771
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(2): 763-771, April-June 2021 (Published June 30, 2021)
Journal of Ecology, 97(2), 311–325. https://doi.
org/10.1111/j.1365-2745.2008.01466.x
Markesteijn, L., Poorter, L., Bongers, F., Paz, H., & Sack, L.
(2011). Hydraulics and life history of tropical dry forest
tree species: Coordination of species’ drought and
shade tolerance. New Phytologist, 191(2), 480–495.
https://doi.org/10.1111/j.1469-8137.2011.03708.x
Méndez-Alonzo, R., Paz, H., Cruz, R., Rosell, J.A., &
Olson, M.E. (2012). Coordinated evolution of leaf
and stem economics in tropical dry forest trees.
Ecology, 93(11), 2397–2406. https://www.jstor.org/
stable/41739311
Murphy, P.G., & Lugo, A.E. (1986). Ecology of tropical
dry forest. Annual Review of Ecology and Syste-
matics, 17, 67–88. https://doi.org/10.1146/annurev.
es.17.110186.000435
Osuri, A.M., Chakravarthy, D., Mudappa, D., Raman,
T.R.S., Ayyappan, N., Muthuramkumar, S., & Partha-
sarathy, N. (2017). Successional status, seed dispersal
mode and overstorey species influence tree regenera-
tion in tropical rain-forest fragments in Western Ghats,
India. Journal of Tropical Ecology, 33(4), 270–284.
https://doi.org/10.1017/S0266467417000219
Paz, H., Pineda-García, F., & Pinzón-Pérez, L.F. (2015).
Root depth and morphology in response to soil
drought: comparing ecological groups along the
secondary succession in a tropical dry forest. Oeco-
logia, 179(2), 551–561. https://doi.org/10.1007/
s00442-015-3359-6
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S.,
Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cor-
nwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay,
C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright,
I.J., Ray, P., Enrico, L., Pausas, J.G., De Vos, A.C.,
… Cornelissen, J.H.C. (2013). New handbook for
standardised measurement of plant functional traits
worldwide. Australian Journal of Botany, 61(3),
167–234. https://doi.org/10.1071/BT12225
Pineda-García, F., Paz, H., & Meinzer, F.C. (2013).
Drought resistance in early and late secondary suc-
cessional species from a tropical dry forest: The
interplay between xylem resistance to embolism,
sapwood water storage and leaf shedding. Plant,
Cell and Environment, 36(2), 405–418. https://doi.
org/10.1111/j.1365-3040.2012.02582.x
Pineda-García, F., Paz, H., Meinzer, F.C., & Angeles, G.
(2015). Exploiting water versus tolerating drought:
Water-use strategies of trees in a secondary succes-
sional tropical dry forest. Tree Physiology, 36(2),
208–217. https://doi.org/10.1093/treephys/tpv124
Poorter, L., & Markesteijn, L. (2008). Seedling traits
determine drought tolerance of tropical tree species.
Biotropica, 40(3), 321–331.
Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Con-
dit, R., Ibarra-Manríquez, G., Harms, K.E., Licona,
J.C., Martínez-Ramos, M., Mazer, S.J., Muller-Lan-
dau, H.C., Peña-Claros, M., Webb, C.O., & Wright,
I.J. (2008). Are functional traits good predictors of
demographic rates? Evidence from five neotropical
forests. Ecology, 89(7), 1908–1920.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J., &
Villar, R. (2009). Causes and consequences of varia-
tion in leaf mass per area (LMA): A meta-analy-
sis. New Phytologist, 182(3), 565–588. https://doi.
org/10.1111/j.1469-8137.2009.02830.x
Prieto, I., Roumet, C., Cardinael, R., Dupraz, C., Jourdan,
C., Kim, J.H., Maeght, J.L., Mao, Z., Pierret, A.,
Portillo, N., Roupsard, O., Thammahacksa, C., &
Stokes, A. (2015). Root functional parameters along
a land-use gradient: Evidence of a community-level
economics spectrum. Journal of Ecology, 103(2),
361–373. https://doi.org/10.1111/1365-2745.12351
R Core Team. (2015). R: A language and environment
for statistical computing (v3.2.2). R Foundation for
Statistical Computing, Vienna, Austria. http//www.R-
project.org/
Romo, M. (2005). Efecto de la luz en el crecimiento de
plántulas de Dipteryx Micrantha Harms “Shihuahua-
co” tranplantadas a sotobosque, claros y plantaciones.
Ecología Aplicada, 4, 1–8. http://www.scielo.org.pe/
pdf/ecol/v4n1-2/a01v4n1-2.pdf
Roumet, C., Urcelay, C., & Díaz, S. (2006). Suites of root
traits differ between annual and perennial species
growing in the field. New Phytologist, 170(2), 357–368.
https://doi.org/10.1111/j.1469-8137.2006.01667.x
Salgado-Negret, B., Rodríguez, E.N.P., Cabrera, M., Oso-
rio, C.R., & Paz, H. (2016). Protocolo para la
medición de rasgos funcionales en plantas. In B.
Salgado-Negret (Ed.), La ecología funcional como
aproximación al estudio, manejo y conservación de la
biodiversidad: protocolos y aplicaciones (pp. 12–35).
Instituto de Investigaciones de Recursos Biológicos
Alexander von Humboldt, Colombia.
Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C.,
Franco, A.C., & Miralles-Wilhelm, F. (2007). Bio-
physical properties and functional significance of
stem water storage tissues in Neotropical savanna
trees. Plant, Cell and Environment, 30(2), 236–248.
https://doi.org/10.1111/j.1365-3040.2006.01623.x
Valverde-Barrantes, O.J., Smemo, K.A., & Blackwood,
C.B. (2015). Fine root morphology is phyloge-
netically structured, but nitrogen is related to the
plant economics spectrum in temperate trees.
Functional Ecology, 29(6), 796-807. https://doi.
org/10.1111/1365-2435.12384
Weemstra, M., Mommer, L., Visser, E.J.W., van Ruijven,
J., Kuyper, T.W., Mohren, G.M.J., & Sterck, F.J.
(2016). Towards a multidimension root trait fra-
mework: a tree root review. New Phytologist, 211(4),
1159-1169. https://doi.org/10.1111/nph.14003
Withington, J., Reich, P., Oleksyn, J., & Eissenstat, D.
(2006). Comparisons of structure and life span in
roots and leaves among temperate trees. Ecolo-
gical Monographs, 76, 381–397. https://doi.
org/10.1890/0012-9615(2006)076[0381:COSALS]2
.0.CO;2
See Digital Appendix at: / Ver Apéndice digital en: revistas.ucr.ac.cr