645
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 636-646, e49716, Enero-Diciembre 2022 (Publicado Set. 09, 2022)
Beecher, D. J., Schoeni, J. L., & Wong, A. C. (1995).
Enterotoxic activity of hemolysin BL from Bacillus
cereus. Infection and Immunity, 63(11), 4423–4428.
Ben-Dov, E., Zaritsky, A., Dahan, E., Barak, Z., Sinai,
R., Manasherob, R., Khamraev, A., Troitskaya, E.,
Dubitsky, A., Berezina, N., & Margalith, Y. (1997).
Extended screening by PCR for seven cry-group
genes from field-collected strains of Bacillus thurin-
giensis. Applied and Environmental Microbiology,
63(12), 4883–4890.
Bernheimer, A. W., Avigad, L. S. (1970) Nature and proper-
ties of a cytolytic agent produced by Bacillus subtilis.
Journal of General Microbiology, 61, 361–369.
Bodour, A. A., Drees, K. P., & Maier, R. M. (2003). Distri-
bution of biosurfactant-producing bacteria in undis-
turbed and contaminated arid southwestern soils.
Applied and Environmental Microbiology, 69(6),
3280–3287.
Borriss, R. (2011). Use of plant-associated Bacillus stra-
ins as biofertilizers and biocontrol agents in agri-
culture. In D. K. Maheshwari (Ed.), Bacteria in
Agrobiology: Plant Growth Responses (pp. 41–76).
Springer-Verlag.
Chan, E. Y. (2005). Advances in sequencing technology.
Mutation Research, 573(1-2), 13–40.
Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R.
(2015). Biocontrol mechanism by root-associated
Bacillus amyloliquefaciens FZB42 - a review. Fron-
tiers in Microbiology, 6, 780.
Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon,
J., Kim, S., & Roberts, D. P. (2008). Isolation and
partial characterization of Bacillus subtilis ME488
for suppression of soilborne pathogens of cucumber
and pepper. Applied Microbiology and Biotechnolo-
gy, 80(1), 115–123.
Coronel-León, J., Grau, G. D., Grau-Campistany, A., Far-
fan, M., Rabanal, F., Manresa, A., & Marqués, A.
M. (2015a). Biosurfactant production by AL 1.1, a
Bacillus licheniformis strain isolated from Antarctica:
production, chemical characterization and properties.
Annals of Microbiology, 65(4), 2065–2078.
Coronel-León, J., Marqués, A., Bastida, J., & Manresa, A.
(2015b). Optimizing the production of the biosurfac-
tant lichenysin and its application in biofilm control.
Journal of Applied Microbiology, 120(1), 99–111.
El-Sheshtawy, H., Aiad, I., Osman, M., Abo-Elnasr, A., &
Kobisy, A. (2015). Production of biosurfactant from
Bacillus licheniformis for microbial enhanced oil
recovery and inhibition the growth of sulfate redu-
cing bacteria. Egyptian Journal of Petroleum, 24(2),
155–162.
Farzand, A., Moosa, A., Zubair, M., Khan, A. R., Hanif,
A., Tahir, H. A., & Gao, X. (2019). Marker assisted
detection and LC-MS analysis of antimicrobial com-
pounds in different Bacillus strains and their anti-
fungal effect on Sclerotinia sclerotiorum. Biological
Control, 133, 91–102.
Freire, J., & Sato, M. (1999). Conservación de cultivos de
rizobios. Revista Latinoamericana de Microbiología,
41, 35–41.
Ghribi, D., & Ellouze-Chaabouni, S. (2011). Enhancement
of Bacillus subtilis lipopeptide biosurfactants pro-
duction through optimization of medium composition
and adequate control of aeration. Biotechnology
Research International, 2011, 1–6.
Horikoshi, K. (2007). Past, present and future of extremo-
philes. Extremophiles, 12(1), 1–2.
Hsieh, F., Li, M., Lin, T., & Kao, S. (2004). Rapid detection
and Characterization of Surfactin-Producing Bacillus
subtilis and Closely Related Species Based on PCR.
Current Microbiology, 49(3), 186–191.
Jarrín, F. (2010). Protocolo de extracción de ADN de
bacterias y hongos CTAB-Modificación del Centro
Internacional de la PAPA. In A. Carrera, C. Yánez, &
E. Morillo (Eds.), Uso y conservación de la biodiver-
sidad de cepas de Azospirillum spp. para la produc-
ción y validación de un biofertilizante para el cultivo
de maíz en la Sierra del Ecuador (pp. 32). Instituto de
Investigaciones Agropecuarias (INIAP).
Kim, P., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y.,
Park, R., & Chi, Y. T. (2004). Purification and cha-
racterization of a lipopeptide produced by Bacillus
thuringiensis CMB26. Journal of Applied Microbio-
logy, 97(5), 942–949.
Litsinger, J. A. (1989). Second generation insect pest pro-
blems on high yielding rices. Tropical Pest Manage-
ment, 35(3), 235–242.
Liu, J., Hagberg, I., Novitsky, L., Hadj-Moussa, H., & Avis,
T. J. (2014). Interaction of antimicrobial cyclic lipo-
peptides from Bacillus subtilis influences their effect
on spore germination and membrane permeability
in fungal plant pathogens. Fungal Biology, 118(11),
855–861.
Li, Y., Yang, S., & Mu, B. (2010). The surfactin and
lichenysin isoforms produced by Bacillus lichenifor-
mis HSN 221. Analytical Letters, 43(6), 929–940.
Madslien, E., Rønning, H., Lindbäck, T., Hassel, B.,
Andersson, M., & Granum, P. (2013). Lichenysin
is produced by most Bacillus licheniformis strains.
Journal of Applied Microbiology, 115, 1068–1080.
Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem,
K. R. (2016). Effects of pesticides on environment. In
K. Hakeem, M. Akhtar, & S. Abdullah (Eds.), Plant,
soil and microbes (pp. 253–269). Springer.