1124
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
Nesting trends of olive ridley sea turtles Lepidochelys olivacea
(Testudinata: Cheloniidae) on two beaches in Northwestern Mexico
after 30 and 40 years of conservation
Ingmar Sosa-Cornejo
1,2
; https://orcid.org/0000-0003-0465-9956
Rodolfo Martín-del-Campo
3
; https://orcid.org/0000-0002-7280-3932
Héctor R. Contreras-Aguilar
4*
; https://orcid.org/0000-0003-3879-3643
Fernando Enciso-Saracho
5
; https://orcid.org/0000-0002-2847-9055
Zuleika Beatriz González-Camacho
2
; https://orcid.org/0000-0003-3110-2918
Jesus I. Guardado-González
6
; https://orcid.org/0000-0002-0257-6826
Samuel Campista-Leon
7
; https://orcid.org/0000-0001-7552-2303
Luz I. Peinado-Guevara
7
; https://orcid.org/0000-0001-5881-4558
1. Posgrado en Ciencias Biológicas, Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa,
México; parlama_michin@uas.edu.mx
2. Laboratorio de Tortugas Marinas, Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa,
México; zulegoncam@gmail.com
3. Department of Oral Health Sciences, Faculty of Dentistry, Life Sciences Institute, University of British Columbia,
Vancouver, BC V6T 1Z3, Canada; rodolfo@dentistry.ubc.ca
4. Programa de Tortugas Marinas de la Unidad Académica Preparatoria “Comandante Víctor Manuel Tirado López”,
Universidad Autónoma de Sinaloa, Rosario, Sinaloa, México; contrerasaguilarhector@gmail.com (*Correspondence)
5. Programa de Tortugas Marinas de la Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán,
Sinaloa, México; mano24@live.com
6. Departamento de Turismo, H. Ayuntamiento de Elota, Sinaloa, México; ivantortugasceuta1@gmail.com
7. Laboratorio de Microbiología y Biología aplicada, Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán,
México; samcl@uas.edu.mx, luzipg@uas.edu.mx
Received 31-III-2021. Corrected 07-VI-2021. Accepted 19-IX-2021.
ABSTRACT
Introduction: Although olive ridley sea turtle (Lepidochelys olivacea) are the most abundant sea turtles in the
world, quantitative information is scarce and unevenly distributed among regions. There are many management
and conservation programs for this species, and assessments are necessary to identify nesting trends and effec-
tively manage current conservation programs. PROTORMAR-UAS is a Research and Conservation program
for the olive ridley turtle created by the Autonomous University of Sinaloa, Mexico. The program utilizes two
biological stations: Santuario Playa Ceuta (SPC) and Playa Caimanero (PC).
Objective: To evaluate the nesting trend of olive ridley turtles on two beaches in Northwestern Mexico and to
predict prospective nesting trends for the next 30 years.
Methods: Using annual nesting data collected over 40 years at SPC (1976-2016) and 30 years at PC (1986-
2016), we evaluated nesting trends, hatching success, predation and poaching of olive ridley turtles on the two
beaches in Northwestern Mexico. Then, prospective nesting estimates for the next 30 years were calculated
predictive time series model.
Sosa-Cornejo, I., Martín-del-Campo, R., Contreras-Aguilar,
H. R., Enciso-Saracho, F., González-Camacho, Z. B.,
Guardado-González, J. I., Campista-Leon, S., & Peinado-
Guevara, L. I. (2021). Nesting trends of olive ridley sea
turtles Lepidochelys olivacea (Testudinata: Cheloniidae) on
two beaches in Northwestern Mexico after 30 and 40 years
of conservation. Revista de Biología Tropical, 69(3), 1124-
1137. https://doi.org/10.15517/rbt.v69i3.46490
https://doi.org/10.15517/rbt.v69i3.46490
1125
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
Nesting and feeding habitats of six of the
seven species of sea turtles in the world are
distributed in Mexico, and sea turtle migra-
tory corridors include coastlines with national
jurisdiction (Márquez, 1990). Sea turtles and
humans have interacted for thousands of years,
and sea turtles have been a source of food since
the beginning of the first civilizations, includ-
ing in ancient Mesopotamia (Frazier, 2003). In
Mexico, sea turtle harvesting started in the late
1950s and early 1960s, and it is estimated that
between 1965 and 1970, more than 2 million
sea turtles (mostly olive ridleys) were captured
(Márquez, 1996; Peñaflores et al., 2000). This
practice, together with other human activities
such as egg extraction, destruction of habitats
in nesting areas, and bycatch, has had an impact
on the decline in sea turtle populations (Behera
et al., 2016; Pandav et al., 1998; Pritchard,
1996; Spotila, 2004); therefore, in 1966, the
first turtle camps for study and conservation
were established, and in 1990, a total and per-
manent ban of the capture of all species of sea
turtles in Mexico was declared (DOF, 1990).
The olive ridley sea turtle (Lepidochelys
olivacea) is considered the most abundant sea
turtle in the world, and its main nesting sites
occur on the East coast of India and the coasts
in the Eastern Pacific, mainly in Costa Rica
and Mexico (Abreu-Grobois & Plotkin, 2008).
This species nests between July and January,
with two nesting strategies: solitary and “arrib-
ada”; the latter is a unique nesting strategy of
the genus Lepidochelys in which thousands
of females arrive to nest synchronously on
specific beaches for several days (Márquez,
1990; Pritchard, 2007). In Mexico, solitary
nesting areas extend from the coast of Baja Cal-
ifornia Sur to the coast of Chiapas (CONANP,
2011). Currently, Mexican legislation consid-
ers this species “endangered” (DOF, 2010); it
remains “vulnerable” according to the red list
of threatened species of the International Union
for the Conservation of Nature (IUCN) (Abreu-
Grobois & Plotkin, 2008) and is included in
Appendix I of the Convention on International
Trade in Endangered Species (CITES, 2014).
Because olive ridley sea turtles do not
reach sexual maturity until approximately 13
years (8-18 years) of age (Márquez, 1996; Zug
et al., 2006), assessments of nesting trends
over time are necessary to implement actions
and effectively manage current conservation
programs (Richardson, 2000). At Playa Esco-
billa, the most important arribada beach in
Mexico, sustained recovery has been report-
ed, with an increase from 200 000 nests in
1990 to more than one million nests in 2010
(CONANP, 2011); however, evaluations on
solitary beaches are rare (Ariano-Sánchez et al,
2020; da Silva et al., 2007; Hart et al., 2018;
James & Melero 2015; Viejobueno Muñoz &
Arauz, 2015). Evaluations at nesting beaches
are necessary to identify current nest trends,
predict future outlooks and make appropriate
management and conservation decisions for
the benefit of the population of sea turtle under
study (Balazs & Chaloupka, 2006; Ceriani et
al., 2019; Honarvar et al., 2016).
Results: A positive and significant correlation was identified between the number of annual nests and time for
both beaches (rho = 0.850, P 0.01 for SPC; rho = 0.677, P ≤ 0.01 for PC); the average hatching success rates
were 65.09 at SPC and 60.72 % at PC. The predictive time-series model indicated that the numbers of nests will
continue to increase through 2045, increasing three-fold at SPC and six-fold at PC with respect to the last year
of monitoring.
Conclusions: There was a clear positive trend in the number of olive ridley sea turtle nests at both sites, which is
consistent with trends found in other recent studies from the region. Therefore, we suggest that PC be designated
a legally protected nesting area since it is located within the latitudinal limits of olive ridley nesting and given
the need for resources for camp operation considering increased nesting and current problems with predation
and poaching. Because in Mexico operating a nesting beach without any protection status implies not having a
budget for its management.
Key words: nests; sea turtle conservation; olive ridley turtle; hatching success; poaching and predation.
1126
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
The Autonomous University of Sinaloa
(UAS) began efforts to conserve and conduct
research on sea turtles, and in 1976, it imple-
mented the Sea Turtle Program (PROTOR-
MAR-UAS), with the commitment to protect,
conserve and research these species as well as
their habitats. The program utilizes two biolog-
ical stations, Santuario Playa Ceuta (SPC) and
Playa Caimanero (PC), and continuous annual
data on nest abundance and hatching success
(HS) as well as problems such as poaching and
nest predation have been collected. The objec-
tive of this study was to evaluate the nesting
trends of olive ridley turtles at two beaches in
Northwestern Mexico (40 years for SPC and
30 for PC) and to predict prospective nesting
success over the next 30 years.
MATERIALS AND METHODS
Study site: The study was conducted
on two nesting beaches: SPC and PC. SPC
is 37 km long and is located between the
Cospita Estuary to the North (23°05’40” N
& 107°11’42” W) and the Elota River to the
South (23°52’43” N & 106°55’51” W); it is
in the central region of the state of Sinaloa,
Mexico, in the municipality of Elota (Fig. 1).
SPC was declared a Reserve and Refuge Zone
for the Protection, Conservation, Repopulation,
Development and Control of Various Species
of Sea Turtles (DOF, 1986) and as a sanctuary
for olive ridley turtle nesting (CONANP, 2018;
DOF, 2002). PC was designated a biological
station in 1986; it is approximately 39 km
long and is located between the mouth of the
Presidio River to the North (23°05’29” N &
106°17’19” W) and the mouth of the Baluarte
River to the South (22°50’15” N & 106°02’26”
W); it is in the Southern region of the state of
Sinaloa, Mexico, in the municipality of Rosario
(Fig. 1). PC is not yet legally designated as a
protected beach.
Nesting data: During the nesting season
(July-December) from 1976 to 1991 at SPC and
from 1986 to 1991 at PC, night tours were car-
ried out by university staff and field volunteers
to collect eggs and conduct a census of nests
(collected, poached and predated); however,
Fig. 1. Location of the nesting beaches of Lepidochelys olivacea in Northwestern Mexico managed by PROTORMAR-UAS.
1127
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
during this period, it was not possible to cover
the entire beach on a daily basis due to logisti-
cal and budget reasons. In 1992, more person-
nel and transport equipment were obtained, and
the tours were carried out systematically. The
tours 1) followed daily routes and 2) covered
the entire study area, ensuring the counting
of all nests in each season (Schoreder & Mur-
phy, 2000). The collected eggs were incubated
in hatchery or polyurethane boxes that were
numbered consecutively to facilitate analysis
(Mortimer, 1999). At the end of the incubation
period, nest exploration was performed (45 ±
3 days) to estimate hatching success (HS) by
dividing the number of eggs hatched (NEH) by
the total number of eggs (TNE) incubated for
each nest, with the formula HS = (NEH/TNE)
× 100 (Caut et al., 2006). Later, the hatchlings
were released into the sea during the night or at
dawn during low tide when the waves were not
very strong so the hatchlings could enter the
sea easily and quickly, preventing predation.
This research was carried out under agreements
with and permits granted by the Subsecre-
taria de Gestión para la Protección Ambiental,
Dirección General de Vida Silvestre (SGPA/
DGVS/06306), which are renewed annually.
Data analysis: The total number of nests
for each season, including collected, predated
and poached nests, the HS for each beach
each year were collected. The averages (with
their standard deviations) of each of these
parameters for the entire period were calcu-
lated, and a Mann-Whitney U test (P < 0.05)
was performed to identify differences between
the beaches with respect to the monitoring
data. Spearman correlation analysis was used
to assess correlations between the total nests
registered (which included collected, predated
and poached nests) and the study period. All
statistical analyses were performed with Sig-
maPlot v11 software. Nest abundance in 2045
was predicted by a predictive time series model
using IBM SPSS Statistics 23 software (Brown
et al., 1975; Gil & Lobo, 2012). The prospec-
tive analysis was performed for the next 30
years (more than two generations) considering
the average age at sexual maturity (13 years) of
the olive ridley turtle (Márquez, 1996; Zug et
al., 2006), with the assumption that mortality
will remain constant due to the standardization
of the years that PROTORMAR-UAS has per-
formed work on the beaches.
RESULTS
Registered and collected nests and pre-
dation and poaching: At SPC from 1976 to
2016, a total of 11 238 nests were registered,
of which 9 755 were collected, 848 were pre-
dated, and 635 were poached (Table 1); at this
beach, before 1992, the collection of nests was
variable (mean= 99.4 ± 75.4 nests per year).
This was because the same effort was not made
for technical reasons, but in 1992, the effort
was standardized, and since then, the number
of nests was approximately 340.2 ± 164 nests/
year, although there were nesting seasons with
less than 200 nests/year (1995= 187, 1998=
186, 2001= 169, 2002= 157 and 2003= 188). In
2004, it was not possible to work due to budget
constraints. At PC, only data from 1989 to 2016
were considered event though protection began
in 1986; before 1989, there were technical and
operational difficulties preventing consistent
monitoring, and some data were lost. During
the study period a total of 29 001 nests were
registered, of which 24 379 were collected,
1 878 were predated and 2 744 were poached.
The average number of registered nests before
2005 was 176.9 ± 110.1 nests/year, and after
2005, the abundance of nests increased to
2 180.9 ± 1 144.6 nests/year. The 2015 season
had the highest nesting record (4 859 nests)
(Table 1). When comparing the parameters
between nesting beaches, no significant differ-
ences were identified (P > 0.05).
Nesting, predation, and poaching
trends: For both nesting beaches, a posi-
tive and significant correlation was observed
between the number of registered nests and
time (rho = 0.850, P 0.01 for SPC, rho =
0.677, P 0.01 for PC, Table 2) and between
predated nests and time (rho = 0.454, P = 0.003
1128
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
TABLE 1
Annual data on nests and eggs collected as well as predation and poaching of olive ridley turtle (Lepidochelys olivacea)
nests in Santuario Playa Ceuta (1976-2016) and Playa Caimanero (1989-2016)
Santuario Playa Ceuta Playa Caimanero
Years
Registered
nest
Collected
nests
Protected
eggs
Predated
nests
Poached
nests
Registered
nest
Collected
nests
Protected
eggs
Predated
nests
Poached
nests
1976 84 40 4 013 14 30 - -
1977 129 112 11 414 12 5 - -
1978 104 75 7 646 8 21 - -
1979 65 48 4 993 5 12 - -
1980 39 35 3 696 4 0 - -
1981 52 47 4 774 5 0 - -
1982 46 35 3 476 4 7 - -
1983 72 47 4 993 4 21 - -
1984 82 65 4 858 0 17 - -
1985 67 51 6 448 5 11 - -
1986 125 104 10 631 14 7 - -
1987 208 179 15 720 23 6 - -
1988 222 197 18 336 25 0 - -
1989 61 61 6 076 0 0 124 117 11 710 1 6
1990 286 241 25 441 31 14 294 277 27 456 3 14
1991 300 253 24 441 32 15 205 193 18 351 2 10
1992 305 243 23 913 38 24 325 307 28 716 3 15
1993 294 240 30 047 21 33 187 176 15 853 2 9
1994 371 301 22 040 28 42 203 191 18 669 2 10
1995 251 187 14 930 9 55 165 155 14 046 2 8
1996 294 225 20 923 20 49 394 371 35 348 4 19
1997 348 343 30 785 2 3 318 300 29 111 3 15
1998 194 186 13 190 2 6 145 137 13 052 1 7
1999 237 219 24 069 7 11 129 122 11 168 1 6
2000 251 224 22 159 3 24 57 53 5 026 1 3
2001 196 169 18 474 8 19 30 28 2 873 1 1
2002 169 157 12 290 4 8 152 144 13 470 1 7
2003 208 188 19 166 18 2 12 10 903 1 1
2004 - - - - - 90 85 8 081 1 4
2005 246 239 26 872 3 4 781 737 67 262 7 37
2006 361 319 27 649 11 31 1 288 1 215 104 558 12 61
2007 398 388 35 176 3 7 1 815 1 712 151 899 17 86
2008 536 467 40 470 43 26 1 813 1 710 153 394 17 86
2009 462 392 23 673 39 31 1 415 1 335 101 560 13 67
2010 531 472 35 413 45 14 1 416 1 336 124 291 13 67
2011 403 353 24 994 44 6 2 108 1 449 127 723 232 427
2012 565 495 36 830 56 14 3 070 2 110 198 991 338 622
2013 473 398 37 854 70 5 3 332 2 290 218 051 366 676
2014 680 640 55 667 16 24 2 814 2 345 215 069 384 85
2015 932 821 61 695 93 18 4 859 4 305 399 453 323 231
2016 591 499 29 618 79 13 1 460 1 169 106 167 127 164
Total 11 238 9 755 844 853 848 635 29 001 24 379 2 222 251 1 878 2 744
Mean ±
Std Dev
281.0 ±
200.0
243.9 ±
179.8
21 121.3 ±
13 911.2
21.20 ±
22.7
15.9 ±
13.4
1 035.8 ±
1 249.2
870.7 ±
1 018.6
79 366.1 ±
93 792.3
67.1 ±
128.4
98.0 ±
180.0
1129
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
for SPC, rho = 0.789, P0.01 for PC, Table 2).
The average number of poached nests at SPC
was 15.9 ± 13.4 nests/year (Table 1). A positive
and significant correlation between the number
of poached nests (98.0 ± 180.0 nests/year) and
time was observed (rho = 0.673, P = 0.01; Table
2) for only PC.
Hatching success: HS showed great vari-
ability over the years at both beaches. How-
ever, since 2009, these oscillations stabilized
for both beaches (Fig. 2). HS percentages of
65.09 ± 14.72 % for SPC and 60.72 ± 16.39 %
for PC were estimated, and these values were
not statistically significant between beaches
(Mann-Whitney U = 486, P = 0.360).
Prospective nesting in 2045: Accord-
ing to the annual data analyzed, a predictive
time-series model with Brown exponential
smoothing was constructed; in both cases, the
residual values were independent (DF= 17,
Ljung-Box Q (18) = 9.492, P= 0.924 for SPC;
DF= 17, Ljung-Box Q (18) = 6.498, P= 0.989
for PC). The observed values have annual
variations but suggest a positive trend, as
shown by the adjusted values for both beaches
(Fig. 3A, Fig. 3B). From a stationary R
2
of
0.649, the prediction for 2045 is 1 733 [-215,
3 681] nests at SPC (Fig. 3A) and 7 718 [-2
435, 17 871] nests at PC, with a stationary R
2
of 0.632 (Fig. 3B).
DISCUSSION
Due to the management and conservation
efforts of PROTORMAR-UAS for the olive
TABLE 2
Correlation of registered, predated and poached nests and the course of time (years) for Santuario Playa Ceuta (SPC)
during 1976-2016 and for Playa Caimanero (PC) during 1989–2016
Santuario Playa Ceuta Playa Caimanero
Registered
nest
Predated
nests
Poached
nests
Registered
nest
Predated
nests
Poached
nests
Years rho Spearman 0.850 0.454 0.145 0.677 0.789 0.673
P value ≤ 0.01 0.003 0.372 ≤ 0.01 ≤ 0.01 0.01
rho = Spearman’s correlation coefficient, P < 0.05.
Fig. 2. Annual hatching success of the olive ridley turtle at Santuario Playa Ceuta and Playa Caimanero, Sinaloa, Mexico.
SPC: Santuario Playa Ceuta; PC: Playa Caimanero.
1130
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
ridley sea turtle in Northwestern Mexico, an
increase in the abundance of nests and eggs col-
lected at both biological stations was observed
from the start of operation until the last data
point. According to the correlation analysis,
there was an increase in the number of nests
throughout the study period at both beaches.
These increases may be due to different causes
or even a combination of several factors, which
together could influence the observed positive
trend of the increase in nests (rho= 0.850 and
rho= 0.677). These values coincide with that
reported in Playa La Flor in Nicaragua, where
a positive trend was observed over 8 years of
monitoring (Honarvar et al., 2016). Increases
in the numbers of nests were recorded at both
nesting beaches, which have similar lengths (≈
37 km), and the projection for 2045 was posi-
tive according to the time-series model with
Brown exponential smoothing. At both nesting
beaches, monitoring and tours were standard-
ized in 1992; in both cases, initial tours were
by foot and later by quad bike, depending
on the budget, available staff, and number of
volunteers, as well as weather conditions. The
current results are in accordance with those
reported by Anzanza-Ricardo et al. (2015), who
noted that in sea turtle conservation programs,
Fig. 3. Time-series predictive model for Lepidochelys olivacea nesting in A. Santuario Playa Ceuta and B. Playa Caimanero,
Sinaloa, Mexico, for the year 2045. LCS: superior confidence limit; LCI: inferior confidence limit.
1131
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
resource management is crucial to achieve
an adequate cost-benefit balance, and Hart et
al. (2018), who stated that an increase in and
consolidation of conservation and monitor-
ing activities will result in an increase in the
number of nests. However, monitoring and
conservation program evaluation continue to be
a challenge due to complications that can occur
during data collection and difficulty in obtain-
ing financial incentives to promote community
participation that promote positive attitudes
towards conservation and consistency in the
collection of information (Godley et al., 2020).
It is important to emphasize that although
there have been increases in the numbers of
nests on both beaches after effort standardiza-
tion, there has been a larger increase at PC,
with more than 1 000 nests, which is approxi-
mately 3-fold the number of nests than at SPC
after 2005. The conditions of both beaches are
quite different; SPC is a very spatiotemporally
dynamic beach in its granulometry and slope
(Sosa-Cornejo et al., 2019), while the condi-
tions at PC are more static. In addition, SPC
is in the Nearctic zone, and PC is in the Neo-
tropical zone. The El Verde Camacho nesting
beach, also in Sinaloa, has been considered the
Northern limit of nesting of the olive ridley
turtle in the Mexican Pacific (Ríos-Olmeda,
2005). However, SPC is located at a more
Northern latitude, and PC, which is South of El
Verde Camacho, has registered a larger number
of nests in the last 15 years than the El Verde
Camacho nesting site (Contreras-Aguilar, pers.
comm.). Genetic analysis of organisms inhabit-
ing SPC indicated that this rockery has moder-
ate genetic diversity that is very similar (h=
0.6) to that reported by Briseño-Dueñas (1998)
for El Verde Camacho (Campista-León et al.,
2019); therefore, the importance of monitor-
ing and conserving SPC and the need for more
studies at PC are highlighted due to the increas-
ing numbers of nests. In addition, climatic
variations, such as the El Niño Southern Oscil-
lation (ENSO), can influence the reproductive
success of sea turtles (Santidrián Tomillo et al.,
2020); these climatic variations could have no
effect or a moderate effect on olive ridley turtle
nesting (Ariano-Sánchez et al., 2020; Santid-
rián Tomillo et al., 2020). This was observed
during the extreme El Niño 2015-2016 event,
which resulted in decreases in the numbers of
nests on both beaches.
Additional factors that may have also
influenced the increases in the number of nests
are the age at sexual maturity (approximately
13 years [8-18 years]) of age (Márquez, 1996;
Zug et al., 2006), the total and permanent ban
of the capture of all species of sea turtles in
waters under Mexican jurisdiction (DOF, 1990)
and the use of sea turtle excluders since 1996
(DOF, 1996). Increases in nesting activity have
been reported for other species of sea turtles,
such as green and loggerhead turtles (Moncada
et al., 2014). Whether the main cause of the
increase in the number of nests is increased
monitoring effort, the total and permanent cap-
ture ban in 1990, spatial changes in the nesting
behavior of the olive ridley sea turtle as a result
of adaptation to environmental factors, or a
combination of these and other factors remains
unknown; therefore, it is necessary to carry out
additional studies and continue monitoring the
abundance of nests in this region. Nesting of
olive ridley sea turtles, although sporadic, has
been reported in the upper Gulf of California
in San Carlos, El Desemboque, and Puerto
Peñasco, Sonora (Seminoff & Nichols, 2007).
A record number of olive ridley sea turtle
hatchlings (2 241) was recently reported in
Desemboque, Sonora, which is located at a
very Northern latitude for olive ridley nesting,
where conservation has been performed for
more than 20 years (Arellano, 2020).
Although olive ridley turtles are the most
abundant sea turtles in the world, information
on olive ridley turtles is scarce compared to that
for other species (Abreu-Grobois & Plotkin,
2008). According to the IUCN red list, global
olive ridley populations are decreasing, with a
total decrease between 30 % and 50 %, and it is
not known whether this reduction has stopped
or if it is reversible (Abreu-Grobois & Plotkin,
2008). However, at the arribada beach, La Flor
de Nicaragua, a drastic increase in the num-
ber of nests was reported from 1998 to 2006
1132
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
(Honarvar et al., 2016), and at Playa Escobilla,
the most important arribada beach in Mexico,
sustained recovery was reported (1973-2010)
(CONANP, 2011). However, considering the
wide pantropical nesting habits of the olive
ridley turtle, evaluations on solitary beaches
are scarce. In the Mexican Pacific South of our
study area, in the states of Jalisco and Nayarit,
increases in the numbers of nests were reported
and attributed to conservation programs that
had been implemented for 29 years (Hart et al.,
2018). For a beach in Guatemala, a sustained
increase in the number of nests over the course
of 16 years was reported (Ariano-Sánchez et
al., 2020), while for the Pacific beaches of
Costa Rica, clear trends have not been reported
(James & Melero, 2015; Viejobueno Muñoz &
Arauz, 2015). For a beach in Brazil, an increase
in the number of olive ridley nests was reported
in 10 out of 11 years (da Silva et al., 2007).
Similar HS was recorded at both beaches
(65.09 and 60.72 % for SPC and PC, respec-
tively); these values were close to those report-
ed by Bárcenas-Ibarra et al. (2015) for El Verde
Camacho (58 %). Other studies have reported
a HS rate ranging between 75 and 85 % (Table
3). However, these studies were conducted in
more Southern latitudes of the Mexican Pacif-
ic, except for the study by da Silva et al. (2007).
A lower HS rate was reported for olive ridley
turtles than for other species, such as hawksbill
and green sea turtles (Bárcenas-Ibarra et al.,
2015); this discrepancy could be because for
other species, incubation regularly occurs in
situ, while for the olive ridley turtle, nests are
artificially incubated or relocated to hatcheries,
which affects mortality and HS (Mrosovsky,
1982). However, at an olive ridley nesting
beach in Costa Rica, Viejobueno Muñoz and
Arauz (2015) reported a HS rate of 61.38 %
for in situ nests, while the HS rate for nests
relocated to a hatchery was 77.9 % (Table 3). It
is necessary to compare the HS rates of in situ
and relocated nests to guide management deci-
sions, although predation and poaching may
limit these analyses for both nesting beaches.
Another factor influencing the incidence of
HS is temperature, as it has been shown that
in some cases, temperature exceeds the piv-
otal point of embryonic mortality (Rafferty &
Reina, 2014; Sandoval, 2012). In addition, it
is important to consider different management-
related factors, such as losses that occur during
monitoring phases on the beaches since these
also affect HS but are rarely evaluated.
Regarding the number of predated and
poached nests, both indicators were higher
at PC than at SPC. These results are not
TABLE 3
Hatching success at different nesting beaches of olive ridley turtle (Lepidochelys olivacea),
including Santuario Playa Ceuta and Playa Caimanero
Author (s) Year Country or region Hatching success (%)
Galván 1991 Jalisco, México 78.3
Cupul-Magaña & Aranda-Mena 2005 Jalisco, México 77.8
da Silva et al.
2007 Sergipe and Bahía, Brasil 78.7
Bárcenas-Ibarra & Maldonado Gasca 2009 Nayarit, México 79.4
Barrientos-Muñoz et al.
2014 Playa El Valle, Colombia 81.1
Bárcenas-Ibarra et al.
2015 Sinaloa, México. 58
James & Melero 2015 Península de Osa, Costa Rica 79.2
Viejobueno Muñoz & Arauz 2015 Punta Banco, Costa Rica 77.9
Carretero-Morales et al. 2018 Jalisco, México 79.7
Hart et al.
2018 Nayarit, Jalisco, México 85.4
This study SPC 2016 Sinaloa, México 65.08
This study PC 2016 Sinaloa, México 60.72
SPC: Santuario Playa Ceuta; PC: Playa Caimanero.
1133
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
surprising, as PC has a higher annual density
of nests than SPC, resulting in a greater avail-
ability of eggs for predators. Leighton et al.
(2010) suggested that the probability of nests
being predated or poached increases over time,
which was in accordance with the results of
the regression analysis for PC. The rate of
poaching of eggs at SPC did not increase over
time; this is likely because this beach is legally
protected and far from urban settlements. PC
is not legally protected, and coastal communi-
ties are present along the beach, which facili-
tates poaching even though it is prohibited.
Moreover, protection of the beach has not
been increased due to the lack of economic
resources, and protection status is an important
variable for monitoring (García et al. 2003).
On Venezuela’s nesting beaches, both preda-
tion and poaching rates were reduced over 10
years of conservation (2003-2012) (Ballad-
ares & Dubois, 2014). However, each nesting
beach and its surrounding environment have
very peculiar characteristics. Coyotes (Canis
latrans) are the most common opportunistic
predators of sea turtles in arid areas of Mexico,
and at both SPC and PC, the predation of eggs
by coyotes is common; in recent years, the
population of this predator has been increasing
(Álvarez-Castañeda, 2000; Méndez-Rodríguez
& Álvarez-Castañeda, 2016). At SPC, in addi-
tion to coyotes, the presence of new predators
such as raccoons and badgers has been reported
in recent years (2013-2016), and this may be an
explanation for the increase in predation. The
presence of these predators could be related to
the modification of habitats for shrimp farming
and agriculture.
Monitoring and conservation efforts for
the olive ridley turtle by the PROTORMAR-
UAS program have indicated that there has
been an increase in the number of nests at both
beaches since the establishment of the camps
to the present day. We suggest that PC, which
is located on the latitudinal limit of olive ridley
nesting, be designated as a legally protected
nesting area, given the need for resources for
the operation of the camp to ensure that nest
numbers continue to increase and address
predation and poaching. In addition, it is nec-
essary to carry out additional studies related
to the sex ratio of neonates, management and
conservation program success, and mortality
and congenital malformation incidence in this
species. With this information and data from
assessments of nesting trends, it will be pos-
sible to identify indicators and form a clearer
picture of the situation the olive ridley sea
turtle with regard to management and conser-
vation programs to guide appropriate decisions
regarding these programs.
Ethical statement: the authors declare
that they all agree with this publication and
made significant contributions; that there is no
conflict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are
fully and clearly stated in the acknowledge-
ments section. A signed document has been
filed in the journal archives.
ACKNOWLEDGMENTS
Thanks to the Autonomous University of
Sinaloa (UAS) for the continuous financial sup-
port for the operation of the Sea Turtle Program
(PROTORMAR-UAS); as well as students
and staff of the Faculty of Biology and Marine
Sciences of UAS. Thanks to the National Com-
mission of Protected Areas (CONANP), and
the people of the communities of Ceuta and La
Guasima, Sinaloa who participated during the
monitoring of this extensive study. Thanks also
to the companies Maricultura del Pacífico and
Agrícola Tarriba (Farmers Best) for the spon-
sorship of equipment and materials.
RESUMEN
Tendencias de anidación de la tortuga golfina
Lepidochelys olivacea (Testudinata: Cheloniidae)
en dos playas del noroeste de México después de
30 y 40 años de conservación
Introducción: A pesar de que las tortugas golfinas (Lepi-
dochelys olivacea) son las tortugas marinas más abundan-
tes del mundo, su información cuantitativa disponible es
1134
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
escasa y se encuentra distribuida de manera desigual entre
regiones. Existen muchos programas de manejo y conser-
vación para esta especie, y sus evaluaciones son necesarias
para identificar tendencias de anidación y poder manejar de
manera efectiva los programas de conservación actuales.
PROTORMAR-UAS es un programa de Investigación y
Conservación de la tortuga golfina creado por la Univer-
sidad Autónoma de Sinaloa, México. El Programa cuenta
con dos estaciones biológicas: Santuario de Playa Ceuta
(SPC) y Playa Caimanero (PC).
Objetivo: Evaluar la tendencia de anidación de la tortuga
golfina en dos playas del noroeste de México y predecir
las tendencias prospectivas de anidación para los próximos
30 años.
Métodos: A partir de los datos de registros anuales de
anidación de 40 años para SPC (1976-2016) y 30 años para
PC (1986-2016), evaluamos las tendencias de anidación,
el éxito de la eclosión y los problemas de depredación y
saqueo de nidos de la tortuga golfina en las dos playas
del noroeste de México. Posteriormente, se calcularon las
estimaciones prospectivas de anidación para los próximos
30 años usando un modelo predictivo de series de tiempo.
Resultados: Se identificó una correlación positiva y
significativa entre el registro anual de nidos y el tiempo
de estudio para ambas playas (rho = 0.850, P 0.01 para
SPC; rho = 0.677 y P ≤ 0.01 para PC); así como el éxito de
eclosión promedio de 65.09 para SPC y de 60.72 % para
PC. El modelo predictivo de series de tiempo indicó que
las anidaciones continuarán aumentando para el 2045, tres
veces para SPC y seis para PC, con respecto al último año
de monitoreo.
Conclusiones: Hay una clara tendencia positiva de anida-
ción de la tortuga golfina en ambos sitios, lo cual es consis-
tente con la tendencia observada en otros estudios recientes
de la región. Por lo tanto, sugerimos incluir a PC como un
área de anidación legalmente protegida, la cual se ubica en
los límites latitudinales de anidación de la tortuga golfina,
dada la necesidad de contar con recursos disponibles para
la operación del campamento ante el aumento de anidacio-
nes y de problemas de depredación y saqueo. Porque en
México operar una playa de anidación sin ningún estatus
de protección implica no tener presupuesto para su manejo.
Palabras clave: nidos; conservación de tortugas marinas;
tortuga golfina; éxito de eclosión; saqueo; depredación.
REFERENCES
Abreu-Grobois, A., & Plotkin, P. (2008). Lepidochelys
olivacea. (The IUCN Red List of Threatened Species,
Database, Version 2014.2). IUCN SSC Marine Turtle
Specialist Group. https://dx.doi.org/10.2305/IUCN.
UK.2008.RLTS.T11534A3292503.en
Álvarez-Castañeda, S. T. (2000). Familia Canidae. In S. T.
Álvarez-Castañeda, & J. L. Patton (Eds.), Mamíferos
del Noroeste de México II (pp. 690−705). Centro de
Investigaciones Biológicas del Noroeste, La Paz,
Baja California Sur México.
Arellano, A. (2020, 31 Octubre). El milagro de las tortugas
marinas en el Desemboque de los Seris. Cobertu-
ra360. https://cobertura360.mx/2020/10/31/sonora/
el-milagro-de-las-tortugas-marinas-en-el-desembo-
que-de-los-seris
Ariano-Sánchez, D., Muccio, C., Rosell, F., & Reinhardt,
S. (2020). Are trends in Olive Ridley sea turtle
(Lepidochelys olivacea) nesting abundance affected
by El Niño Southern Oscillation (ENSO) varia-
bility? Sixteen years of monitoring on the Pacific
coast of northern Central America. Global Ecology
and Conservation, 24(2020), e01339. https://doi.
org/10.1016/j.gecco.2020.e01339
Azanza-Ricardo, J., Gerhartz-Muro, J. L., Martín-Viaña,
F., & Moncada-Gavilán, F. (2015). Efectividad del
monitoreo de la anidación de tortugas marinas para
determinar el éxito reproductivo en playas del sur de
Cuba. Latin American Journal of Aquatic Research,
43(3), 548–556. 10.3856/vol43-issue3-fulltext-16
Balazs, G. H., & Chaloupka, M. (2006). Recovery trend
over 32 years at the Hawaiian green turtle rookery
of French Frigate Shoals. Atoll Research Bulletin,
543, 147–158.
Balladares, C., & Dubois, E. (2014). Saqueo y depredación
de nidadas de tortugas marinas, durante las tempora-
das 2003 a 2012, en seis playas del Golfo de Paria,
Venezuela. UNED Research Journal, 6(2), 239–243.
http://dx.doi.org/10.22458/urj.v6i2.630
Bárcenas-Ibarra, A., de la Cueva, H., Rojas-Lleonart, I.,
Abreu-Grobois, F. A., Lozano-Guzmán, R. I., Cue-
vas, E., & García-Gasca, A. (2015). First Approxi-
mation to congenital malformation rates in embryos
and hatchlings of sea turtles. Birth Defects research.
Part A, Clinical and Molecular Teratology, 103(3),
203–224.
Bárcenas-Ibarra, A., & Maldonado Gasca, A. (2009).
Malformaciones en embriones y neonatos de tortuga
golfina (Lepidochelys olivacea) en Nuevo Vallarta,
Nayarit, México. Veterinaria México, 40(4), 371–380.
Barrientos-Muñoz, K. G., Ramirez-Gallego, C., & Paez,
V. (2014). Nesting ecology of the olive ridley sea
turtle (Lepidochelys olivacea) (Cheloniidae) at El
Valle Beach, Northern Pacific, Colombia. Acta Bio-
lógica Colombiana. 19(3), 437–445. http://dx.doi.
org/10.15446/abc.v19n3.42457
Behera, S., Tripathy, B., Sivakumar, K., Choudhury, B. C.,
& Pandav, B. (2016). Fisheries impact on breeding
of olive ridley turtles (Lepidochelys olivacea) along
the Gahirmatha coast, Bay of Bengal, Odisha, India.
Herpetological Journal, 26(2), 93–98.
Briseño-Dueñas, R. (1998). Variación genética en la región
control del ADN mitocondrial de poblaciones de la
1135
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
tortuga golfina (Lepidochelys olivacea) en el Pacífi-
co oriental y las implicaciones para su conservación
(Tesis de Maestría). Universidad Autónoma de Sina-
loa, México.
Brown, R., Durbin, J., & Evans, J. (1975). Techniques
for testing the constancy of regression relationships
over time. Journal of the Royal Statistical Society,
Series B (Methodological), 37(2), 149–192. https://
doi.org/10.1111/j.2517-6161.1975.tb01532.x
Campista-León, S., Beltrán Espinoza, J. A., Sosa Cornejo,
I., Castillo Ureta, H., Martín del Campo Flores, J.
R., Sanchez Zazueta, J. G., & Peinado Guevara, L.
I. (2019). Haplotypic characterization of the olive
ridley turtle (Lepidochelys olivacea) in northwest
Mexico: the northernmost limit of its distribution.
Animal Biodiversity and Conservation, 42(1), 113–
126. https://doi.org/10.32800/abc.2019.42.0113
Carretero-Morales, R. E., Trejo-Robles, J. A., Trejo-Carre-
tero, V., Rodríguez-Plasencia, J. M., Espino-Herrera,
A., Estopin-Robles, A. A., Barriga-Vázquez, A. F.,
Sánchez-Navarro, C., Estrada-Galaviz, J., & Mosque-
da-Chavez, D. (2018). Eclosión en nidos de tortuga
golfina Lepidochelys olivacea, Eschscholtz (1829).
Campamento Tortuguero “La Gloria”, Santuario Pla-
yon de Mismaloya Jalisco. En J. Sosa Ramírez, C.
Jiménez Sierra, A. B. Solís-Cámara, P. Cortés-Calva,
L. Jiménez, E. Barba, S. Y. Alzaga, M. Pinkus, H.
González, G. Rodríguez, M. Pinkus, I. C. Espitia, V.
M. Martínez, & A. Ortega (Eds.), LIBRO DE COMU-
NICACIONES 2do Congreso Internacional de Áreas
Naturales Protegidas Aguascalientes, Aguascalien-
tes 2018 (pp. 241–242). Universidad Autónoma de
Aguascalientes, México.
Caut, S., Guirlet, E., Jouquet, P., & Girondot, M. (2006).
Influence of nest location and yolkless eggs on the
hatching success of leatherback turtle clutches in
French Guiana. Canadian Journal of Zoology, 84(6),
908–915. https://doi.org/10.1139/Z06-063
Ceriani, S. A., Casale, P., Brost, M., Leone, E. H., & Withe-
rington, B. E. (2019). Conservation implications of
sea turtle nesting trends: elusive recovery of a glo-
bally important loggerhead population. Ecosphere,
10(11), e02936. https://doi.org/10.1002/ecs2.2936
CONANP (2011). Tortuga golfina. Comisión Nacional de
Áreas Naturales Protegidas. http://procer.conanp.gob.
mx/tortugas/sitio/odf/fichas_tortugas/tortuga_golfi-
na_2011.pdf
CONANP (2018). Ficha SIMEC (Sistema de Información,
Monitoreo y Evaluación para la Conservación) del
Santuario Playa Ceuta, Elota, Sinaloa. Comisión
Nacional de Áreas Naturales Protegidas. https://
simec.conanp.gob.mx/ficha.php?anp=11&=11
Convention on International Trend in Endangered Species
of Wild Fauna and Flora (CITES) (2014). Appendices
I, II and III. http://www.cites.org/eng/app/appendi-
ces.php.
Cupul-Magaña, F. G., & Aranda-Mena, O. S. (2005). Éxito
de eclosión del cocodrilo americano (Crocodylus
acutus) y la tortuga golfina (Lepidochelys olivacea)
en Puerto Vallarta, Jalisco, México. Revista Electró-
nica de Veterinaria, 6(10), 1–7.
da Silva, A. C., de Castilhos, J. C., López, G. G., & Barata,
P. C. R. (2007). Nesting biology and conservation
of the olive ridley sea turtle (Lepidochelys oliva-
cea) in Brazil, 1991/1992 to 2002/2003. Journal
of the Marine Biological Association of the United
Kingdom, 87(4), 1047–1056. https://doi.org/10.1017/
S0025315407056378
Diario Oficial De La Federación (1986). DECRETO por
el que se determinan como zonas de reserva y sitios
de refugio para la protección, conservación, repobla-
ción, desarrollo y control, de las diversas especies
de tortuga marina, los lugares en que anida y desova
dicha especie. Gobierno Federal de México. http://
dof.gob.mx/nota_detalle.php?codigo=4815894&fec
ha=29/10/1986
Diario Oficial De La Federación (1990). ACUERDO por el
que se establece veda para las especies y subespecies
de tortuga marina en aguas de jurisdicción Federal del
Golfo de México y Mar Caribe, así como en las costas
del Océano Pacífico, incluyendo el Golfo de Califor-
nia. Diario Oficial de la Federación. Gobierno Fede-
ral de México. http://www.dof.gob.mx/nota_detalle.
php?codigo=4658226&fecha=31/05/1990
Diario Oficial De La Federación (1996). Norma Oficial
Mexicana de Emergencia 001-PESC-1996, por la
que se establece el uso obligatorio de los dispositivos
excluidores de tortugas marinas en las redes de arras-
tre camaroneras durante las operaciones de pesca de
camarón en el Océano Pacífico, incluyendo el Golfo
de California. Gobierno Federal de México. http://
www.dof.gob.mx/nota_detalle.php?codigo=4875991
&fecha=18/03/1996
Diario Oficial De La Federación (2002). ACUERDO por el
que se determinan como áreas naturales protegidas,
con la categoría de santuarios, a las zonas de reserva
y sitios de refugio para la protección, conservación,
repoblación, desarrollo y control de las diversas
especies de tortuga marina, ubicadas en los estados
de Chiapas, Guerrero, Jalisco, Michoacán, Oaxaca,
Sinaloa, Tamaulipas y Yucatán, identificadas en el
decreto publicado el 29 de octubre de 1986. Gobierno
Federal de México. https://www.dof.gob.mx/nota_
detalle.php?codigo=723470&fecha=16/07/2002
Diario Oficial De La Federación (2010). Protección
Ambiental de Especies Nativas de México de Flora
y Fauna Silvestres. Categorías de riesgo y especi-
ficaciones para la inclusión, exclusión o cambio de
listas de especies en riesgo (Norma Oficial Mexica-
na NOM-059-SEMARNAT-2010). Gobierno Federal
de México. https://dof.gob.mx/nota_detalle_popup.
php?codigo=5173091
1136
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
Frazier, J. (2003). Prehistoric and ancient historic interac-
tions between humans and marine turtles. In P. L.
Lutz, J. A. Musick, & J. Wyneken (Eds.), The biology
of sea turtles, Volume II (pp. 1–38). CRC Press.
https://doi.org/10.1201/9781420040807
Galván, P. V. (1991). Estudio de la Mortalidad Embrio-
naria de Lepidochelys olivacea en nidos incubados
seminaturalmente en playas de Mismaloya, Jalisco,
México (Tesis de Licenciatura). Universidad de Gua-
dalajara, México.
García, A., Ceballos, G., & Adaya, R. (2003). Intensi-
ve beach management as an improved sea turtle
conservation strategy in Mexico. Biological Con-
servation, 111(2), 253–261. https://doi.org/10.1016/
S0006-3207(02)00300-2
Gil, G. E., & Lobo, J. M. (2012). El uso de modelos pre-
dictivos de distribución para el diseño de muestreos
de especies poco conocidas. Mastozoología Neotro-
pical, 19(1), 47–62. https://www.redalyc.org/articulo.
oa?id=457/45723408005
Godley, B. J., Broderick, A. C., Colman, L. P., Formia, A.,
Godfrey, M. H., Hamann, M., Nuno, A., Omeyer,
L. C. M., Patricio, A. R., Phillot, A. D., Rees, A.
F., & Shanker, K. (2020). Reflections on sea turtle
conservation. Oryx, 54(2020), 287–289. https://doi.
org/10.1017/S0030605320000162
Hart, C. E., Maldona-Gasca, A., Ley-Quiñonez, C. P.,
Flores-Peregrina, M., Romero-Villarruel, J., Aranda-
Mena, O. S., Plata-Rosas, L. J., Tena-Espinoza,
M., Llamas-González, I., Zavala-Norzagaray, A.,
Godley, B. J., & Abreu-Grobois, F. A. (2018). Status
of Olive Ridley Sea Turtles (Lepidochelys olivacea)
After 29 Years of Nesting Rookery Conservation in
Nayarit and Bahía de Banderas, Mexico. Chelonian
Conservation and Biology, 17(1), 27–36. https://doi.
org/10.2744/CCB-1255.1
Honarvar, S., Brodsky, M. C., Van Den Berghe, E. P.,
O’Connor, M. P., & Spotila, J. R. (2016). Ecology
of Olive Ridley sea turtles at arribadas at playa La
Flor, Nicaragua. Herpetologica, 72(2016), 303–308.
https://doi.org/10.1655/Herpetologica-D-16-00014.1
James, R., & Melero, D. (2015). Anidación y conservación
de la tortuga lora (Lepidochelys olivacea) en playa
Drake, península de Osa, Costa Rica (2006 a 2012).
Revista de Biología Tropical, 63, 117–129. http://
dx.doi.org/10.15517/rbt.v63i1.23099
Leighton, P. A., Horrocks, J. A., & Kramer, D. L. (2010).
Predicting nest survival in sea turtles: when and
where are eggs most vulnerable to predation? Ani-
mal Conservation, 14(2), 186–195. https://doir.
org/10.1111/j.1469-1795.2010.00422.x
Márquez, R. (1990). Sea turtles of the world, an annotated
and illustrated catalogue of sea turtle species known
to date. Food and Agriculture Organization. http://
www.fao.org/3/t0244e/t0244e00.htm
Márquez, R. (1996). Las tortugas marinas y nuestro tiem-
po. La ciencia desde México, serie el océano y sus
recursos. Fondo de Cultura Económica.
Méndez-Rodríguez, L., & Álvarez-Castañeda, S. T. (2016).
Predation on turtle nests in the southwestern coast
of the Baja California Peninsula. Revista Mexica-
na de Biodiversidad, 87(2), 483–488. http://dx.doi.
org/10.1016/j.rmb.2016.02.005
Moncada, F., Tizol, D., Nodarte, G., & Medina, Y. (2014).
Efecto de las vedas en las poblaciones anidadoras de
tortuga verde (Chelonia mydas) y caguama (Caretta
caretta) en la playa El Guanal, Isla de la Juventud,
Cuba. Revista Cubana de Investigaciones Pesqueras,
31(2), 1–6.
Mortimer, J. A. (1999). Reducing threats to eggs and hat-
chlings: hatcheries. In K. L. Eckert, K. A. Bjorndal, F.
A. Abreu-Grobois, & M. Donnelly (Eds.), Research
and management techniques for the conservation of
sea turtles (pp. 175–178). IUCN/SSC Marine Turtle
Specialist Group.
Mrosovsky, N. (1982). Sex ratio bias in hatchling sea
turtles from artificially incubated eggs. Biologi-
cal Conservation, 23(4), 309–314. https://doi.
org/10.1016/0006-3207(82)90087-8
Pandav, B., Choudhury, B., & Shanker, K. (1998). The
Olive Ridley sea turtle (Lepidochelys olivacea) in
Orissa: An urgent call for an intensive and integrated
conservation programme. Current Science, 75(12),
1323–1328. https://www.jstor.org/stable/24101018
Peñaflores, C., Vasconcelos, J., Albavera, E., & Márquez,
R. (2000). Twenty-five years nesting of olive ridley
sea turtle Lepidochelys olivacea in Escobilla Beach,
Oaxaca, Mexico. In F. A. Abreu-Grobois, R. Brise-
ño, R. Márquez, & L. Sarti (Eds.), Proceedings of
the 18th International Sea Turtle Symposium (pp.
27–29). NOAA Tech Memo NMFS-SEFSC-436,
NOAA.
Pritchard, P. C. H. (1996). Evolution, phylogeny and
current status. In P. L. Lutz, & J. A. Musick (Eds.),
The Biology of Sea Turtles (pp. 1–28). CRC Press.
Pritchard, P. C. H. (2007). Arribadas I have known. In P.
T. Plotkin (Ed.), Biology and Conservation of Ridley
Sea Turtles (pp. 7–21). The Johns Hopkins University
Press.
Rafferty, A. R., & Reina, R. D. (2014). The influence of
temperature on embryonic developmental arrest in
marine and freshwater turtles. Journal of Experimen-
tal Marine Biology and Ecology, 450, 91–97. https://
doi.org/10.1016/j.jembe.2013.10.018
Richardson, J. I. (2000). Prioridades para los Estudios
sobre la Biología de la Reproducción y de la Ani-
dación. In K. L. Eckert, K. A. Bjorndal, F. A.
Abreu-Grobois, & M. Donnelly (Eds.), Técnicas de
investigación y Manejo para la Conservación de
1137
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 1124-1137, July-September 2021 (Published Set. 30, 2021)
las Tortugas Marinas (pp. 912). UICN/CSE Grupo
Especialista en Tortugas Marinas.
Ríos-Olmeda, D. (2005). Base de Datos (1975-2005).
Centro de Protección y Conservación de Tortu-
gas Marinas El Verde Camacho. Mazatlán, Sinaloa.
Programa Nacional de Tortugas Marinas, Comisión
Nacional de Áreas Naturales Protegidas (CONANP-
SEMARNAT). México.
Sandoval, S. (2012). Proporción sexual en crías de tortuga
Lepidochelys olivacea en corrales de incubación
del pacífico mexicano (Tesis de Doctorado). Centro
Interdisciplinario de Ciencias Marinas, Instituto Poli-
técnico Nacional, México.
Santidrián Tomillo, P., Fonseca, L. G., Ward, M., Tankers-
ley, N., Robinson, N. J., Orrego, C. M., Paladino, F.
V., & Saba, V. S. (2020). The impacts of extreme El
Niño events on sea turtle nesting populations. Clima-
tic Change, 159(2), 163–176. https://doi.org/10.1007/
s10584-020-02658-w
Schoreder, B., & Murphy, S. (2000). Prospecciones pobla-
cionales (terrestres y aéreas) en playas de anidación.
En K. L. Eckert, K. A. Bjorndal, F. A. Abreu-Grobois,
& M. Donnelly (Eds.), Técnicas de Investigación y
Manejo para la Conservación de las Tortugas Mari-
nas (pp. 51–63). UICN/CSE Grupo Especialista en
Tortugas Marinas.
Seminoff, J. A., & Nichols, W. J. (2007). Sea turtles of the
Alto Golfo: a struggle for survival. In R. S. Felger, B.
Broyles (Eds.), Dry Borders, Great Natural Reserves
of the Sonoran Desert (pp. 505–518). University of
Utah Press.
Sosa-Cornejo, I., Moran-Angulo, R. E., Enciso-Saracho,
F., Barraza-Ortega, M. A., Contreras-Aguilar, H.,
& Sosa-Pérez, R. (2019). Características físicas y
químicas del sustrato arenoso de la zona de anidación
de la tortuga marina Lepidochelys olivacea en Playa
Ceuta, Sinaloa, Mexico. In E. A Cuevas Flores, V.
Guzmán Hernández, J. J. Guerra Santos, & G. A.
Rivas Hernández (Eds.), El Uso del Conocimiento
de las Tortugas Marinas como herramienta para la
restauración de sus poblaciones y hábitats asociados
(pp. 151–160). Universidad Autónoma del Carmen,
México.
Spotila, J. (2004). Sea turtles, a complete guide to their
biology, behavior, and conservation. The Hopkins
University Press.
Viejobueno Muñoz, S., & Arauz, R. (2015). Conser-
vación y actividad reproductiva de tortuga lora
(Lepidochelys olivacea) en la playa de anidación
solitaria Punta Banco, Pacífico Sur de Costa Rica.
Recomendaciones de manejo a través de dieciséis
años de monitoreo. Revista de Biología Tropical, 63,
383–394. http://dx.doi.org/10.15517/rbt.v63i1.23117
Zug, G. R., Chaloupka, M., & Balazs, G. H. (2006). Age and
growth in olive ridley sea turtles (Lepidochelys oliva-
cea) from the North-central Pacific: a skeletochro-
nological analysis. Marine Ecology, 27(3), 263–270.
https://doi.org/10.1111/j.1439-0485.2006.00109.x