5 cm and close
to 2 cm wide, by ossicle comparison we were
not able to distinguish between them and other
Holothuria spp.
Finally, the discovery of Ophioplocus han-
cocki in ACG extents the distribution range to
this species. Collected during the Allan Han-
cock expeditions (1933 and 1934) and thought
to be endemic for the Galápagos Islands (Zies-
enhenne, 1940; Maluf, 1991). Currently, there
are three specimens in the Smithsonian’s Natio-
nal Museum of Natural History, a holotype, and
two vouchers (https://collections.nmnh.si.edu/
search/iz/?q=qn+Ophioplocus+hancocki). In
addition to a paratype and seven vouchers
at the Museum of Comparative Zoology at
Harvard University (https://mczbase.mcz.har-
vard.edu/SpecimenResults.cfm?taxon_name_
id=446882). So, the specimen collected during
the expeditions of the BioMar-ACG Project
constitutes the twelfth specimen recorded in
scientific collections for this species.
497
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
As found for other groups of marine orga-
nisms studied in the BioMar-ACG Project,
echinoderms richness has been underestimated
(Vargas-Castillo & Cortés, 2019; Cortés &
Joyce, 2020). When compared to other marine
areas of Costa Rica, like the Osa Peninsula and
Isla del Coco, the ACG Marine Sector registe-
red a low echinoderm mean diversity (Alvara-
do et al., 2017). The research efforts carried out
by the BioMar-ACG project release an update
of 1. 479 marine species, a richness compa-
rable to other highly rich, but more extensive
regions of the Eastern Tropical Pacific (Cortés
& Joyce, 2020). That could be explained by
the high environmental heterogeneity on the
rugged littoral structure and the seasonal upwe-
lling in the region, which increases primary
productivity and together may increase the
chance to support a higher species richness and
densities (Cortés, 2014; Cortés & Joyce, 2020).
This work demonstrates that the effort and
sampling techniques employed determine the
knowledge and the interpretations made on the
echinoderm diversity of ACG. The taxonomic
echinoderm richness of ACG, increased by 20
%. So, we want to highlight the importance
of taxonomic baseline studies, as well as the
importance to support and publish their results.
Which combined with the appropriate tools
and technologies, could help us to understand
the true diversity of our oceans, the opportuni-
ties to legislate them, and the risks of do not.
Now, we know that this area presents at least
26 % of the echinoderm species listed for the
Costa Rican Pacific (Solís-Marín et al., 2013
Alvarado et al., 2017). And several species that
have not been found in any other location in
the Central American Pacific. Defining itself
as a site of great importance for echinoderm
and other marine taxa conservation (Cortés,
2017; Vargas-Castillo & Cortés, 2019; Cortés
& Joyce, 2020).
Despite some families were exclusively
present in one or few sites of the peninsular
or the archipelago sectors, the sampled sites
were not discretely distributed in the cluster
ordination or in the Non-metric Multidimen-
sional Scaling Analysis. Possibly, due to the
taxonomic hierarchy used for the construc-
tion of the model, as well as the quantity and
variability of the environmental factors used.
Since many of the substrates were redundant,
and the depths between sites were similar,
as reflected in the PERMANOVA test. Some
research shows that the geographic and tem-
poral scale, as well as the number of varia-
bles, and taxonomic resolution are usually
decisive in solving the distribution patterns
affinities (de Entrambasaguas, 2008; Iken et
al., 2010; Alvarado, Guzmán & Breedy, 2012;
Ramírez-Ortiz et al., 2017).
There are echinoderm families with wide
distribution, throughout the Eastern Tropical
Pacific (Pérez-Ruzafa et al., 2013; Solís-Marín
et al., 2013; Lessios & Baums, 2017). Similar
observations of distribution patterns on echi-
noderms as in other taxonomic groups, have
been documented even at larger spatial scales
(Glynn & Ault, 2000; Lessios & Robertson,
2006; Hellberg, 2009; Duda & Lessios, 2009;
Lessios & Baums, 2017). For example, when
latitude decreases, the richness decreases and
the abundance of observed species increase
(decrease in alpha diversity and increase in beta
diversity), a generalized biogeographic phe-
nomenon in tropical regions, which is usually
associated with climatic stability and habitat
heterogeneity, that tends to homogenize rich-
ness (Iken et al., 2010; González-Gándara et
al., 2015; Mutschke, Gerdes & Ríos, 2017).
Although most of the observed echino-
derm families may have planktotrophic larvae,
that are able to cross long distances by marine
currents and drift (Smith, 1997; Raff & Byrne,
2006), some species may possibly be restricted
by their reproductive strategy and/or its dis-
persal ability (i.e., O. hancocki, H. lubrica, H.
portovallartensis) (Maluf, 1991; Solís-Marín et
al., 2013). So, increasing the resolution of taxo-
nomic hierarchies at the species level, as well
as the inclusion of functional traits, and genetic
analysis could perform our understanding of the
echinoderm patterns distribution, habitat use,
and dispersal limitation. These data, combined
with those from other taxa (corals, mollusks,
crustacean, fishes, etc.) adequately interpreted
498
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
and truly used, could lead us to establish cri-
teria in decision-making for the management,
conservation, and use of natural resources in
the Marine Sector of Área de Conservación
Guanacaste, in order to maintain the health
of the marine ecosystems, and their resilience
to global change and anthropogenic impacts
in the area (Janzen, 2000; Cortés & Joyce,
2020; Janzen & Hallwachs, 2020). We strongly
recommend continuing the research effort on
echinoderms in ACG, especially towards new
sample sites and deeper waters.
Ethical statement: authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we
followed all pertinent ethical and legal proce-
dures and requirements. All financial sources
are fully and clearly stated in the acknowled-
gements section. A signed document has been
filed in the journal archives.
ACKNOWLEDGMENTS
We thank Frank Joyce, Yelba Vega, Gilber-
th Ampié, Minor Lara, Anibal Lara, Carolina
Sheridan-Rodríguez, Cristian Mora-Barboza,
and Génesis Coto for their support during sam-
pling. We are thankful to Juan Ignacio Abarca-
Odio for his advice on statistical analysis. We
are grateful to Rebeca Granja-Fernández and
Francisco Solís-Marín for their comments on
our results. We thank the park rangers of the
Isla San José station at Murciélago Islands for
their support in the expeditions. This study was
possible due to the support of the Center for
Research in Marine Sciences and Limnology
(CIMAR), Museo de Zoología (MZ-UCR),
and Escuela de Biología of the Universidad
de Costa Rica. The BioMar-ACG project was
funded by the Guanacaste Dry Forest Conser-
vation Fund (GDFCF). Sampling permits were
granted by the National System of Conserva-
tion Areas (SINAC). We are very thankful to
the Iberoamerican Network of Echinoderms
and the organizing team of the 4th Latin Ame-
rican Congress on Echinoderms. Finally, we
thank three anonymous scientific revisors of
our manuscript and to the scientific editors of
the supplement.
RESUMEN
Equinodermos del Área de Conservación Guanacaste,
Pacífico Norte de Costa Rica
Introducción: El estudio de la diversidad marina
del Pacífico Norte de Costa Rica inició con expediciones
extranjeras aisladas en la década de 1930, y fue desarro-
llado sistemáticamente a mediados de la década de 1990
por el Centro de Investigaciones en Ciencias del Mar y
Limnología de la Universidad de Costa Rica, como con-
secuencia ahora se reporta un total de 1 479 especies en
esta región. Objetivo: Presentar una actualización de la
riqueza de equinodermos del Área de Conservación Guana-
caste. Métodos: Realizamos muestreos exhaustivos en 25
localidades y estimamos la similitud entre sitios con base
en la riqueaza de familias y la heterogeneidad ambiental.
Resultados: Encontramos 61 taxa, que representan el 26%
de las especies reportadas para la costa pacífica del país.
De estas, 43 especies son nuevos registros para el Área de
Conservación Guanacaste y siete para las costas de Costa
Rica y el Pacífico centroamericano. Tres morfoespecies no
coinciden con las descripciones disponibles para las espe-
cies del Pacífico Tropical Oriental. Por último, hallamos un
ejemplar del holoturoideo Epitomapta tabogae y otro del
ofiuroideo Ophioplocus hancocki, considerados endémicos
para Panamá y las Islas Galápagos respectivamente. La
proximidad entre los sitios muestreados y la redundancia
de ciertas familias pueden explicar por qué no se encon-
traron diferencias entre las localidades. Conclusiones:
La riqueza de equinodermos de esta área de conservación
es al menos 20% mayor que la reportada anteriormente,
alcanzando niveles similares a los de otros sitios de alta
diversidad del Pacífico Tropical Oriental.
Palabras clave: Islas Murciélago; Santa Elena; aflo-
ramiento costero; colecciones científicas; taxonomía;
Echinodermata.
REFERENCES
Alfaro, E.J. & Cortés, J. (2012). Atmospheric forcing of
cold subsurface water events in Bahía Culebra, Costa
Rica. Revista de Biología Tropical, 60(Suppl. 2),
173-186.
Alvarado, J.J., Guzmán. H. & Breedy, O. (2012). Distri-
bution and diversity of echinoderms (Asteroidea,
Echinoidea, Holothuroidea) in the islands of the Gulf
of Chiriqui, Panama. Revista de Biología Marina y
Oceanografía, 47(1), 13-22.
499
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
Alvarado, J.J., Chacón-Monge, J.L., Solís-Marín, F.A.,
Pineda-Enríquez, T., Caballero-Ochoa, A.A., Solano
Rivera, S., & Romero Chaves, R. (2017). Equino-
dermos del Museo de Zoología de la Universidad de
Costa Rica. Revista de Biología Tropical, 65(Supl.
1), 272-287.
Alvarado, J.J., Cortés, J., Esquivel, M.F. & Salas, E.
(2012). Costa Rica’s Marine Protected Areas: status
and perspectives. Revista de Biología Tropical, 60
(1), 129-142.
Anderson, M. (2017). Permutational Multivariate Analysis
of Variance (PERMANOVA). In: Balakrishnan, N.,
Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F. &
Teugels, J. (Eds.), Wiley StatsRef: Statistics Reference
Online, 1-15.
Borrero-Pérez, G.H. & Vanegas-González, M.J. (2019).
Holothuria (Mertensiothuria) viridiaurantia sp. nov.
(Holothuriida, Holothuriidae), a new sea cucumber
from the Eastern Pacific Ocean revealed by morpho-
logy and DNA barcoding. ZooKeys, 893, 1-19.
Cambronero-Solano, S., Benavides, R., Solís-Marín. F.A.
& Alvarado, J.J. (2019). New reports of echinoderms
on the Caribbean continental slope of Central Ameri-
ca. Zoosymposia, 15, 5–12.
Cortés, J. (2012). Marine biodiversity of an Eastern Tropi-
cal Pacific oceanic island, Isla del Coco, Costa Rica.
Revista de Biología Tropical, 60(Suppl. 3), 131-185.
Cortés, J. (2016). The Pacific coastal and marine ecosys-
tems. In M. Kappelle (Ed.), Costa Rican Ecosystems
(pp. 97-138). Chicago and London: University of
Chicago Press.
Cortés, J. (2017). Marine biodiversity baseline for Área
de Conservación Guanacaste, Costa Rica: published
records. ZooKeys, 652, 129-179.
Cortés,
J. & Joyce, F. (2020). BioMar-ACG: A successful
partnership to inventory and promulgate marine bio-
diversity. Biotropica, 52, 1104-1107. DOI: 10.1111/
btp.12841.
Cortés, J., Samper-Villarreal, J. & Bernecker, A. (2014).
Seasonal phenology of Sargassum liebmannii J.
Agardh (Fucales, Heterokontophyta) in an upwelling
area of the Eastern Tropical Pacific. Aquatic Botany,
119, 105-110.
Costello, M.J., Michener, W. K., Gahegan, M., Zhang, Z.Q.
& Bourne, P.E. (2013). Biodiversity data should be
published, cited, and peer reviewed. Trends in Ecolo-
gy & Evolution, 28, 454-461.
de Entrambasaguas, M.L. (2008). Estudio faunístico y
ecológico de los equinodermos del archipiélago de
Cabo Verde (Doctoral dissertation). Universidad de
Murcia, Spain.
Duda, T.F. & Lessios, H.A. (2009). Connectivity of popu-
lations within and between major biogeographic
regions of the tropical Pacific in Conus ebraeus,
a widespread marine gastropod. Coral Reefs, 28,
651-659.
González-Gándara, C., Solís-Marín, F.A. de la Cruz-
Francisco V., Granados-Barba, A., Salas-Pérez, J.J.,
Argüelles-Jiménez J. & Escárcega-Quiroga, P. A.
(2015). Riqueza y distribución de equinodermos en
los arrecifes del norte de Veracruz, México. Revista
de Biología Tropical, 63(2), 183-193.
Granja-Fernández, R., Herrero-Pérezrul, M., López-Pérez,
R., Hernández, L., Rodríguez-Zaragoza, F., Wallace
Jones, R. & Pineda-López, R. (2014). Ophiuroidea
(Echinodermata) from coral reefs in the Mexican
Pacific. ZooKeys, 406, 101-145.
Granja-Fernández, R., Pineda-Enríquez, T., Solís-Marín,
F.A. & Laguarda-Figueras, A. (2020). Ophioder-
ma hendleri sp. nov. (Echinodermata: Ophiuroidea:
Ophiodermatidae) and its congeners from the Eastern
Pacific. European Journal of Taxonomy 729: 11–41.
Glynn, P.W. & Ault, J.S. (2000). A biogeographic analysis
and review of the far eastern Pacific coral reef region.
Coral Reefs, 19, 1-23.
Hebert, P.D.N., Cywinska, A., Ball, S. L. & deWaard, J. R.
(2003). Biological identifications through DNA bar-
codes. Proceedings of the Royal Society of London.
Series B: Biological Sciences, 270, 313–321.
Hellberg, M.E. (2009). Gene flow and isolation among
populations of marine animals. Annual Review of
Ecology, Evolution, and Systematics, 40, 291-310.
Iken, K., Konar, B., Benedetti-Cecchi, L., Cruz-Motta, J.J.,
Knowlton, A., Pohle, G., . . . Silva, A. (2010). Large-
scale spatial distribution patterns of echinoderms in
nearshore rocky habitats. PLoS ONE, 5(11), e13845.
Janzen, D.H. (2000). Costa Rica’s Area de Conservación
Guanacaste: a long march to survival through non-
damaging biodevelopment. Biodiversity, 1(2):7-20.
Janzen, D.H. & Hallwachs, W. (2016). Biodiversity con-
servation history and future in Costa Rica: The
case of area de Conservación Guanacaste (ACG).
Chapter 10. In C. R. Ecosystems & M. Kappelle
(Eds.), Biodiversity conservation history and future
in Costa Rica (pp. 290–341). Chicago, IL: University
of Chicago Press.
Janzen, D.H. & Hallwachs, W. (2019). How a tropical cou-
ntry can DNA barcode itself. iBOL Barcode Bulletin,
9(1), 1-6.
Janzen, D.H. & Hallwachs, W. (2020). Área de Conser-
vación Guanacaste, northwestern Costa Rica: Con-
verting a tropical national park to conservation via
biodevelopment. Biotropica, 52, 1017-1029.
Lessios, H.A. (2005). Echinoids of the Pacific waters
of Panama: Status of knowledge and new records.
Revista de Biología Tropical, 53(3), 147-170.
500
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 000-000, March 2021 (Published Mar. 10, 2021)
Lessios, H.A. & Baums, I.B. (2017). Gene flow in coral
reef organisms of the Tropical Eastern Pacific. In
Glynn, P., Mazello, D. & Enochs, I. (Eds.), Coral
Reefs of the Eastern Tropical Pacific: Persistence
and Loss in a Dynamic Environment (pp. 477-499).
Netherlands: Springer-Verlag.
Lessios, H.A. & Robertson, D.R. (2006). Crossing the
impassable: genetic connections in 20 reef fishes
across the eastern Pacific barrier. Proceedings of
the Royal Society B: Biological Sciences, 273,
2201-2208.
Lizano, O. G. & Alfaro, E. J. (2014). Características de la
dinámica atmosférica y oceánica en algunas regio-
nes del Área de Conservación Guanacaste (ACG),
Costa Rica. Revista de Biología Tropical, 62(Supl.
4), 17-31.
Maluf, L.Y. (1991). Echinoderm fauna of the Galápagos
Islands. In M. James (Ed.), Galápagos Marine Inver-
tebrates (pp. 345-367). New York, USA: Springer
Science, Business Media.
MCZbase. (2020). The Database of the Zoological Collec-
tions Museum of Comparative Zoology - Harvard
University. Available from https://mczbase.mcz.
harvard.edu/SpecimenResults.cfm?taxon_name_
id=446882. Accessed 2020-07-13.
Mutschke, E., Gerdes, D. & Ríos, C. (2017). Distribution
and abundance patterns of echinoderms in the fjord
and channel complex from a subantarctic north
Patagonian Ice field, Magellan region. Revista de
Biología Tropical, 65(1), 60-72.
Pérez-Ruzafa, A., Alvarado, J.J., Solís-Marín, F.A., Her-
nández, J.C., Morata, A., Marcos, C., . . . Williams,
S.M. (2013). Latin America echinoderm biodiversity
and biogeography: Patterns and affinities. In J.J.
Alvarado & F.A. Solís-Marín (Eds.), Echinoderm
Research and Diversity in Latin America (pp. 511
-542). Berlin: Springer Heidelberg.
Raff, R. & Byrne, M. (2006). The active evolutionary lives
of echinoderm larvae. Heredity, 97, 244-252.
Ramírez-Ortiz, G., Calderón-Aguilera, L.E., Reyes-Boni-
lla, H., Ayala-Bocos, A., Hernández, L., Rivera-Melo,
F.F., . . . Dominici-Arosamena, A. (2017). Functional
diversity of fish and invertebrates in coral and rocky
reefs of the Eastern Tropical Pacific. Marine Ecology,
38, e12447.
SINAC (Sistema Nacional de Áreas de Conservación).
2013. Plan de Manejo Área de Conservación Guana-
caste 2014-2024. ACG. Guanacaste. 149 p.
Smith, A. (1997). Echinoderm larvae and phylogeny.
Annual Review of Ecology, Evolution, and Systema-
tics, 2, 219-241.
Smithsonian Institution. (2020). Smithsonian Natio-
nal Museum of Natural History. Available
from https://collections.nmnh.si.edu/search/
iz/?q=qn+Ophioplocus+hancocki. Accessed
2020-07-13.
Solís-Marín, F.A., Alvarado, J.J., Abreu-Pérez, M., Aguile-
ra, O., Alió, J., Bacallado-Aránega, J.J., . . . Williams,
S.M. (2013). Appendix. In J.J. Alvarado & F.A.
Solís-Marín (Eds.), Echinoderm Research and Diver-
sity in Latin America (pp. 543-654). Berlin: Springer
Heidelberg.
Solís-Marín, F.A., Arriaga-Ochoa, J.A., Laguarda-Figue-
ras, A., Frontana-Uribe, S.C. & Durán-González, A.
(2009). Holothuroideos (Echinodermata: Holothu-
roidea) del Golfo de California, México. México:
Comisión Nacional para el Conocimiento y Uso de
la Biodiversidad e Instituto de Ciencias del Mar y
Limnología, UNAM.
Solís-Marín, F.A., Laguarda-Figueras, A., Estrada-Rodrí-
guez, P., Honey-Escandón, M., Cao-Romero, C. &
Durán-Gonzáles, A. (2014). Los asteroideos (Echi-
nodermata: Asteroidea) del Golfo de California,
México. México: UNAM), Instituto de Ciencias del
Mar y Limnología, Secretaría de Medio Ambiente y
Recursos Naturales e Instituto Nacional de Ecología
y Cambio Climático.
Toral-Granda, V. (2008). Population status, fisheries and
trade of sea cucumbers in Latin America and the
Caribbean In: Toral-Granda, V., Lovatelli, A. &
Vasconcellos, M. (Eds.). Sea Cucumbers. A Global
Review of Fisheries and Trade (pp. 213-229). Roma:
FAO Fisheries and Aquaculture Technical Paper
No. 516.
Vargas-Castillo, R. & Cortés, J. (2019). New records of
marine decapods and stomatopods in Área de Conser-
vación Guanacaste (ACG): four years of marine bio-
diversity inventorying. Marine Biodiversity Records,
12(1), 1-8.
Villalobos-Rojas, F., Herrera-Correa, J. Garita-Alvarado,
C., Clarke, T. & Beita-Jiménez, A. (2014). Activi-
dades pesqueras dependientes de la ictiofauna en el
Pacífico Norte de Costa Rica. Revista de Biología
Tropical, 62 (Supl. 4), 119-138.
World Heritage Committee. (2013). Thirty seventh session.
WHC-13/37.COM/8E: Adoption of retrospective Sta-
tements of Outstanding Universal Value, UNESCO.
302 p.
Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke,
C., Halpern, B.S., Jackson, J.B.C., . . . Watson, R.
(2006). Impacts of biodiversity loss on ocean ecosys-
tem services. Science 314: 787–790.
WoRMS Editorial Board (2020). World Register of Marine
Species. Available from http://www.marinespecies.
org at VLIZ. Accessed 2020-07-13.
Ziesenhenne, F.C. (1940). New ophiurans of the Allan
Hancock Pacific Expeditions. Allan Hancock Pacific
Expeditions, 8(2), 9-59.