S180
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
Checklist of invertebrates and conspicuous fishes in rocky reefs
and Sargassum beds in the North Pacific of Costa Rica
Alvin Suárez
1, 2
; https://orcid/org/0000-0003-2394-2685
Rafael Riosmena-Rodríguez
1
*
Jorge Cortés
3
; https://orcid.org/0000-0001-7004-8649
1. Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México; SargassumGC@gmail.com
2. Centro de Estudios Biológicos, Medio Ambiente y Recursos Naturales, A.C. Felipe Carrillo Puerto, Quintana Roo,
México.
3. Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, 11501-2060, San José, Costa
Rica; jorge.cortes@ucr.ac.cr
* Deceased
Received 31-I-2021. Corrected 22-III-2021. Accepted 04-V-2021.
ABSTRACT
Introduction: The marine biodiversity is well known in some areas and for some marine ecosystems of the
Pacific coast of Costa Rica. The marine sector of Área de Conservación Guanacaste, in the North Pacific of the
country, is a priority area for conservation of marine and coastal biodiversity.
Objective: Our aim was to increase the knowledge of marine biodiversity in a conservation priority site in Costa
Rica and in poorly or scarcely studied marine ecosystems, such as rocky reefs and Sargassum beds, respectively.
Methods: The study was conducted in Bahía Salinas and Golfo de Santa Elena in 2013. In January, four rocky
reefs were visited; while in February three rocky reefs and one Sargassum bed were visited. We identified the
macroinvertebrates and conspicuous fish species through underwater visual census methods (timed swim and
band transects). The mean density of each species was estimated through band transects method.
Results: A total of 25 invertebrates and 34 fish species were identified. We found a high number of species of
invertebrates (23) and fish species (33) in rocky reefs, but few species on Sargassum beds (eight invertebrates
and ten fish species). Species composition differed between marine ecosystems.
Conclusions: Our study further evidence the limited knowledge of invertebrates and fish communities in these
marine ecosystems in the North Pacific of Costa Rica. Considerably more surveys and field work are required
to support management decisions that are backed by sound scientific knowledge.
Key words: echinoderms, mollusks, fishes, marine ecosystems, conservation priority site, Área de Conservación
Guanacaste.
Suárez, A., Riosmena-Rodríguez, R., & Cortés, J. (2021).
Checklist of invertebrates and conspicuous fishes in
rocky reefs and Sargassum beds in the North Pacific of
Costa Rica. Revista de Biología Tropical, 69(Suppl. 2),
S180-S193. https://doi.org/10.15517/rbt.v69iS2.48316
https://doi.org/10.15517/rbt.v69iS2.48316
The marine biodiversity of the Pacific
coast of Costa Rica is well known in some
areas (i.e., Bahía Culebra, Golfo de Nicoya,
Isla del Caño and Golfo Dulce). Other marine
areas remain poorly studied, with little infor-
mation available or far from complete, like
the north Pacific of Costa Rica (Bahía Salinas
and Golfo de Santa Elena) (Cortés, 2016;
Cortés, 2017; Wehrtmann & Cortés, 2009).
The same occurs regarding coastal ecosystems
since some, such as coral reefs, have been rela-
tively well studied (Alvarado, Beita-Jiménez,
S181
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
Mena, Fernández-García & Guzmán-Mora,
2015; Alvarado, Beita-Jiménez, Mena, Fernán-
dez-García, Guzmán-Mora, & Cortés, 2016;
Alvarado Beita-Jiménez, Mena, Fernández-
García, Cortés, Sánchez-Noguera, Jiménez,
& Guzmán-Mora, 2018; Cortés, 1886/1997);
while in others the research and publications on
marine biodiversity are scarce (such as sandy
beaches and rocky coast) (Dexter, 1974; Mad-
rigal-Castro, Cabrera-Peña, Monge-Esquivel &
Pérez-Acuña, 1984; Ortega, 1987; Sibaja-Cor-
dero & Cortés, 2008; Sibaja-Cordero, Cama-
cho-García & Vargas-Castillo, 2014).
The Área de Conservación Guanacaste
(ACG) is one of eleven Conservation Areas
within Costa Rica and it was declared a UNES-
CO World Heritage Site in 1999 (SINAC,
2012; UNESCO, 2020). The marine sector of
ACG, recognized as a conservation priority
site for marine and coastal biodiversity within
Marine Ecological Unit Papagayo in the north
Pacific of Costa Rica (Alvarado, Herrera, Cor-
rales, Asch, & Paaby, 2011; SINAC-MINAET,
2008), has a high species richness and high
diversity coastal and marine ecosystems, such
as mangrove forest, beaches, bays and coves,
rocky intertidal zones, mud flats, rocky subtidal
sites, coral reefs, rhodolith beds, deep areas,
shoals, and several isolated islands (Cortés,
2017; Cortés & Joyce, 2020). During the trade
winds season (December to April-May; Rodrí-
guez, Alfaro & Cortés, 2021) it is possible to
find marine ecosystem dominated by the brown
macroalgae Sargassum liebmannii J.A. Agardh
1847, that grow significantly as a consequence
of the upwelling that brings deep cold, nutrient-
rich and CO
2
-rich waters to the surface (Cortés,
Samper-Villarreal & Bernecker 2014).
In ACG, including Bahía Salinas (BSa)
and Golfo de Santa Elena (GSE), there are
some publications on invertebrates and fish
communities in coral reef, rocky reef and sandy
areas (Alvarado et al., 2018; Cordero-Umaña
& Santidrián-Tomillo, 2020). Thus, the aim of
the present study is to increase the knowledge
of marine biodiversity in this conservation
area, specifically on BSa and GSE, and on
poorly studied ecosystems like rocky reefs and
Sargassum beds. The study provides a checklist
of invertebrates and conspicuous fishes species
that occur on shallow (6-14 m depth) rocky
reefs and Sargassum beds in ACG. In addition,
patterns of geographic distribution, number
of species, species density and abundance
are discussed.
MATERIAL AND METHODS
Study site: The study was conducted dur-
ing January and February 2013 in BSa and
GSE, within ACG in the North Pacific of Costa
Rica (Fig. 1, Table 1).
Field methodology: In BSa we visited
two sites, while in the GSE six. The marine
ecosystems monitored were shallow (6 to 13.5
m depth) rocky reefs (boulders < 30 cm, small
rocks < 30 cm – 1 m, big rocks 1 m – 3m, and
rocks > 3m) and Sargassum beds (rocky sub-
strate covered with 70% to 100% Sargassum)
Fig. 1. Sampling sites in the North Pacific of Costa Rica.
Rocky reefs: S1, S2, S3, S4, S5, S7 and S8; Sargassum
beds: S6.
S182
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
(Fig. 1, Table 1). Underwater Visual Census
(UVC) methods using SCUBA were conducted
at the eight sites during two sampling times
(January and February 2013). In January, four
sites were visited (S2, S5, S7 and S8). At each
site the timed swim method, 50 to 60-minute,
were done to register the invertebrates and
conspicuous fish species. While in February,
the other four sites (S1, S3, S4 and S6) were
visited. Census followed standard band tran-
sect methodology described in previous studies
(Alvarado et al., 2015; Alvarado et al., 2016).
In each marine ecosystem, 10 m long tran-
sects, parallels to shore line and separated 10
m between them, were conducted by a single
diver swimming to register the composition
and abundance of invertebrates and conspicu-
ous fishes. Three to six transects were per-
formed at each site. Two runs were made along
each transect. The first run was done while the
line was being unrolled, recording all conspicu-
ous fishes (> 5 cm total length) in the water col-
umn. We focused on conspicuous species rather
than cryptobenthic species, or small fishes (<
~5 cm in total length) that are behaviorally
cryptic and are difficult to quantify by visual
surveys due to their close association with the
substratum (Allen, Bouvier & Jensen, 1992).
In the second run, the diver recorded all inver-
tebrates (>2.5 cm length) over the benthos and
between crevices. For both UVC techniques,
individuals under rocks were not registered
to avoid altering the substrate. The categories
were mollusks (gastropods and bivalves) and
echinoderms (sea stars, sea urchins, sea cucum-
bers and brittle stars). Cryptic species (brittle
stars) registered in transect bands method were
not quantify to avoid an underestimation. For
fishes, each band transect covered an area of
50 m
2
(10 x 5 m) and for invertebrates an area
of 20 m
2
(10 x 2 m). Mean density (# ind m
-2
),
relative abundance (# ind of one species/total
# individuals), and frequency of occurrence
(# transects observed/total # transects) were
calculated for each species.
Fish species nomenclature and taxonomic
designations followed Fricke, Eschemer & Van
der Laan (2020) and Van der Laan, Fricke &
Eschemeyer (2020), and for invertebrates the
World Register of Marine Species (WoRMS
Editorial Board, 2020). Fish species distribu-
tion were based on Froese & Pauly (2019) and
Fricke et al. (2020), and categorized as fol-
lows: CT, Circumtropical; EP, Eastern Pacific;
TABLE 1
Localities and survey sites in the North Pacific of Costa Rica. UVC: Underwater Visual Census; n: size of the sample.
Locality Survey site ID Geographic coordinates Depth (m) UVC method n
Bahía Salinas Isla Bolaños 1 S1 11°03’02.65’’N
85°42’39.62’’W
9 Band transect 3
Isla Bolaños 2 S2 11°02’45.19’’N
85°42’32.78’’W
9 Timed swim 1
Golfo de Santa Elena La Mesa S3 11°01’37.13’’N
85°45’46.44’W
9 Band transect 6
Isla Loro 1 S4 11°00’10.14’’N
85°44’51.43’W
9 Band transect 6
Isla Loro 2 S5 11°00’03.14’’N
85°44’50.86’’W
13.5 Timed swim 1
Isla Muñecos 1 S6 10°58’53.37’’N
85°43’01.78’’W
9 Band transect 6
Isla Muñecos 2 S7 10°58’51.67’’N
85°43’00.82’’W
11 Timed swim 1
Isla David S8 10°57’23.76’’N
85°43’21.98’’W
6 Timed swim 1
ID: Code of the survey sites in the map.
S183
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
IP, Indo-Pacific; ETP, Eastern Tropical Pacific;
WA, Western Atlantic. The IUCN Red List
(IUCN 2020) was used to categorize the con-
servation status of each species recorded in this
study as follows (in order of threat level): NE,
not evaluated; DD, data deficient; LC, least
concern. The categories mentioned correspond
only to the species observed in this study.
RESULTS
A total of 25 invertebrate species in 25
genera and 18 families were observed in BSa
and GSE (Table 2) with the combined use of
timed swim (n = 3) and band transects meth-
ods (n = 21). The most speciose invertebrate
families were the Muricidae (3 spp.), Ophidia-
steridae (2 spp.), Diadematidae (2 spp.), Toxo-
poneustidae (2 spp.), Cucumaridae (2 spp.) and
Ophiocomidae (2 spp.). Hexaplex (2 spp.) was
the most species rich genera, the rest of genera
were represented by one specie. The highest
number of species was observed in the rocky
reef (23 spp.) while in Sargassum beds eight
spp. (Table 2).
Based on classification of the IUCN Red
List, the conservation status of invertebrates
species observed in BSa and GSE is unknow
TABLE 2
Taxonomic list of invertebrates recorded in rocky reefs (RRs) and Sargassum beds (SBs) in the North Pacific
of Costa Rica during January and February 2013, with the IUCN Red List classification. NE: Not Evaluated
Taxon
Marine Ecosystem
IUCN
Red List
RRs SBs
Phylum Mollusca
Class Gastropoda
Family Conidae
Conus spp. Linnaeus, 1758
S1, S5 NE
Family Fasciolariidae
Opeatostoma pseudodon (Burrow, 1815)
S3, S4, S8 NE
Family Muricidae
Babelomurex hindsi (Carpenter, 1857)
S2 NE
Hexaplex erythrostomus (Swainson, 1831)
S3, S4 NE
Hexaplex princeps (Broderip, 1833)
S1, S2, S4, S5 S6 NE
Family Turbinellidae
Vasum caestus (Broderip, 1833)
S6 NE
Family Plakobranchidae
Elysia diomedea (Bergh, 1894)
S4, S7 S6 NE
Class Bivalvia
Family Margaritidae
Pinctada mazatlanica (Hanley, 1856)
S1, S2, S5 NE
Family Spondylidae
Spondylus limbatus G. B. Sowerbey II, 1847
S1, S5 NE
Phylum Echinodermata
Class Asteroidea
Family Mithrodiidae
Mithrodia bradleyi Verrill, 1867
S5, S7 NE
Family Ophidiasteridae
Pharia pyramidata (Gray, 1840)
S5 NE
Phataria unifascialis (Gray, 1840)
S1, S3, S4, S5, S7 NE
Family Oreasteridae
Nidorellia armata (Gray, 1840)
S3 NE
S184
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
because those species have not been assessed
by the IUCN (Table 2).
In the case of fishes, a total of 34 species
in 30 genera and 15 families were observed
(Table 3) with the combined use of timed swim
(n = 3) and band transects methods (n = 21).
The most speciose families were Serranidae (5
spp.), Pomacentridae (5 spp.), Labridae (5 spp.)
and Tetraodontidae (4 spp.). Haemulon (3 spp.)
and Halichoeres (3 spp.) were the most species
rich genera. Two genera were represented by
two species, and the rest by one species. The
highest number of fish species was observed
in the rocky reef (33 spp.), while in Sargassum
beds only 10 species (Table 3).
Three percent of species are restricted to
the Eastern Tropical Pacific (Gulf of California
to Peru), whereas 94% occur throughout the
Eastern Pacific (California, USA to Chile).
Only four species are found outside the Eastern
Pacific, one of which is circumtropical (Diodon
holocanthus), one is amphioceanic (Haemulon
steindachneri) and the remaining two occur in
the Indo-Pacific (Arothron hispidus, A. melea-
gris) (Table 3).
Classification by IUCN Red List status
revealed that the fish observed in BSa and GSE
are not species in threatened categories, only of
least concern (Table 3).
We counted a total of 1 964 invertebrate
individuals with the use of band transects (n
= 21). The highest number of individuals was
recorded in the rocky reef, 1 862 ind., while
in Sargassum beds only 102 ind. In the rocky
reef, Diadema mexicanum accounted for 81.3%
of all individuals observed. D. mexicanum
(100%) and Eucidaris thouarsii (93%) ranked
highest in frequency of occurrence, and three
species were observed between 40 to 50% of
the transects (Toxopneustes roseus, Opeatos-
toma pseudodon and Phataria unifascialis). D.
mexicanum has the highest mean density (5.04
Taxon
Marine Ecosystem
IUCN
Red List
RRs SBs
Class Echinoidea
Family Arbaciidae
Arbacia stellata (Blainville, 1825; ?Gmelin, 1791)
S1, S2, S3, S8 NE
Family Diadematidae
Astropyga pulvinata (Lamarck, 1816)
S7 S6 NE
Diadema mexicanum A. Agassiz, 1863
S1, S2, S3, S4, S5, S7, S8 S6 NE
Family Cidaridae
Eucidaris thouarsii (L. Agassiz & Desor, 1846)
S1, S2, S3, S4, S5, S7, S8 NE
Family Toxopneustidae
Toxopneustes roseus (A. Agassiz, 1863)
S1, S2, S3, S7, S8 S6 NE
Tripneustes depressus A. Agassiz, 1863
S2, S7 S6 NE
Class Holothuroidea
Family Cucumaridae
Cucumaria flamma Solis-Marin & Laguarda-Figueras, 1999
S2 NE
Pseudocnus spp. Panning, 1949
S2, S7 NE
Family Holothuriidae
Holothuria (Stauropora) fuscocinerea Jaeger, 1833
S2 NE
Class Ophiurodea
Family Ophiocomidae
Ophiocoma aethiops Lütken, 1859
S4, S5 NE
Ophiocomella alexandri (Lyman, 1860)
S6 NE
Family Ophionereididae
Ophionereis annulata (Le Conte, 1851)
S2 NE
S185
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
TABLE 3
Taxonomic list of conspicuous fishes recorded in rocky reefs (RRs) and Sargassum beds (SBs) in the North Pacific of
Costa Rica during January and February 2013, showing geographic distribution and IUCN Red List category.
CT: Circumtropical; EP: Eastern Pacific; EP + IP: Eastern Pacific and Indo-Pacific; EP + WA: Eastern Pacific
and Western Atlantic; ETP: Eastern Tropical Pacific. LC: Least Concern
Taxon
Marine Ecosystem
Distribution
IUCN
Red List
RRs SBs
Order Myliobatiformes
Family Urotrygonidae
Urobatis halleri (Cooper, 1863)
S2, S5 S6 EP LC
Order Anguilliformes
Family Muraenidae
Muraena lentiginosa Jenyms, 1842
S4, S5, S7, S8 EP LC
Order Acanthuriformes
Family Pomacanthidae
Holacanthus passer Valenciennes, 1846
S2, S3, S4, S5, S8 EP LC
Pomacanthus zonipectus (Gill, 1862)
S4, S8 EP LC
Family Chaetodontidae
Chaetodon humeralis Günther, 1860
S1, S2, S3, S4, S5, S7,
S8
S6 EP LC
Johnrandallia nigrirostris (Gill, 1862)
S3, S4, S5, S7, S8 EP LC
Order Tetraodontiformes
Family Diodontidae
Diodon holocanthus Linnaeus, 1758
S2, S3, S4, S5, S7, S8 S6 CT LC
Family Tetraodontidae
Arothron hispidus (Linnaeus, 1758)
S5, S8 EP + IP LC
Arothron meleagris (Anonymus, 1798)
S2, S5 EP + IP LC
Canthigaster punctatissima (Günther, 1870)
S2, S5, S8 S6 ETP LC
Sphoeroides lobatus (Steindachner, 1870)
S2 S6 EP LC
Family Balistidae
Balistes polylepis Steindachner, 1876
S5, S7, S8 S6 EP LC
Order Carangiformes
Family Carangidae
Caranx caballus Günther, 1868
S2, S3, S8 EP LC
Order Perciformes
Family Serranidae
Alphestes immaculatus Breder, 1936
S1, S2, S7 EP LC
Cephalopholis panamensis (Steindachner, 1876)
S2, S3, S4, S5, S7 EP LC
Epinephelus labriformis (Jenyns, 1840)
S1, S2, S3, S5, S7, S8 EP LC
Paranthias colonus (Valenciennes, 1846)
S8 EP LC
Serranus psittacinus Valenciennes, 1846
S6 EP LC
Family Apogonidae
Apogon pacificus (Herre, 1935)
S2, S5, S7, S8 EP LC
Family Lutjanidae
Lutjanus argentiventris (Peters, 1869)
S1, S2, S3, S4, S5, S7,
S8
EP LC
Family Haemulidae
Haemulon maculicauda (Gill, 1862)
S2 EP LC
Haemulon scudderii Gill, 1862
S8 EP LC
Haemulon steindachneri (Jordan & Gilbert, 1882)
S3, S4 S6 EP + WA LC
S186
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
± 2.02 ind m
-2
) (Table 4). While in Sargas-
sum beds, T. roseus accounted for 87.3% of
all individuals observed and ranked highest in
frequency of occurrence (83%) and in mean
density (0.74 ± 0.75 ind m
-2
) (Table 4).
We counted a total of 622 fish individuals
with the use of band transects (n = 21). The
highest number of individuals was recorded
in the rocky reef (539 ind.), while only 83 ind.
in Sargassum beds. In the rocky reef, three
Taxon
Marine Ecosystem
Distribution
IUCN
Red List
RRs SBs
Family Pomacentridae
Abudefduf troschelii (Gill, 1862)
S2, S4, S5, S7, S8 EP LC
Chromis atrilobata Gill, 1862
S3, S4, S5, S7, S8 EP LC
Microspathodon dorsalis (Gill, 1862)
S3, S4, S5, S8 EP LC
Stegastes acapulcoensis (Fowler, 1944)
S2, S3, S4 EP LC
Stegastes flavilatus (Gill, 1862)
S2, S4, S5, S7, S8 S6 EP LC
Family Labridae
Bodianus diplotaenia (Gill, 1862)
S2, S3, S4, S5, S7, S8 EP LC
Halichoeres chierchiae Di Caporiacco, 1948
S3, S5 EP LC
Halichoeres dispilus (Günther, 1864)
S3, S4, S7, S8 S6 EP LC
Halichoeres nicholsi (Jordan & Gilbert, 1882)
S5, S7 EP LC
Thalassoma lucasanum (Gill, 1862)
S1, S3, S5, S7, S8 EP LC
Family Scorpaenidae
Scorpaena mystes Jordan & Starks, 1895
S7 EP LC
TABLE 4
List of invertebrates observed in rocky reefs and Sargassum beds in the North Pacific of Costa Rica organized by
total abundance, relative abundance, frequency of occurrence, and mean density (± SD)
Species
Abundance
(# inds)
Relative abundance
(%)
Frequency
(%)
Mean Density
(#ind m
-2
)
SD
ROCKY REEFS
Diadema mexicanum
1513 81.3 1.00 5.04 2.02
Eucidaris thouarsii
192 10.3 0.93 0.64 0.57
Toxopneustes roseus
73 3.9 0.47 0.24 0.47
Opeatostoma pseudodon
43 2.3 0.47 0.14 0.24
Arbacia stellata
14 0.8 0.13 0.05 0.14
Phataria unifascialis
9 0.5 0.40 0.03 0.05
Hexaplex princeps
7 0.4 0.27 0.02 0.05
Hexaplex erythrostomus
3 0.2 0.13 0.01 0.03
Spondylus limbatus
3 0.2 0.07 0.01 0.04
Pinctada mazatlanica
2 0.1 0.07 <0.01 0.03
Conus sp.
1 0.1 0.07 <0.01 0.01
Elysia diomedea
1 0.1 0.07 <0.01 0.01
Nidorellia armata
1 0.1 0.07 <0.01 0.01
SARGASSUM BEDS
Toxopneustes roseus
89 87.3 0.83 0.74 0.75
Diadema mexicanum
4 3.9 0.50 0.03 0.04
Hexaplex princeps
3 2.9 0.33 0.03 0.04
Astropyga pulvinata
3 2.9 0.33 0.03 0.04
Vasum caestus
1 1.0 0.17 <0.01 0.02
Elysia diomedea
1 1.0 0.17 <0.01 0.02
Tripneustes depressus
1 1.0 0.17 <0.01 0.02
S187
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
species (Chromis atrilobata, Halichoeres dispi-
lus and Stegastes acapulcoensis) accounting
for 69.8% of all individuals observed. S. aca-
pulcoensis (60%), Bodianus diplotaenia (60%)
and Chaetodon humeralis (53%) ranked high-
est in frequency of occurrence, and five species
were observed on 33% of transects. According
to their mean density (Table 5), C. atrilobata
(0.34 ± 0.52 ind m
-2
), H. dispilus (0.09 ± 0.21
ind m
-2
), S. acapulcoensis (0.07 ± 0.10 ind
m
-2
) and H. steindachneri (0.05 ± 0.18 ind m
-2
)
ranked highest. While in Sargassum beds, H.
dispilus accounted for 77.1% of all individuals
observed and ranked highest in frequency of
occurrence (83%) and in mean density (0.21 ±
0.18 ind m
-2
) (Table 5).
DISCUSSION
The North Pacific of Costa Rica is a
region of great research interest due to its
TABLE 5
List of conspicuous fishes observed in rocky reefs and Sargassum beds in the North Pacific of Costa Rica organized by
total abundance, relative abundance, frequency of occurrence, and mean density (± SD)
Species
Abundance
(# inds)
Relative abundance
(%)
Frequency
(%)
Mean density
(#ind m
-2
)
SD
ROCKY REEFS
Chromis atrilobata
255 47.3 0.33 0.34 0.52
Halichoeres dispilus
65 12.1 0.33 0.09 0.21
Stegastes acapulcoensis
56 10.4 0.60 0.07 0.10
Haemulon steindachneri
40 7.4 0.27 0.05 0.18
Thalassoma lucasanum
23 4.3 0.13 0.03 0.10
Bodianus diplotaenia
19 3.5 0.60 0.03 0.03
Chaetodon humeralis
14 2.6 0.53 0.02 0.02
Diodon holocanthus
13 2.4 0.33 0.02 0.04
Johnrandallia nigrirostris
10 1.9 0.27 0.01 0.03
Epinephelus labriformis
9 1.7 0.40 0.01 0.02
Abudefduf troschelii
8 1.5 0.33 0.01 0.02
Microspathodon dorsalis
8 1.5 0.33 0.01 0.02
Holacanthus passer
4 0.7 0.20 <0.01 0.01
Stegastes flavilatus
4 0.7 0.13 <0.01 0.02
Lutjanus argentiventris
3 0.6 0.20 <0.01 0.01
Cephalopholis panamensis
2 0.4 0.13 <0.01 0.01
Halichoeres chierchiae
2 0.4 0.13 <0.01 0.01
Muraena lentiginosa
1 0.2 0.07 <0.01 0.01
Pomacanthus zonipectus
1 0.2 0.07 <0.01 0.01
Caranx caballus
1 02 0.07 <0.01 0.01
Alphestes immaculatus
1 0.2 0.07 <0.01 0.01
SARGASSUM BEDS
Halichoeres dispilus
64 77.1 0.83 0.21 0.18
Chaetodon humeralis
4 4.8 0.33 0.01 0.02
Haemulon steindachneri
4 4.8 0.17 0.01 0.03
Serranus psittacinus
3 3.6 0.33 0.01 0.02
Sphoeroides lobatus
2 2.4 0.33 <0.01 0.01
Stegastes flavilatus
2 2.4 0.17 <0.01 0.02
Urobatis halleri
1 1.2 0.17 <0.01 0.01
Diodon holocanthus
1 1.2 0.17 <0.01 0.01
Canthigaster punctatissima
1 1.2 0.17 <0.01 0.01
Balistes polylepis
1 1.2 0.17 <0.01 0.01
S188
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
high biological diversity and ocean-atmosphere
phenomena, and for its great national impor-
tance due to economic activities that take
place there (Cortés, 2014; Cortés, 2016). The
scientific information about species in marine
ecosystems in an area is critical to understand,
conserve and management the biodiversity in
an integral way (Margules & Pressey, 2000).
Although our records of invertebrates and
fish species in BSa and GSE are typical of the
biogeographic province of the Eastern Tropi-
cal Pacific (ETP) of Costa Rica (Alvarado,
Chacón-Monge, Solís-Marín, Pineda-Enríquez,
Caballero-Ochoa, Solano-Rivera & Romero-
Chaves, 2017; Alvarado & Chiriboga, 2008;
Alvarado & Fernández, 2005; Alvarado, Solís-
Marín & Ahearn, 2010; Alvarado et al., 2015;
Alvarado et al., 2018; Cordero-Umaña & San-
tidrián-Tomillo, 2020; Cortés, 2017; Dominici-
Arosemena, Brugnoli-Olivera, Cortés-Núñez,
Molina-Ureña & Quesada-Alpizar, 2005;
Murase, Angulo, Miyazaki, Bussing & López,
2014;), the distribution geographic record of
invertebrates and fishes observed in this study
contribute to the knowledge of marine biodi-
versity in conservation priority areas (North
Pacific of Costa Rica) and/or sites (marine sec-
tor of conservation areas) identified in the coun-
try (Alvarado et al., 2011; Cortés, 2012; Cortés,
2014; Cortés, 2017; SINAC-MINAET, 2008).
Moreover, it contributes to the research efforts
on the biodiversity of marine ecosystems of
the Pacific shores of Costa Rica (Cortés, 2012;
Cortés, 2016) that have received little (e.g.,
rocky reefs) (Cordero-Umaña & Santidrián-
Tomillo, 2020; Dominici-Arosemena et al.,
2005; Espinoza & Salas 2005) or scarce atten-
tion (e.g., Sargassum beds) compared with
others, e.g., coral reefs (Alvarado & Chiriboga,
2008; Alvarado et al., 2015; Alvarado et al.,
2018; Cortés, 1996/1997).
Our estimates of number of macroinver-
tebrates and conspicuous fish species would
be larger with more spatial and temporal rep-
lication. Because estimates are sample-design
dependent, comparisons to number of spe-
cies at other sites where different sampling
designs were used should be considered only
suggestive. At the rocky reefs, for mollusks
(gastropods and bivalves) and echinoderms
(sea stars, sea urchins, sea cucumber and brittle
stars) we recorded a lower number of species
(23) than reported in rocky reefs in the Gulf
of Papagayo (46 species) (Cordero-Umaña, &
Santidrián-Tomillo, 2020) and in coral reefs
(35 to 37 species) in the ETP of Costa Rica
(Alvarado et al., 2015; Alvarado et al., 2018).
On the other hand, the number of fish species
(33) is less than reported previously (46 to
81 species) by Cordero-Umaña & Santidrián-
Tomillo (2020), Dominici-Arosemena et al.
(2005) and Espinoza & Salas (2005) in rocky
reefs in the North Pacific of Costa Rica. Our
lower number of species maybe due to our
lower sampling compared to previous studies,
our results suggest that the number of macroin-
vertebrates and fish species in rocky reef could
be higher at BSa and GSE.
In the case of Sargassum beds, our study
is the first biodiversity report for this marine
ecosystem in the ETP of Costa Rica. With eight
macroinvertebrates (mollusks and echinoderms
groups) and ten fish species, the number of
species recorded are lower than reported in Sar-
gassum beds for these faunistic groups (44 to
73 species) from others latitudes, like the Gulf
of California in México (Foster, McConnico,
Lundsten, Wadsworth, Kimball, Brooks et al.,
2007; Suárez-Castillo, 2008; Suárez-Castillo,
2014; Suárez-Castillo, Riosmena-Rodríguez,
Hernández-Carmona, Méndez-Trejo, López-
Vivas, Sánchez-Ortiz et al., 2013). Our results
suggest that the number of invertebrates and
fish species could be higher in GSE, this too
possibly due lower sampling effort than used in
other studies, and because we visit the Sargas-
sum beds in February, before the algae reached
their maximum length (102.0 cm in April)
(Cortés et al., 2014). The mean length of S.
liebmanni thallus observed was 7.67 cm (Alvin
Suárez, personal observation). Sargassum spe-
cies are considered foundation species because
they harbor a vast diversity of species because
of the habitat produced by the algae itself (Fos-
ter et al., 2007; Suárez-Castillo, 2008; Suárez-
Castillo, 2014).
S189
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
The variation of nearshore flora and fauna
is often attributed to habitat structure and
seasonal changes in environmental conditions
(Aburto-Oropeza & Balart, 2001; Beukhof,
Dencker, Pecuchet & Lindegren, 2019; Domi-
nici-Arosemena & Wolff, 2006; Foster et al.,
2007; McCourt, 1984; Palacios & Zapata,
2014; Scrosati, 2001). However, without phys-
ical descriptors of marine ecosystems and
temporal replication and more quantitative,
seasonal records of species composition in
these marine ecosystems from this study, the
consistency of these temporal patterns and
their causes are largely unknow. The commu-
nities of invertebrate and fish of both marine
ecosystems have different species composition.
At the rocky reefs, the black sea urchin, D.
mexicanum, and slate pencil urchin, E. thouars-
sii, were the most abundant invertebrates (1
513 and 192 ind., respectively) and frequently
observed (100% and 93%, respectively). This
result suggest that our estimate is reasonable
for this marine ecosystem, where it has been
recognized that these two species are the most
dominant grazers in the ETP (Guzmán & Cor-
tés, 1993). It has been reported that these two
echinoids exert a strong influence on the com-
munity structure (Andrew, 1989; Glynn, Wel-
lington & Birkeland, 1979; Lawrence, 1975;
Underwood, 1992), so the values of mean
density of D. mexicanum (5.04 ind m
-2
) and
E. thouarsii (0.57 ind m
-2
) observed in this
study are important to consider the periodical
monitoring of community structure in rocky
reefs in BSa and GSE. The mean density value
recorded for D. mexicanum in this study are
higher than was has been previously recorded
in the northern Pacific region of Costa Rica
(0.20 to 2.19 ind m
-2
) (Alvarado, Cortés &
Reyes-Bonilla, 2012). The fish species compo-
sition observed in this study, high abundance
of C. atrilobata (255 inds.) and serranids,
pomacentrids, labrids and tetraodontids fishes
with highest number of fish species, is similar
to recorded for rocky reef in the North Pacific
of Costa Rica (Cordero-Umaña & Santidrián-
Tomillo, 2020; Dominici-Arosemena et al.,
2005; Espinoza & Salas, 2005), indicating that
the estimate for our survey sites is reasonable
for this type of community.
Comparisons of communities of inverte-
brate and fish species in Sargassum beds from
this study with the observed in other sites in
the northern Pacific region of Costa Rica can’t
be done, because our work represent the first
report of this type for this marine ecosystem
in the region. The composition of inverte-
brates and fish species recorded are similar
to observed in Sargassum beds in the Gulf of
California (Foster et al., 2007; Suárez-Castillo,
2008; Suárez-Castillo, 2014; Suárez-Castillo et
al., 2013) suggesting that our observations are
typical for this marine ecosystem. However,
it was possible to observe invertebrate spe-
cies (Vasum caestus, Astropyga pulvinata) that
have not been previously recorded in Sargas-
sum beds, and differences in the invertebrate
and fish species frequently observed and with
highest mean densities compared with Sargas-
sum beds in other sites (Suárez-Castillo, 2008;
Suárez-Castillo et al., 2013). Therefore, taxo-
nomic and community structure studies of the
fauna in Sargassum beds in the North Pacific of
Costa Rica are necessary.
The original approach of this research by
one of the authors (A. Suárez) was to monitor
the community of invertebrate and fish spe-
cies in Sargassum beds in the northern Pacific
region of Costa Rica, where has been reported
the absence of S. liebmannni since 2013, fol-
lowing a population outbreak of the black sea
urchin D. mexicanum (Cortés et al., 2014). The
substantial decrease or total disappearance of
these seaweed beds by multiple factors (sea-
sonal patterns related to temperature changes,
introduction of alien species, biotic interac-
tions, among others) has been reported in many
coastal areas around the world (Aburto-Oro-
peza, Sala, Paredes, Mendoza & Ballesteros,
2007; Britton-Simmons, 2004; Haraguchi &
Sekida, 2008; Rivera & Scrosati, 2006; Viejo,
1997; Xuan-Vy & Huu-Dai, 2011). The losses
of these foundation species and the shift from
algal dominated substrate to bare substrate,
as observed on rocky reefs in our survey
sites in BSa and GSE (Alvin Suárez, personal
S190
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
observation), may have implications in the
decline of marine biodiversity associated with
them. Therefore, more studies of marine biodi-
versity in Sargassum beds in the North Pacific
of Costa Rica are necessary.
Our study further evidences the poorly and
scarce knowledge of communities of inver-
tebrates and fish species in rocky reefs and
Sargassum beds in the North Pacific of Costa
Rica, respectively. Which require considerably
more survey and field work to locate such
marine ecosystems, better characterize their
marine biodiversity that occur in them and
better understand of the community structure
of fauna and the factors that determine them.
Information that is required to support man-
agement decisions that are backed by sound
scientific knowledge. These marine ecosystems
deserve special consideration in efforts to con-
serve biodiversity.
Ethical statement: authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we
followed all pertinent ethical and legal proce-
dures and requirements. All financial sources
are fully and clearly stated in the acknowled-
gements section. A signed document has been
filed in the journal archives.
ACKNOWLEDGMENTS
We dedicate this paper to the memory
of Rafael Riosmena-Rodríguez (1966-2016),
mentor, colleague and friend. The study was
possible by CONACYT (México) who granted
a Research Fellowship (Beca Mixta No. 34677)
to Alvin Suárez during his Doctorate (Scholar-
ship number 202159) for a research visit to the
Centro de Investigación en Ciencias del Mar
y Limnología, Universidad de Costa Rica. We
thank the editor and two anonymous reviewers
for their valuable comments and suggestions,
which greatly improved the paper. A special
thank to Eleazar Ruiz and Davis Morera for
their assistance in the field, and Imelda Amador
for support in the elaboration of the map.
RESUMEN
Listado de invertebrados y peces conspicuos
en arrecifes rocosos y mantos de Sargassum en
el Pacífico Norte de Costa Rica
Introducción: La biodiversidad marina es bien conocida
en algunas áreas y para algunos ecosistemas marinos de la
costa Pacífica de Costa Rica. El sector marino del Área de
Conservación Guanacaste, en el Pacífico norte del país, es
un área prioritaria para la conservación de la biodiversidad
marina y costera.
Objetivo: Nuestro objetivo fue el de incrementar el cono-
cimiento de la biodiversidad marina en un sitio prioritario
de conservación de Costa Rica y en ecosistemas marinos
poco o nulamente estudiados, como son los arrecifes roco-
sos y mantos de Sargassum, respectivamente.
Métodos: El estudio se realizó en Bahía Salinas y Golfo de
Santa Elena en el 2013. En enero, cuatro arrecifes rocosos
fueron visitados; mientras que en febrero tres arrecifes
rocosos y un manto de Sargassum fueron visitados. Identi-
ficamos las especies de invertebrados y peces conspicuos
a través métodos de censos visuales submarinos (buceos
cronometrados y transectos de banda). La densidad pro-
medio de cada especie se estimó mediante el método de
transectos de banda.
Resultados: Se registró un total de 25 invertebrados y
34 especies de peces. Encontramos un mayor número de
especies de invertebrados (23) y peces (33) en los arrecifes
rocosos, pero pocas especies en el manto de Sargassum
(ocho especies de invertebrados y diez de peces). La com-
posición de especies difirió entre ecosistemas marinos.
Conclusiones: Nuestro estudio evidencia el limitado cono-
cimiento de las comunidades de invertebrados y peces en
estos ecosistemas marinos en el Pacífico Norte de Costa
Rica. Considerablemente más encuestas y trabajo de campo
son requeridos para apoyar decisiones de manejo que sean
respaldados por conocimientos científicos solidos.
Palabras clave: equinodermos, moluscos, peces, sitio prio-
ritario de conservación, Área de Conservación Guanacaste.
REFERENCES
Aburto-Oropeza, O., & Balart, E. F. (2001). Community
structure of reef fish in several habitats of rocky
reef in gulf of California. Marine Ecology, 22(4),
283-305.
Aburto-Oropeza, O., Sala, E., Paredes, G., Mendoza, A.,
& Ballesteros, E. (2007). Predictability of reef fish
recruitment in a highly variable nursery habitat. Eco-
logy, 88(9), 2220-2228.
Allen, L. G., Bouvier, L. S., & Jensen, R. E. (1992). Abun-
dance, diversity, and seasonality of cryptic fishes and
their contribution to a temperate reef fish assemblage
S191
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
off Santa Catalina Island, California. Bulletin of the
Southern California Academy of Sciences, 91, 55-69.
Alvarado, J. J., Beita-Jiménez, A., Mena, S., Fernández-
García, C., & Guzmán-Mora, A. G. (2015). Eco-
sistemas coralinos del Área de Conservación Osa,
Costa Rica: estructura y necesidades de coservación.
Revista de Biología Tropical, 63(Supplement 1),
S219-S259.
Alvarado, J. J., Beita-Jiménez, A., Mena, S., Fernández-
García, C., Guzmán-Mora, A. G., & Cortés, J. (2016).
Ecosistemas coralinos del Parque Nacional Isla del
Coco, Costa Rica: estructura y comparación 1987-
2014. Revista de Biología Tropical, 64(Supplement
1), S153-S175.
Alvarado, J. J., Beita-Jiménez, A., Mena, S., Fernández-
García, C., Cortés, J., Sánchez-Noguera, C., Jiménez,
C., & Guzmán-Mora, A. G. (2018). Cuando la conser-
vación no puede seguir el ritmo de desarrollo: estado
de salud de los ecosistemas coralinos del Pacífico
Norte de Costa Rica. Revista de Biología Tropical,
66(Supplement 1), S280-S308.
Alvarado J. J., Chacón-Monge, J. L, Solís-Marín, F. A.,
Pineda-Enríquez, T., Caballero-Ochoa, A. A., Solano-
Rivera, S., & Romero-Chaves, R. (2017). Equino-
dermos del Museo de Zoología de la Universidad de
Costa Rica. Revista de Biología Tropical, 65(Supple-
ment 1), S272-S287.
Alvarado, J. J., & Chriboga, Á. (2008). Distribución y
abundancia de equinodermos en las aguas someras
de la Isla del Coco, Costa Rica (Pacífico Oriental).
Revista de Biología Tropical, 56(Supplement 2),
S99-S111.
Alvarado, J. J., Cortés, J., & Reyes-Bonilla, H. (2012).
Reconstruction of Diadema mexicanum bioerosion
impact on three Costa Rican Pacific coral reefs.
Revista de Biología Tropical, 62(Supplement 2),
S121-S132.
Alvarado, J. J., & Fernández, C. (2005). Equinodermos del
Parque Nacional Marino Ballenas, Pacífico, Costa
Rica. Revista de Biología Tropical, 53(Supplement
3), S275-S284.
Alvarado, J. J., Herrera, B., Corrales, L., Asch, J., & Paaby,
P. (2011). Identificación de las prioridades de conser-
vación de la biodiversidad marina y costera en Costa
Rica. Revista de Biología Tropical, 59(2), 829-842.
Alvarado, J. J., Solís-Marín, F. A., & Ahearn, C. G. (2010).
Echinoderm (Echinodermata) diversity in the Pacific
coast of Central America. Marine Biodiversity, 40,
45-56.
Andrew, N. L. (1989). Contrasting ecological implications
of food limitation in sea urchins and herbivorous
gastropods. Marine Ecology Progress Series, 51,
189-193.
Beukhof, E., Dencker, T. S., Pecuchet, L., & Lindegren,
M. (2019). Spatio-temporal variation in marine fish
traits reveals community-wide responses to environ-
mental changes. Marine Ecology Progress Series,
610, 205-222.
Britton-Simmons, K. H. (2004). Direct and indirect effects
of the introduced alga Sargasum muticum on bethic,
subtidal communities of Washington State, USA.
Marine Ecology Progress Series, 277, 61-78.
Cordero-Umaña, K. E., & Santidrián-Tomillo, P. (2020).
Conservation status of fish and marine invertebrate of
rocky reefs and sandy substrates in two unprotected
bays of the Papagayo Gulf, Costa Rica. Revista de
Biología Tropical, 68(4), 1311-1321.
Cortés, J. (1996/1997). Comunidades coralinas y arrecifes
del Área de Conservación Guanacaste, Costa Rica.
Revista de Biología Tropical, 44(3)/45(1), 623-625.
Cortés, J. (2012). Historia de la investigación marino-cos-
tera en Bahía Culebra, Pacífico Norte, Guanacaste,
Costa Rica. Revista de Biología Tropical, 60(Supple-
ment 2), S19-S37.
Cortés, J. (2014). Compilación y análisis de las investiga-
ciones científicas sobre temas marinos y atmosféricos
en el Pacífico Norte de Costa Rica. Revista de Biolo-
gía Tropical, 62(Supplement 4), S151-S184.
Cortés, J. (2016). The Pacific coastal and marine ecosys-
tems. In M. Kappelle (Ed.), Costa Rican Ecosystems
(pp. 97-138). Chicago, USA: The University of
Chicago Press.
Cortés, J., (2017). Marine biodiversity baseline for Área
de Conservación Guanacaste, Costa Rica: published
records. ZooKeys, 652, 129-179.
Cortés, J., & Joyce, F. (2020). BioMar-ACG: A successful
partnership to inventory and promulgate marine bio-
diversity. Biotropica, 52, 1104-1107.
Cortés, J., Samper-Villarreal J., & Bernecker, A. (2014).
Seasonal phenology of Sargassum liebmannii J.
Agardh (Fucales, Heterokontophyta) in an upwelling
area of the Eastern Tropical Pacific. Aquatic Botany,
119, 105-110.
Dexter, D. M. (1974). Sandy-beach fauna of the Pacific and
Atlantic coasts of Costa Rica and Colombia. Revista
de Biología Tropical, 22(1), 51-66.
Dominici-Arosemena, A., Brugnoli-Olivera, E., Cortés-
Núñez. J., Molina-Ureña, H., & Quesada-Alpizar, M.
(2006). Community structure of Eastern Pacific reef
fishes (Gulf of Papagayo, Costa Rica). Tecnociencia,
7(2), 19-41.
Dominici-Arosemena, A., & Wolff, M. (2006). Reef fish
community structure in the Tropical Eastern Pacific
(Panamá): living on relatively stable rocky reef envi-
ronment. Helgoland Marine Research, 60, 287-305.
S192
Revista de Biología Tropical, ISSN: 2215-2075 Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
Espinoza, M., & Salas, E. (2005). Estructura de las comu-
nidades de pecess de arrecife en las Islas Catalinas y
Playa Ocotal, Pacífico Norte de Costa Rica. Revista
de Biología Tropical, 53(3-4), 523-536.
Foster, M. S., McConnico, L. M., Lundsten, L., Wadswor-
th, T., Kimball, T., Brooks, L. B., Medina-López,
M., Riosmena-Rodríguez, R., Hernández-Carmona,
G., Vásquez-Elizondo, R. M., Johnson, S., & Ste-
ller, D. L. (2007). Diversity and natural history of a
Lithothamnion muelleri-Sargassum horridum com-
munity in the Gulf of California. Ciencias Marinas,
33(4), 367-384.
Fricke, R., Eschemer, W. N., & Van der Laan, R. (Eds),
(2020). Eschmeyers’s Catalog of Fishes: genera,
species, references. (Downloaded: October 16, 2020,
http://researcharchive.calacademy.org/research/ichth-
yology/catalog/fishcatmain.asp).
Froese, R., & Pauly, D. (Eds), (2019). FishBase. World
Wide Web electronic publication. (Downloaded:
October 16, 2020, https://www.fishbase.de).
Glynn, P. W., Wellington, G. M., & Birkeland, C. (1979).
Coral reef growth in the Galápagos: limitation by sea
urchins. Science, 203, 47-49.
Guzmán, H. M., & Cortés, J. (1993). Los arrecifes corali-
nos del Pacífico Oriental Ecuatorial: revisión y pers-
pectivas. Revista de Biología Tropical, 41, 535-557.
Haraguchi, H., & Sekida, S. (2008). Recent changes in the
distribution of Sargassum species in Kochi, Japan.
Kuroshio Science, 2/1, 41-46.
James, D. W. (1998). The Biology of Toxopneustes roseus
in rhodolith beds in Baja California Sur, Mexico.
(M.Sc. Thesis). San Jose State University, San Jose,
California, USA.
IUCN. (2020). IUCN Red List of Threatened Species. Ver-
sion 2013.2 (Downloaded: October 16, 2020, http://
www.iucnredlist.org).
Lawrence, J. M. (1975). On the relationships between
marine plants and sea urchins. Oceanography and
Marine Biology, An Annual Review, 13, 213-286.
Madrigal-Castro, E., Cabrera-Peña, J., Monge-Esquivel,
J., & Pérez-Acuña, F. (1984). Comparación entre dos
poblaciones de Acanthina brevidentata (Gastropoda:
Mollusca) en dos zonas rocosas de Playa Panamá,
Guanacaste, Costa Rica. Revista de Biología Tropi-
cal, 32(1), 11-15.
Margules, C. R., & Pressey, R. L. (2000). Systematic con-
servation planning. Nature, 405, 243-253.
McCourt, R. M. (1985). Seasonal patterns of abundance,
distributions, and phenology in relation to growth
strategies of three Sargassum species. Journal of
Experimental Marine Biology and Ecology, 74,
141-156.
Murase, A., Angulo, A., Miyazaki, Y., Bussing, A., &
López, M. I. (2014). Marine and estuarine fish
diversity in the inner Gulf of Nicoya, Pacific coast
of Costa Rica, Central America). Check List, 10(6),
1401-1413.
Ortega, S. (1987). Habitat segregation and temporal varia-
tion in some tropical intertidal populations. Journal
of Experimental Marine Biology and Ecology, 113,
247-265.
Palacios, M. del M., & Zapata, F. (2014). Fish community
structure on coral habitats with contrasting architec-
ture in the Tropical Eastern Pacific. Revista de Biolo-
gía Tropical, 62(Supplement 1), S343-S357.
Rivera, M., & Scrosati, R. (2006). Population dynamics of
Sargassum lapazeanum (Fucales, Phaeophyta) from
the Gulf of California, México. Phycologia, 45(2),
178-189.
Rodríguez, A., Alfaro, E. J., & Cortés, J. (2021). Spatial
and temporal dynamics of the hydrology at Salinas
Bay, Costa Rica, Eastern Tropical Pacific. Revista
de Biología Tropical, 69(Supplement 2), S105-S126.
Scrosati, R. (2001). Population dynamics of Caulerpa
sertularoides (Chlorophyta: Bryopsidales) from Baja
California, México, during El Niño and La Niña
years. Journal of the Marine Biological Association
of the United Kingdom, 81, 721-726.
Sibaja-Cordero, J. A., Camacho-García, Y. E., & Vargas-
Castillo, R. (2014). Riqueza de especies de inver-
tebrados en playas de arena y costas rocosas del
Pacífico Norte de Costa Rica. Revista de Biología
Tropical, 62(Supplement 4), S63-S84.
Sibaja-Cordero, J. A., & Cortés, J. (2008). Vertical zonation
of rocky intertidal organisms in a seasonal upwelling
area (Eastern Tropical Pacific). Revista de Biología
Tropical, 56(Supplement 4), S91-S104.
SINAC. (2012). Memoria Annual Institucional SINAC-
2011. Ministerio de Ambiente y Energía y Telecomu-
nicaciones (MINAET), Sistema Nacional de Áreas de
Conservación (SINAC). 72 pp.
SINAC-MINAET. (2008). Sistema Nacional de Áreas de
Conservación (SINAC) de Ministerio del Ambiente,
Energía y Telecomunicaciones (MINAET). GRUAS
II: Propuesta de ordenamiento territorial para la
conservación de la biodiversidad de Costa Rica. Volu-
men 3: Análisis de Vacíos en la Representatividad e
integridad de la biodiversidad marina y costera. San
José, CR. 60 pp.
Suárez-Castillo, A. N. (2008). Fauna asociada a mantos
de Sargassum (Ochrophyta: Fucales) en El Sauzoso,
Baja California Sur, México. (M.Sc. Thesis). Uni-
versidad Autónoma de Baja California Sura, La Paz,
Baja California Sur, México.
S193
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(Suppl. 2): S180-S193, October 2021 (Published Oct. 30, 2021)
Suárez-Castillo, A. N. (2014). Bosques de Sargassum en
el Golfo de California: estrategias para su manejo y
conservación. (Ph.D. Thesis). Universidad Autónoma
de Baja California Sura, La Paz, Baja California Sur,
México.
Suárez-Castillo, A. N., Riosmena-rodríguez, R., Hernán-
dez-Carmona, G., Méndez-Trejo, M. del C., López-
Vivas, J. M., Sánchez-Ortiz, C., Lara-Uc, M., &
Torre-Cosio, J. (2013). Biodiversity associated to
Sargassum forest at the Gulf of California. In R. Rios-
mena-Rodríguez (Ed.), Invertebrates: Classification,
Evolution and Biodiversity (pp. 205-223). New York,
USA: Nova Science Publishers, Inc.
Underwood, A. J. (1992). Competition and marine plan-
animal interactions. In D. M. Jhon, S. J. Hawkins,
& J. H. Price (Eds.), Plant animal interactions in the
marine benthos (pp. 443-476). Oxford: Clarendon
Press.
UNESCO. (2020). UNESCO World Heritage List. (Down-
loaded October 16, 2020, https://whc.unesco.org/
en/list/).
Van der Laan, R., Fricke, R., & Eschemer, W. N.
(Eds.) (2020). Eschmeyers’s Catalog of Fis-
hes: Classification. (Downloaded: October 16,
2020, https://www.calacademy.org/scientists/
catalog-of-fishes-classification).
Viejo, R. M. (1997). The effects of colonization by Sargas-
sum muticum on tidepool macroalgal assemblages.
Journal of the Marine Biological Association of the
United Kingdom, 77(22), 325-340.
Wehrtmann, I. S., & Cortés, J. (Eds), (2009). Marine Bio-
diversity of Costa Rica, Central America. Dordrecht:
Springer + Business Media B.V. Text 538 pp., Spe-
cies list in CD 500 pp.
WoRMS Editorial Board. (2020). World Register of Mari-
ne Species. (Downloaded: October 16, 2020, http://
www.marinespecies.org).
Xuan-Vy, N., & Huu-Dai, N. (2011). Re-assessment of
Sargassum beds at Hong-Kong Area, Nha Trang Bay,
Vietnam. Publications of the Seto Marine Biological
Laboratory, 41, 63-69.