1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
Effects of microplastics pollution on the abundance
and composition of interstitial meiofauna
Ana Milena Lagos1*; https://orcid.org/0000-0002-0009-6036
M. Victoria Leon1; https://orcid.org/0000-0002-0016-2515
Angie Colorado1; https://orcid.org/0000-0002-5883-9197
Daniel Giraldo1; https://orcid.org/0000-0003-2969-458X
Laura Fragozo1; https://orcid.org/0000-0002-6944-0587
Sigmer Y. Quiroga1; https://orcid.org/0000-0002-3321-1360
Alejandro Martínez2; https://orcid.org/0000-0003-0073-3688
1. Grupo de Investigación MIKU, Facultad de Ciencias Básicas, Universidad del Magdalena, Carrera 32 No 22-08, Santa
Marta D.T.C.H., Colombia; anamilagos@gmail.com, mvleon0221@gmail.com, angi.colorado@gmail.com,
danifergiraldo@gmail.com, lau.fragozo@gmail.com, sigmerquiroga@unimagdalena.edu.co
2. Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR),
Verbania, Italy; amartinez.ull@gmail.com
Received 02-VI-2022. Corrected 15-IX-2022. Accepted 04-I-2023.
ABSTRACT
Introduction: Pollution by microplastics is a global problem in marine environments, which impacts microor-
ganisms and ecosystems at several spatial levels. Sandy beaches are depositional environments where microplas-
tics tend to accumulate in large quantities. The co-occurrence of interstitial meiofauna and microplastics in sand
grains raises the question on whether the accumulation of microplastics in the sediments affects the abundance
and composition of the meiofaunal communities.
Objective: To test the hypothesis that microplastics affect the meiofauna of urban sandy beaches.
Methods: We studied the three main urban sandy beaches of Santa Marta, Colombia: El Rodadero, Santa Marta
Bay, and Taganga. All are similar in morphology and external pressures, and differ from other beaches in the
region. In April 2019 we collected 81 sand samples, equally distributed in the intertidal zone (upper, mid, and
lower intertidal levels). We applied generalized linear models to abundance, and multivariate permutational tests
to community composition.
Results: We identified 17 taxonomic groups of meiofauna, and microplastic particles (mainly 45-500 micron
fibres) evenly distributed across beaches and intertidal levels. There was more meiofauna at the mid intertidal
level, and in fine and medium grain sediment. At the lower intertidal level, sites with more microplastics had less
meiofauna. Abundance of microplastics explained 39 % of the variation in meiofaunal community composition
at lower intertidal levels.
Conclusions: The accumulation of microplastics might have a negative impact on these meiofaunal interstitial
communities. This is not surprising: if microplastics occupy the same physical space as these animals, they might
presumably modify the structure of sediments and the composition of interstitial water.
Key words: benthos; coastal zone; meiofauna abundance; microplastic abundance; pollution effect; sandy
beaches.
https://doi.org/10.15517/rev.biol.trop..v71i1.50031
AQUATIC ECOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
INTRODUCTION
The presence of microplastics (particles
of sizes below 5 mm) in marine ecosystems
and even in organisms, has been recognized
for years as a global environmental problem
(MSFD-TSGML, 2013). This problem is par-
ticularly serious in the ocean, where large
amounts of microplastics accumulate and per-
sist for a long time (Thompson et al., 2004;
Van Cauwenberghe et al., 2015). Microplastics
threaten marine ecosystems mainly due to
their inclusion in marine food webs through
ingestion (Wesch et al., 2016; Wright et al.,
2013), causing a negative impact on different
organisms. These impacts are both physical,
due to the accumulation of plastics inside
organisms (Cannon et al., 2016; Desforges et
al., 2015; Fossi et al., 2014; Nadal et al., 2016;
Ogonowski et al., 2016; Strungaru et al., 2019;
Von Moos et al., 2012) and chemical, produced
by the toxicity of plastic additives and contami-
nants that are adsorbed (Fossi et al., 2014; Li et
al., 2016; Lu et al., 2018; Rochman et al., 2013;
RESUMEN
Efectos de la contaminación por microplásticos en la abundancia
y composición de la meiofauna intersticial
Introducción: La contaminación por microplásticos es un problema global en los ecosistemas marinos, con
impacto sobre microorganismos y ecosistemas en varios niveles espaciales. Las playas arenosas son ambientes
de deposición donde se tiende a acumular gran cantidad de microplásticos. La co-ocurrencia de meiofauna
intersticial y microplásticos en granos de arena plantea la pregunta de que si la acumulación de microplásticos
en sedimentos afecta la abundancia y composición de comunidades de meiofauna.
Objetivo: Probar la hipótesis de que microplásticos afectan la meiofauna de playas arenosas urbanas.
Métodos: Estudiamos las tres principales playas arenosas urbanas de Santa Marta, Colombia: El Rodadero,
Bahía Santa Marta y Taganga. Estas son similares en morfología y presiones externas, y difieren de las otras pla-
yas de la región. En abril 2019 recolectamos 81 muestras de arena, distribuidas de manera equidistante en la zona
intermareal (nivel intermareal superior, medio y bajo). Aplicamos modelos lineales generalizados de abundancia,
y pruebas permutacionales multivariantes a la composición de comunidades.
Resultados: Identificamos 17 grupos taxonómicos de meiofauna, y partículas de microplástico (principalmente
fibras de 45-500 micras) distribuidos equitativamente a lo largo de las playas y niveles intermareales. Hubo más
meiofauna en el nivel intermareal medio, y en sedimentos de grano mediano y fino. A niveles intermareales más
bajos, sitios con más microplásticos tuvieron menos meiofauna. La abundancia de los microplásticos explicó el
39 % de la variación en comunidades de meiofauna a niveles intermareales bajos.
Conclusión: La acumulación de microplásticos podría tener un impacto negativo sobre las comunidades de mei-
ofauna intersticial. Esto no es de sorprender: si los microplásticos ocupan el mismo volumen físico que estos ani-
males, estos podrían presuntamente modificar la estructura de sedimentos y la composición del agua intersticial.
Palabras clave: bentos; zona costera; abundancia de meiofauna; abundancia de microplásticos; efecto de con-
taminación; playas arenosas.
Setälä et al., 2014). Although microplastics are
ubiquitous in the water column and sediments
across a wide bathymetric range, including
deep water (Faraday, 2019), these problems are
more acute along populated coastlines (Cole
et al., 2011), where microplastics are more
abundant. In these areas, the accumulation of
microplastics is influenced by their own physi-
cal characteristics, such as size and density, but
also by external environmental factors, such as
rainfall, hydrological changes, tidal zones, and
even stochastic storm (Lusher, 2015).
The general risk of microplastic contami-
nation along seacoasts is increased by the
proximity of land-based sources of contamina-
tion (Mathallon & Hill, 2014), which include
infrastructures linked to the port industry, tour-
istic development, and coastal urbanization.
In Latin America, the problem is exacerbated
by the high population density in the coastal
areas combined with a poor waste manage-
ment and lack of wastewater treatment in many
regions (Derraik, 2002; Kutralam-Muniasamy
et al., 2020). In this sense, urban beaches are
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
environments that are especially susceptible to
this type of pollution. On one hand, beaches are
in fact, depositional environments that natural-
ly accumulate particles carried by surrounding
areas, including microplastics (Acosta-Coley
& Olivero-Verbel, 2015). In Latin America,
urban beaches are not only exploited as mass
tourist destinations but are also highly urban-
ized and subject to heavy industrial activi-
ties, such as ports or fisheries, making them
particularly vulnerable (Wright et al., 1979;
Wright & Short ,1984). Therefore, the impact
of microplastics pollution on urban beaches
often acts synergically with other human-driv-
en impacts, such as erosion and trampling,
collectively affecting local conditions, leading
to changes in the composition and variation of
the structure of the benthic communities and, in
particular the interstitial meiofauna (Gheskiere
et al., 2005; Martínez et al., 2020; Rangel-
Buitrago et al., 2015).
Interstitial meiofauna is an important com-
ponent of the biodiversity on marine sand
beaches, due to its high taxonomic richness and
abundance. Unfortunately, meiofaunal animals
are often neglected in biodiversity studies,
as their characterization requires specialized
sampling techniques and taxonomic expertise
(Curini-Galletti et al., 2012; Martínez et al.,
2019). This neglect is problematic not only
because it produces biased information about
actual biodiversity in many regions, but also
an incomplete view of ecosystem functioning.
Meiofaunal organisms provide important ser-
vices in marine ecosystems, such as the transfer
of energy from microbial production to higher
trophic levels, thus catalysing many geochemi-
cal processes in coastal environments (Giere,
2009). Meiofaunal assemblages comprise
almost all animal phyla, responding differential-
ly to specific physical-chemical environmental
factors and often showing a faster response
to changes (Zeppilli et al., 2015). Therefore,
studying the abundance and composition of
meiofaunal communities remains as a valuable
tool for environmental assessments, since they
allow a rapid detection of different types of
impacts at different temporal and spatial scales
(Alexeev & Galtsova, 2012; Alves et al., 2015).
Surprisingly, although experimental work has
shown that meiofauna are affected by micro-
plastics in different marine habitats (Fueser et
al., 2019; Fueser et al., 2020; Mueller et al.,
2020; Wakaff et al., 2020), few studies have
focused on the specific impact of microplastics
on the interstitial meiofaunal communities in
natural environments. Large accumulations of
microplastics in the marine sediment affects its
structure, and therefore (Carson et al., 2011)
could also affect the meiofauna.
Our case of study relies on several quali-
tative surveys done over the last ten years
around the coastal areas of Santa Marta, in
which different beaches have been sampled to
describe the diversity of organisms. These stud-
ies collectively forecasted the richness of the
meiofaunal communities in the sandy beaches
of Santa Marta region (Castro et al., 2021;
González-Cueto et al., 2014; Lagos et al., 2018;
Lagos, 2018; Sevilla-Hernández, 2016), and
highlighted the presence of microfibers and
debris. The co-occurrence of meiofauna and
microplastics raises the question on whether the
accumulation of microplastics in the sediments
might affect the abundance and composition of
the meiofaunal communities inhabiting those
beaches (Carson et al., 2011).
The main goal of this study is to investigate
the distribution of microplastics, in the three
main urban sandy beaches of the Santa Marta
region (Colombia), all with similar impacts in
terms of tourism, population, and wastewater
discharge. Our main hypothesis is that, since
microplastics are deposit in the sediment modi-
fying its structure, they might have an effect on
the abundance and composition of the intersti-
tial meiofaunal communities on these beaches.
MATERIALS AND METHODS
Area of study: This study was focused on
the only three beaches accessible in a radius
of 10 km from Santa Marta, Northern Colom-
bia, which exhibit a comparable sedimentary
regime and are affected by similar human-driv-
en impacts, such as erosion and trampling,
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
allowing us to isolate the changes produced
only by the local variation of debris in the
sediment (Gheskiere et al., 2005; Martínez et
al., 2020; Rangel-Buitrago et al., 2015). These
urban sandy beaches in Santa Marta are: El
Rodadero, Santa Marta Bay, and Taganga (Fig.
1). All of them are pocket reflective beaches
with sparse swell, and narrow tide range, com-
posed of coarse to medium-fine sand eroded
from adjacent foothills of the Sierra Nevada
de Santa Marta (Correa & Morton, 2010; Gar-
cía et al., 2011; Rangel-Buitrago et al., 2019;
Rubio-Polanía & Trujillo-Arcila, 2013). They
are all subjected to strong tourism, population,
and fishermen pressure (Botero & Zienliski,
2020). The three investigated beaches are simi-
lar to each other, while they differ from other
sandy beaches in the region.
Sampling: Sampling was performed in
April 2019. Three sites were selected along
each beach. Three spots were sampled in each
site, corresponding to the lower, mid and upper
level of the intertidal zone. Three adjacent
samples were collected in each spot: one for
microplastics quantification, another for the
meiofaunal community characterization, and
a third for granulometric analysis. A total of
81 samples were studied, 27 for each beach.
Samples for microplastics and meiofauna were
collected using a 10-cm-high steel corer with
3.5 cm of inner diameter (Buchanan, 1984;
Piperagkas et al., 2019). Granulometric sam-
ples were collected using a steel shovel.
Sample processing: Debris were extract-
ed using the flotation method adapted from
Thompson et al. (2004). Each sample was
deposited in a 1 l glass conical flask, gauged
with a supersaturated saline solution (1.2 kg/l),
and stirred during 3 min at 200 rpm. After
allowing the mixture to settle for 10 min, the
supernatant was vacuum filtered through a
membrane filter (MCE). This process was
repeated four times for each sample. All parti-
cles were separated from the filter and visually
categorized using a DIC microscope (Hidalgo-
Ruz et al., 2012). To avoid contamination, we
minimized the exposure of each sample, which
remained sealed during most of the processing.
All containers and beakers were rinsed with
distilled water prior and after being used, and
reagents were prepared with molecular graded
milli-q water and periodically tested to confirm
they were plastic-free.
Fig. 1. Santa Marta region. The three sampled urban beaches are highlighted in red.
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
Samples for meiofauna were anesthetized
for 10 minutes in an isotonic 7.4 % magnesium
chloride solution, fixed using a 4 % solution of
buffered formalin, and dyed with Rose Bengal
to facilitate the counting. Fixed samples were
rinsed over a two-sieve stack of 500 and 45 μm.
The fraction retained by the 45 μm sieve was
mixed with LUDOX-TM solution (specific
density 1.15 g/cm3), successively centrifuge,
and decanted four times to extract all the
meiofaunal organisms (De Jonge & Bouwman,
1977), which were then identified and counted
under a Leica WILD M8 stereomicroscope.
Granulometry was evaluated from 300 g
of sediment, previously homogenized and dried
in an oven at 80 °C for 24 hours. The sediment
was sieved through a standard stack of six
sieves, and after 15 min, the fraction retained
in each sieve was weighted. Mean grain size
and sorting coefficient were calculated with the
software Gradistat (Bezerra et al., 1997; Folk &
Ward, 1957). The results were expressed using
the Wentworth fi coefficients for the mean
grain size (Giere, 2009).
Statistical analyses: Our first goal was to
understand the variation of microplastics and
meiofauna in our samples, accounting for the
effect across beaches, as well as for the different
intertidal levels and granulometry within each
beach. We expect that comparable amounts of
microplastics will arrive to each beach, as well
as a homogeneous deposition in the sediment
across the intertidal zone favoured by the small
tidal amplitude in the Santa Marta region. We
tested this hypothesis in two steps. First, we
assessed whether the homogeneous distribution
of marine microplastics and meiofauna across
beaches held true using an analysis of variance
(ANOVA); and then, we tested the effect of the
granulometry and tidal level at each beach on
the meiofauna and microplastics abundances
using generalized linear models (GLM). Abun-
dance of microplastics and meiofauna were
selected as response variable for those models,
while we considered the intertidal levels (cate-
gorical: upper, mid, lower) and the two continu-
ous granulometric parameters (mean grain size,
sorting coefficient) as response variables. The
abundance of microplastics was included as an
additional explanatory variable when the total
abundance of meiofauna was the response vari-
able. Beaches were included explicitly in each
model to account for unmeasured differences
between them. Beaches were not included as
a random effect due to the low number of rep-
licates. A negative binomial distribution was
assumed for each model to account for the over
dispersion of our response variable consisting
of counting data.
Our second goal was to explicitly investi-
gate the effect of the abundance of microplastics
at each intertidal level on the meiofaunal abun-
dances. Meiofauna and microplastics occur
together in the spaces amongst the sand, poten-
tially competing for the same space. There-
fore, we expect a reduction, yet small, of the
meiofaunal abundances in those samples with a
higher amount of microplastics. We expect this
reduction to be stronger in the mid and lower
levels, where meiofauna achieved the highest
abundances thereby increasing competition for
the space. We used again generalized linear
models to test this hypothesis, selecting the
abundances of meiofauna at each tidal zone
as the response variable. Total abundance of
microplastics and the two granulometric con-
tinuous variables (mean grain size, sorting) in
each intertidal level were selected as explana-
tory variables. As above, beaches were included
as an additional explicit factor; and a negative
binomial distribution was included to account
for the over dispersion of the counting data.
Before performing these two sets of anal-
yses, we checked whether the explanatory
variables were not correlated. After obtaining
the results, we checked the model fit by visu-
ally confirming the normal distribution of
the residuals, the absence of deviation in the
residual versus fitted plot, Q-Q plot, and plot of
Cook’s distances. The results are presented in
Analyses of Deviance Tables, as they show the
effect of each variable, calculating the signifi-
cance using likelihood ratio (LR) chi-square
tests for GLMs and Wald (W) chi-square tests
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
for GLMs. All analyses were run using (R Core
Team, 2016).
Finally, if the accumulation of micro-
plastics affects the structure of the sediment
(Carson et al., 2011), we expect this to favour
certain meiofaunal groups, affecting the overall
meiofaunal community composition in terms
of presence and abundance of each taxon, par-
ticularly in the mid and lower zones—where
competition is expected to be stronger. We
tested these potential differences in species
composition using a permutational multivariate
test (Permanova). A pairwise distance com-
munity matrix calculated with a Bray-Curtis
index at each intertidal level was selected as
a response variable against the same explana-
tory variables that were included in the previ-
ous models. A Bray-Curtis index was selected
as it is a widely used index that accounts for
the abundances of each taxon in the samples
(Somerfield, 2008). The analysis was run using
the function Adonis included R package vegan
v. 2.5.2 (Oksanen et al., 2018).
RESULTS
Microplastic abundance and visual
characterization: We counted a total of 1 131
microplastics on the three beaches. Fibres were
the most abundant (94.8 %), followed by foam
(2.9 %), films (1.2 %), and fragments (1.1 %)
(Fig. 2). The smallest observed microplastic
was 0.15 mm in length. The most predominant
colours were blue (39,1 %), black (28.6 %),
transparent (11.7 %), and red (9.1 %), (Fig.
2). The largest amount of microplastics was
recorded in the Santa Marta Bay (46.7 piec-
es/10 cm2) at the lower intertidal levels (45.9
pieces/10 cm2) (Table 1). However, the differ-
ences in the abundance of microsplastics were
not significant between beaches (ANOVA,
P = 0.421) or within tidal levels in the same
beaches (Table 2).
Characterization of the meiofauna and
the effect of microplastics. A total of 17 taxa
was found in the samples, being Nematoda,
Gastrotricha, Platyhelminthes, and Copepoda
the most abundant groups. It is important to
note that microplastics fibres were occasionally
observed in the intestine of larger meiofaunal
specimens (Fig. 3M, Fig. 3N). A list of the spe-
cies recorded so far for the beaches in the Santa
Marta region is summarized in Appendix 1. The
highest meiofaunal abundances were counted
in El Rodadero (2 151.8 ind/10 cm2), although
there are not significant differences with the
other beaches (ANOVA, P-value = 0.138).
Fig. 2. Types of microplastics particles found in the intertidal zone: A-C. Fibers. D. Foam. E. Fragments. F. Film.
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
However, as expected, the abundance of meio-
fauna was significantly affected by intertidal
levels and the granulometric composition, with
the highest abundances registered in the mid
intertidal level (2 085.7 items/10 cm2) (Table
1, Table 2), and towards medium and fine sedi-
ments (Fig. 4, Table 2).
We found a marginally significant, nega-
tive relationship between the abundance of
meiofauna and microplastics, although with
a small estimate (GLM, estimate = -0.012,
P = 0.044). When we isolated this effect in
the different intertidal levels, this relationship
was only retained at the lower intertidal level
TABLE 1
Average and standard deviations of the abundances of microplastics and meiofauna in each beach and intertidal levels.
Beach Intertidal level Sediment
description
Average abundance
of microplastics
(Items/10 cm2)
Average abundance
of meiofauna
(Individuals/10 cm2)
Total abundance
of meiofauna
Bahía de
Santa Marta
Upper Medium Sand 27.3 ± 7.5 1 026.3 ± 470.4 3 079
Mid Coarse Sand 41.0 ± 13.1 2 569.7 ± 1 298.8 7 709
Lower Coarse Sand 37.7 ± 12.0 567.3 ± 871.0 1 702
Rodadero Upper Fine Sand 45.3 ± 22.5 1 860.7 ± 388.4 7 690
Mid Fine Sand 36.0 ± 6.2 3 186.3 ± 2 289.0 12 019
Lower Medium Sand 58.7 ± 19.7 871.7 ± 725.0 3 442
Taganga Upper Fine Sand 42.3 ± 34.4 1 361.0 ± 343.0 4 083
Mid Coarse Sand 47.3 ± 19.9 501.0 ± 184.5 1 503
Lower Coarse Sand 41.3 ± 26.3 575.3 ± 347.1 1 726
TABLE 2
Effect of the abundance of microplastics, together with the confounding factor of the granulometry and beach, on the
abundance of meiofauna at the different beach intertidal levels, according to a type II ANOVA output for generalized linear
models.
LR Chisq Estimate ± s.e. d.f. P
Total Abundance of debris 5.087 -0.013 ± 0.006 10.024
Mean grain size 20.553 0.824 ± 0.172 1< 0.001
Sediment sorting 4.265 1.143 ± 0.499 10.039
Intertidal level 11.990 NA 2< 0.01
Beach 1.912 NA 2 0.385
Upper level Abundance of microplastics 1.984 0.008 ± 0.005 1 0.159
Mean grain size 5.397 0.962 ± 0.412 1 0.021
Sediment sorting 1.583 1.279 ± 1.011 1 0.208
Beach 14.680 NA 2< 0.001
Midlevel Abundance of microplastics 0.003 -0.013 ± 0.018 1 0.9559
Mean grain size 0.203 1.626 ± 0.855 1 0.6521
Sediment sorting 0.901 -1.857 ± 1.793 1 0.3425
Beach 30.385 NA 2< 0.001
Lower level Abundance of microplastics 82.43 -0.029 ± 0.003 1< 0.001
Mean grain size 121.66 0.905 ± 0.081 1< 0.001
Sediment sorting 32.37 1.647 ± 0.282 1< 0.001
Beach 75.63 NA 2< 0.001
Abbreviations: LR Chisq, likelihood ratio chi-square values; d.f., degree of freedom; P, chi-square goodness to fit, s.e.,
standard error.
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
(GLM, estimate = -0.03, P < 0.001) (Fig. 4,
Table 2).
The effect of microplastics was more con-
spicuous when the community species compo-
sition was analysed, significantly explaining the
39.3 % of the variation of the samples collected
at the lower intertidal level (PERMANOVA,
R2 = 39.3 %, P < 0.01). Other significant pre-
dictors for the community composition were
the intertidal level of the overall meiofauna
(PERMANOVA, R2 = 16.5 %, P = 0.035) and
the beach for the meiofauna collected in the
Fig. 3. Meiofauna diversity shown by examples from a variety of higher taxa. A. Nematoda, Enoplida; B. Nematoda,
Epsilonematidae; C. Platyhelminthes, Proseriata; D. Platyhelminthes, Dalyelliidae; E. Platyhelminthes, Polycladida; F.
Gastrotricha, Macrodasyidae; G. Gastrotricha, Chaetonotida; H. Annelida, Sedentaria, Ctenodrilus sp.; I. Arthropoda,
Chelicerata, Acari; J. Mollusca, Gastropoda, Microhedyle sp; K. Annelida, Clitellata, Olygochaeta, L. Tardigrada,
Heterotardigrada, Echiniscoididae; M. Annelida, Sedentaria, Saccocirrus cf. pussicus; N.-O. Saccocirrus cf. pussicus
collected from the Santa Marta region that exhibit microfibers inside their gut. Scales in A., E., H., J., K., M. 200 μm; in
C., D., N., O. 100 μm; and in B., F., G., I., L., 50 μm.
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
mid intertidal level (R2 = 16.5 %, P = 0.035)
(Table 3).
DISCUSSION
The high abundance of microplastics in
the intertidal zone of the sampled beaches is
most likely a consequence of the strong tourist
pressure, the presence of underwater outfalls
that discharge untreated wastewater, the water
from the outlets of the Manzanares and Gaira
rivers, as well as the activity of fishing and
maritime ports (Altamar et al., 2020; Fuentes-
Reines et al., 2021; Mancera-Pineda et al.,
2013). In previous studies in other coastal
areas, all these causes have been identified
as sources of debris and microplastics for the
marine environments (Talvitie et al., 2015;
Fig. 4. Graphical summary of the regression analyses. A. Boxplot showing the meiofaunal abundances in each beach and
intertidal levels. B. Relationship between the meiofaunal abundances and the mean grain size, represented as fi-coefficient
(-1 = very coarse sand, 2 = fine sand). C. Boxplot showing the abundance of microplastics in each beach and intertidal levels.
D. Relationship between the abundance of microplastics and mean grain size expressed as fi-coefficient. E. Relationship
between the abundance of meiofauna and abundance of microplastics. Plots represented with filled colour are significant.
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
Willis et al., 2017; Zubris & Richards, 2005).
Previous reports of microplastics in the Santa
Marta urban beaches (Garcés-Ordóñez et al.,
2020a; Garcés-Ordóñez et al., 2020b), have
recorded lower concentration than those of the
present study, probably because they have been
focused only on large fragments discarding the
fractions below 1 mm (Piperagkas et al., 2019).
Therefore, a comparison of the findings here
with those of these previous studies results
inappropriate due to the lack of methodological
standardization, which is a common problem in
studies associated with microplastics, and other
marine debris (Van Cauwenberghe et al., 2015).
Regarding the distribution of microplastics in
our samples, we found no significant differ-
ences between the abundance of microplastics
across intertidal levels, unlike other studies in
which the highest abundances of microplastics
have been reported for the lower level (Browne
et al., 2011; Claessens et al., 2011; Thompson
et al., 2004). This could be explained by the
high percentage of microfibers present in the
collected sample, since these are more homo-
geneously distributed in the marine environ-
ment than other microplastics, probably due to
their low density (Faraday, 2019; Liebezeit &
Dubaish, 2012; Mathallon & Hill, 2014), and
as a consequence of the small tidal amplitude
in the studied area. There was no relationship
between the grain size and microplastics con-
centrations, which is congruent with previous
studies that suggested that the distribution of
microplastics depends on the density of the
TABLE 3
Effect of the abundance of microplastics and other variables in the meiofaunal community composition.
Predictor R2P
Total Abundance of microplastics 0.021 0.699
Intertidal level 0.165 0.035
Mean grain size 0.068 0.109
Sediment sorting 0.023 0.659
Beach 0.038 0.858
Residuals 0.686
Upper Abundance of microplastics 0.146 0.205
Intertidal level 0.301 0.077
Mean grain size 0.098 0.355
Beach 0.189 0.426
Residuals 0.266
Mid Abundance of microplastics 0.085 0.229
Intertidal level 0.202 0.050
Mean grain size 0.216 0.058
Beach 0.332 0.050
Residuals 0.164
Lower Abundance of microplastics 0.393 < 0.01
Intertidal level 0.149 0.098
Mean grain size 0.142 0.133
Beach 0.128 0.466
Residuals 0.189
Results are reported from permutational multivariate analyses of variance (PERMANOVA) on the effect of different sets of
explanatory variables on community composition calculated as pairwise Bray-Curtis dissimilarities of the occurrence and
abundance of the major meiofaunal groups. Analyses are performed for all the dataset, as well as the upper, mid, and lower
intertidal levels. R2 and P values are reported. P values for significant predictors are marked in bold.
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
material as well as the biological interactions
with microbial films, and coastal physical
processes (Alomar et al., 2016; Browne et al.,
2011; Mathalon & Hill, 2014; Nor & Obbard,
2014; Wang et al., 2020).
Our results agree with other global stud-
ies (Alvarez-Zeferino et al., 2020; Browne et
al., 2011; Claessens et al., 2011; Kutralam-
Muniasamy et al., 2020; Van Cauwenberghe
et al., 2013) that found a predominance of
fibres among the types of microplastics pres-
ent in sandy beaches. However, this differs
with investigations in the Caribbean coast of
Colombia, which reported higher concentra-
tions of fragments rather than fibres; these
differences are likely to be a consequence of
different methodological approaches, as well as
the larger mesh size sieves (1–5 mm) used by
those researchers (Acosta-Coley et al., 2019;
Garcés-Ordoñez et al., 2020a; Portz et al.,
2020). In accordance with our finding, blue is
the most common colour of the microplastic
recovered from other sandy beaches around the
world (Alvarez-Zeferino et al., 2020; Hidalgo-
Ruz et al., 2012; Lots et al., 2017), followed
by black and to a lesser extent red, yellow, and
green (Alvarez-Zeferino et al., 2020; Coley
et al., 2020). Other authors, however, referred
to transparent as the dominant colour (Di &
Wang, 2018; Peng et al., 2017; Tsang et al.,
2017; Zhu et al., 2019), but this variation
could be again a methodological issue related
to the method of classification, especially if a
visual sorting is performed without confirma-
tion with other methods (e.g., Spectrometry,
micro-Raman spectroscopy). We speculate that
the abundance of blue fibres might be related
to the presence of fisheries near the localities,
given that most of the nets used by the fisher-
men in Taganga or Santa Marta Bay are made
of blue plastic polymers. However, specific
chemical analyses are necessary to confirm
this hypothesis.
Regarding the meiofauna, the average of
abundances and number of taxa were like those
recorded in other tropical sandy beaches (Fon-
seca et al., 2014; Liñero-Arana et al., 2012),
whereas the dominance of taxonomic groups
coincided with the findings of McLachlan and
Brown (2006) on reflective beaches. The high
abundances were recovered in the mid intertid-
al level, like previous studies (Ape et al., 2017;
Baia & Venekey, 2019; Fanini et al., 2020).
However, even though our study was carried
out on protected beaches, it is interesting that
the abundance of meiofauna had been signifi-
cantly affected by the intertidal level because
a weak zoning pattern is expected in protected
sandy beaches with a small tidal range (Hour-
ston et al., 2005; Pereira et al., 2018). The
significant relation between the sand grain size
and meiofauna density is also not surprising;
it has been extensively shown in other beaches
that particle size, sorting, shape, and porosity
are key factors that determine the distribution
of the meiobenthic communities (Defeo &
McLachlan, 2005; Giere, 2009; Rodríguez et
al., 2001; Rodríguez, 2004). Despite the pres-
ent study is the first evidence of the impact
of marine microplastics on meiofaunal in the
natural environments, our results agree with
recent experimental work, which have showed
a weak yet significant impact of microplastics
on the meiofauna (Wakkaf et al., 2020) attrib-
uted to the chemical toxicity of these pollut-
ants over certain species. This toxicity could
have a greater effect on organisms belonging
to certain trophic guilds, such as non-selective
filtering, or deposit and suspension feeders
that might accidentally ingest microplastics
and debris fragments (Gusmão et al., 2016).
Additionally, soft-bodied organisms with weak
cuticles that might absorb chemicals accumu-
lated in the interstitial water, or organisms that
adhere particles either directly using adhesive
glands, or indirectly by secreting viscous sub-
stances through dermis for movement can be
highly affected (Cole et al., 2013; Fueser et al.,
2020; Haegerbaeumer et al., 2019).
The impact of microplastic ingestion has
been studied in specific meiofaunal groups
(Gusmão et al., 2016) and this might explain
our results regarding abundance and com-
position at the lower intertidal level, where
some of those species (i.e., polychaete species)
might be concentrated due to the abundance of
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
microplastics. However, we propose that these
changes are not only related to the direct impact
of the microplastics, but also to the indirect
physical effect that their accumulation cause
on the sediment structure and thereby in the
selection of different species assemblages than
those occurring in microplastic free areas. Dis-
entangling such effects and isolating them from
the many other physic-chemical and anthro-
pogenic factors that synergically affect sandy
meiofaunal communities (Giere, 2019; Leasi
et al., 2018; Martínez et al., 2020; Zeppilli et
al., 2015) deserves future studies, desirably
increasing the number of localities and geo-
graphical areas, incorporating a larger number
of taxonomic operational units (morphological
species or molecular sequences produced by
next generation sequencing tools), and adding
functional information. This will alleviate local
confounding factors, as well as species-specific
effects of microplastics, explaining better the
patterns in abundance and species composi-
tion observed here (Mueller et al., 2020). By
publishing these results, yet limited to three
beaches, we hope to stimulate further research
in that direction.
There is a significant relationship between
the presence of microplastics in the sediment,
and the abundance and composition of intersti-
tial meiobenthic communities on three studied
sandy beaches. We are aware that the results
here rely on a limited sampling, and that they
will need to be evaluated more extensively.
We argue, however, that these limitations are
otherwise justified in this specific case by the
geographic particularities of the Santa Marta
region. Since we were able to find a significant
impact even with these limitations, we consider
these results relevant to inspire future research
in other areas, considering that the locations
selected in this study represent iconic examples
of the urban beaches commonly found in tropi-
cal and subtropical areas worldwide. In addi-
tion, we provide an updated checklist on the
meiofaunal taxa known from Colombian Carib-
bean beaches, including several new reports
collected during this project.
Ethical statement: the authors declare
that they all agree with this publication and
made significant contributions; that there is no
conflict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are
fully and clearly stated in the acknowledge-
ments section. A signed document has been
filed in the journal archives.
ACKNOWLEDGMENTS
We would like to thank Grupo de Inves-
tigación MIKU, Facultad de Ciencias Básicas,
Universidad del Magdalena, Colombia, this
study were supported by Fondo Patrimonial
para la Investigación “FONCIENCIAS” 2017
de la Universidad de Magdalena. We are in debt
to Maikon Di Domenico (Universidade Fed-
eral do Paraná), Diego Fontaneto and Stefano
Mammola (IRSA-CNR), for the comments
and suggestion provided during the elaboration
of this manuscript. We thank Anisbeth Daza
Padilla for the tardigrada identifications and
Dr. Marcela Bolanos and Joseph Dunn who
kindly improved the English of the manuscript.
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
APPENDIX 1
List of the species and genus so far recorded for the beaches in Santa Marta region.
Taxa Beach Tidal level Morphological
identification
Metabarcoding
identification Reported by:
Tardigrada Echiniscoides sp.BAH Intertidal X Here
Stygarctidae TAG Intertidal X Here
Halechiniscidae TAG Intertidal X Here
Batillipes sp. BAH Intertidal X Here
Acari Ascidae ROD Intertidal X Sevilla-Hernández
2016
Copidognathus BAH Intertidal X Sevilla-Hernández
2016
Actacarus mollis TAG Intertidal X Bartsch 1996
Actacarus uniscutatus TAG Intertidal X Bartsch 1996
Actacarus minor TAG Intertidal X Bartsch 1996
Platyhelminthes Theama cf. evelinae ROD Intertidal and
subtidal
X Here
Otoplana sp. ROD Intertidal X X Here, Castro
et al., 2021
Dalyelliidae ROD Intertidal X Here
Monocelidae ROD Intertidal X Here
Macrostomum lineare BAH, SIS Intertidal X Castro et al. 2021
Vannuccia sp. BAH Intertidal X Castro et al. 2021
Monocelis fusca ROD Intertidal X Castro et al. 2021
Postbursoplana sp. MON, SIS Intertidal X Castro et al. 2021
Adenopharynx
mitrabursalis
BAH Intertidal X Castro et al. 2021
Kymocarens sp. MON, SIS Intertidal X Castro et al. 2021
Nemertea Ototiplonemertes lactea BAH Intertidal and
subtidal
X Gonzales-Cueto
et al. 2014
Ototiplonemertes erneba BAH, ROD Intertidal X Gonzales-Cueto
et al. 2014
Ototiplonemertes sp. BAH Intertidal X Gonzales-Cueto et
al. 2014; Castro et
al 2021
Ototiplonemertes duplex TAG Intertidal X Castro et al. 2021
Cephalothrix bipunctata BAH, ROD,
MON, SIS
Intertidal X Castro et al. 2021
Annelida Claudrilus cf. corderoi BAH, SIS Intertidal X X Castro et al. 2021
Claudrilus cf. ovarium ROD Intertidal X X Castro et al. 2021
Claudrilus draco SIS Intertidal X X Castro et al. 2021
Ctenodrilus sp. TAG Subtidal X Here
Perkinsyllis sp. TAG Intertidal X Here
Protodrilus smithsoni TAG (MON) Intertidal X X Here, Castro
et al. 2021
Hesiodens gohari ROD, BAH,
TAG
Intertidal X Lagos et al. 2018
Hesionura sp.ROD , TAG Intertidial (near
rocks and algaes)
X Here
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
Taxa Beach Tidal level Morphological
identification
Metabarcoding
identification Reported by:
Mesonerilla sp. ROD Subtidal X Here
Microphthalmus cf.
mahensis
ROD Intertidal and
subtidal
XLagos et al. 2018
Nerilla antennata SIS, MON Intertidal X X Castro et al. 2021
Nerilla cf. mediterránea ROD, TAG Intertidal and
subtidal
XLagos et al. 2018
Neogyptis mediterranea ROD Intertidal X Lagos et al. 2018
Neopetitia
amphphothalma
ROD Intertidal X Lagos et al. 2018
Pettiboneia sp. TAG Intertidal X Here
Pisione
hartmannschroederae
BAH, ROD Sediments
near rocks
(max 0,3 m deep)
X Here
Pisionidens ixazaluohae MON Intertidal X X Castro et al. 2021
Pisionidens indica ROD Intertidal X Fauchald 1973
Pharyngocirrus cf.
gabriellae
ROD, BAH,
TAG
Intertidal and
subtidal
XLagos et al. 2018
Polygordius sp. BAH, TAG, Intertidal and
subtidal
X Here
Protodrilus cf. smithsoni ROD, TAG,
SIS, MON
Intertidal and
subtidal (near rocks)
X X Lagos et al. 2018;
Castro et al. 2021
Saccocrirrus cf. pussicus BAH, ROD Intertidal X X Here, Castro
et al. 2021
Schistomeringos sp. TAG Subtidal (near
rocks and algae)
X Here
Salvatoria clavata TAG Subtidal (near
rocks and algae)
X Here
Gastrotrichia Aspidiophorus sp. TAG (MON) Intertidal X Castro et al. 2021
Cephalodasys mahoae BAH, ROD Intertidal X Castro et al. 2021
Anandrodasys agadasys BAH, ROD XCastro et al. 2021
Turbanella corderoi ROD Intertidal X Hummon 1974
Cephalodasys miniceraus ROD Intertidal X Hummon 1974
Chaetonotus
(Marinochaetus) chicous
ROD Intertidal X Hummon 1974
Nematoda Desmodorella sinuata GAYR Intertidal X Reported as
Desmodora sinuata
by Lorenzen 1976a
Calomicrolaimus rugatus IS Intertidal X Lorenzen 1976b
Axonolaimus
paraspinosus
BAH Intertidal X Castro et al. 2021
Cylindrolaimus sp.BAH Intertidal X Castro et al. 2021
Punctodora ratzeburgensi BAH, MON Intertidal X Castro et al. 2021
Rhips sp. SIS Intertidal X Castro et al. 2021
Microlaimus sp.BAH, ROD,
TAG
Intertidal X Castro et al. 2021
Panagrolaimus sp. MON, SIS Intertidal X Castro et al. 2021
Siphonolaimus sp. ROD Intertidal X Castro et al. 2021
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
Taxa Beach Tidal level Morphological
identification
Metabarcoding
identification Reported by:
Diplolaimelloides meyli MON Intertidal X Castro et al. 2021
Bathylaimus sp. ROD Intertidal X Castro et al. 2021
Enoploides sp. BAH, ROD Intertidal X Castro et al. 2021
Cylicolaimus sp. SIS Intertidal X Castro et al. 2021
Mesacanthion sp. MON, SIS Intertidal X Castro et al. 2021
Halalaimus sp.BAH, ROD Intertidal X Castro et al. 2021
Xenacoelomorpha Praeconvoluta tigrina ROD Intertidal X Castro et al. 2021
Otocelis sandara ROD Intertidal X Castro et al. 2021
Paratomella unichaeta ROD Intertidal X Castro et al. 2021
Bold font: New report for Colombia. BAH: Santa Marta Bay; ROD: Rodadero Beach; TAG: Taganga Bay; MON:
Monoguaca beach; SIS: Sisiguaca Beach; Gayr: Gayraca beach, IS: Isla Salamanca.
REFERENCES
Acosta-Coley, I., Mendez-Cuadro, D., Rodríguez-Cavallo,
E., de la Rosa, J., & Olivero-Verbel, J. (2019). Trace
elements in microplastics in Cartagena: a hotspot for
plastic pollution at the Caribbean. Marine Pollution
Bulletin, 139, 402411.
Acosta-Coley, I., & Olivero-Verbel, J. (2015). Microplastic
resin pellets on an urban tropical beach in Colombia.
Environmental Monitoring and Assessment, 187, 435.
https://doi.org/10.1007/s10661-015-4602-7
Alexeev, D. K., & Galtsova, V. V. (2012). Effect of
radioactive pollution on the biodiversity of marine
benthic ecosystems of the Russian Arctic shelf.
Polar Science, 6, 183195. https://doi.org/10.1016/j.
polar.2012.04.001
Alves, A. S., Caetano, A., Costa, J. L., Costa, M. J., & Mar-
ques, J. C. (2015). Estuarine intertidal meiofauna and
nematode communities as indicators of ecosystem
recovery following mitigation measures. Ecological
Indicators, 54, 184–196. https://doi.org/10.1016/j.
ecolind.2015.02.013
Altamar, J., Correa-Helbrum, J., Restrepo-Leal, D., &
Robles-Algarín, C. (2020). Reconstructed data of
landings for the artisanal beach seine fishery in
the marine-coastal area of Taganga, Colombian
Caribbean Sea. Data in Brief, 30, 105604. https://doi.
org/10.1016/j.dib.2020.105604
Alomar, C., Estarellas, F., & Deudero, S. (2016).
Microplastics in the Mediterranean Sea: Deposi-
tion in coastal shallow sediments, spatial variation
and preferential grain size. Marine Environmen-
tal Research, 115, 110. https://doi.org/10.1016/j.
marenvres.2016.01.005
Ape, F., Sará, G., Airoldi, L., Mancuso, F., & Mirto,
S. (2017). Influence of environmental factors and
biogenic habitats on intertidal meiofauna. Hydro-
biologia, 807, 349–366. https://doi.org/10.1007%2
Fs10750-017-3410-1
Álvarez-Zeferino, J., Ojeda-Benítez, S., Cruz-Salas, A.
A., Martínez-Salvador, C., & Vázquez-Morillas, A.
(2020). Microplastics in Mexican beaches. Resou-
rces, Conservation & Recycling, 1551, 104633.
https://doi.org/10.1016/j.resconrec.2019.104633
Buchanan, J. B. (1984). Sediment analysis. In N. A.,
Holme, & A. D. McIntyre (Eds.), Methods for the
Study of Marine Benthos (pp. 4163). Blackwell
Scientific Publications.
Browne, M. A., Crump, P., Niven, S. J., Teuten, E. L.,
Tonkin, A., Galloway, T., & Thompson, R. C. (2011).
Accumulations of microplastic on shorelines world-
wide: sources and sinks. Environmental Science &
Technology, 45, 9175−9179. https://doi.org/10.1021/
es201811s
Bezerra, T. N. C., Genevois, B., & Fonsêca-Genevois, V.
(1997). Influência da granulometria na distribuição
e adaptação da meiofauna na praia arenosa do Istmo
de Olinda PE. In S. A. Silva, P. A. Grohmann & A.
M. Esteves (Eds.), Ecologia de Praias Arenosas do
Litoral Brasileiro (pp. 107116). Programa de Pós-
Graduação em Ecologia da UFRJ.
Baia, E., & Venekey, V. (2019). Distribution patterns of
meiofauna on a tropical macrotidal sandy beach,
with special focus on nematodes (Caixa d’Água,
Amazon Coast, Brazil). Brazilian Journal of Ocea-
nography, 67, e19230. https://doi.org/10.1590/
s1679-87592019023006701
Bartsch, I. (1996). Halacarid mites (Acari) from the Mid-
Atlantic Ridge. New Records. Cahiers de Biologie
Marine, 37, 159–167.
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
Botero, C. M., & Zienliski, S. (2020). The implementation
of a world-famous tourism ecolabel triggers political
support for beach management. Tour Management
Perspectives, 35, 100691. https://doi.org/10.1016/j.
tmp.2020.100691
Curini-Galletti, M., Artois, T., Delogu, V., De Smet, W.
H., Fontaneto, D., Jondelius, U., Leasi, F., Martínez,
A., Meyer-Wachsmuth, I., Nilsson, K. S., Tongiorgi,
P., Worsaae, K., & Todaro, M. A. (2012). Patterns
of Diversity in Soft-Bodied Meiofauna: Dispersal
Ability and Body Size Matte. PLoS One, 7, e33801.
https://doi.org/10.1371/journal.pone.0033801
Carson, H. S., Colbert, S. L., Kaylor, M. J., & McDermid,
K. J. (2011). Small plastic debris changes water
movement and heat transfer through beach sediments.
Marine Pollution Bulletin, 62, 17081713. https://doi.
org/10.1016/j.marpolbul.2011.05.032
Claessens, M., De Meester, S., Van Landuyt, L., De
Clerck, K., & Janssen, C. R. (2011). Occurrence
and distribution of microplastics in marine sedi-
ments along the Belgian coast. Marine Pollution
Bulletin, 62, 21992204. https://doi.org/10.1016/j.
marpolbul.2011.06.030
Coley, R., Hardiman, G., & O’Driscolla, K. (2020).
Microplastics in the marine environment: A review
of their sources, distribution processes, uptake and
exchange in ecosystems. Case Studies in Chemical
and Environmental Engineering, 2, 100010. https://
doi.org/10.1016/j.cscee.2020.100010
Cannon, S. M. E., Lavers, J., & Figueireda, B. (2016).
Plastic ingestion by fish in the southern hemisphere: a
baseline study and review of methods. Marine Pollu-
tion Bulletin, 107, 286–291. https://doi.org/10.1016/j.
marpolbul.2016.03.057
Cole, M., Lindeque, P. K., Fileman, E. S., Halsband, C.,
Goodhead, R., Moger, J., & Galloway, T. S. (2013).
Microplastic ingestion by zooplankton. Environmen-
tal Science & Technology, 47, 66466655. https://doi.
org/10.1021/es400663f
Cole, M., Lindeque, P., Halsband, C., & Galloway, T.
S. (2011). Microplastics as contaminants in the
marine environment: a review. Marine Pollution
Bulletin, 62, 25882597. https://doi.org/10.1016/j.
marpolbul.2011.09.025
Correa, I., & Morton, R. (2010). Caribbean Coast of
Colombia. In E.C. F. Bird (Ed.), Encyclopedia of the
World’s Coastal Landforms (pp. 259264). Springer.
Castro, L. R., Meyer, R. S., Shapiro, B., Shirazi, S.,
Cutler, S., Lagos, A. M., & Quiroga, S. Y. (2021).
Metabarcoding meiofauna biodiversity assessment
in four beaches of Northern Colombia: effects of
sampling protocols and primer choice. Hydrobio-
logia, 848, 3407–3426. https://doi.org/10.1007/
s10750-021-04576-z
Derraik, J. G. B. (2002). The pollution of the marine envi-
ronment by plastic debris: a review. Marine Pollu-
tion Bulletin, 44, 842852. https://doi.org/10.1016/
S0025-326X(02)00220-5
Desforges, J. P. W., Galbraith, M., & Ross, P. S. (2015).
Ingestion of microplastics by zooplankton in the
northeast Pacific Ocean. Archives of Environmental
Contamination and Toxicology, 69, 320330. https://
doi.org/10.1007/s00244-015-0172-5
Defeo, O., & McLachlan, A. (2005). Patterns, processes and
regulatory mechanisms in sandy beach macrofauna: a
multiscale analysis. Marine Ecology Progress Series,
295, 120. https://doi.org/10.3354/meps295001
Di, M., & Wang, J. (2018). Microplastic in surface waters
and sediments of the Three Gorges Reservoir, China.
Science of the Total Environment, 616, 16201627.
https://doi.org/10.1016/j.scitotenv.2017.10.150
Faraday, S. (2019). Microplastics as a new, ubiquitous
pollutant: Strategies to anticipate management and
advise seafood consumers. Marine Policy, 104, 103–
107. https://doi.org/10.1016/j.marpol.2019.02.020
Fauchald, K. (1973). Polychaetes from Central American
sandy beaches. Bulletin of the Southern California
Academy of Sciences, 72(1), 1931.
Fossi, M. C., Coppola, D., Baini, M., Giannetti, M.,
Guerranti, C., Marsili, L., Panti, C., de Sabata, E.,
& Clo, S. (2014). Large filter feeding marine orga-
nisms as indicators of microplastic in the pelagic
environment: the case studies of the Mediterra-
nean basking shark (Cetorhinus maximus) and fin
whale (Balaenoptera physalus). Marine Environmen-
tal Research, 100, 17-24. https://doi.org/10.1016/j.
marenvres.2014.02.002
Fanini, L., Defeo, O., & Elliott, M. (2020). Advances in
sandy beach research – Local and global perspectives.
Estuarine, Coastal and Shelf Science, 234, 106646.
https://doi.org/10.1016/j.ecss.2020.106646
Fonseca, G., Norenburg, J., & Di Domenico, M. (2014).
Diversity of marine meiofauna on the coast of Bra-
zil. Marine Biodiversity, 44, 459–462. https://doi.
org/10.1007/s12526-014-0261-0
Folk, R. L., & Ward, W. C. (1957). A study in the
significance of grain-size parameters. Jour-
nal of Sedimentary Petrology, 27, 3–26. https://
doi.org/10.1306/74D70646-2B21-11D7-
8648000102C1865D
Fueser, H., Mueller, M. T., & Traunspurger, W. (2020).
Ingestion of microplastics by meiobenthic communi-
ties in small-scale microcosm experiments. Science
of the Total Environment, 746, 141276. https://doi.
org/10.1016/j.scitotenv.2020.141276
Fueser, H., Mueller, M. T., Weiss, L., Höss, S., & Trauns-
purger, W. (2019). Ingestion of microplastics by
17
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
nematodes depends on feeding strategy and buccal
cavity size. Environmental Pollution, 255, 113227.
https://doi.org/10.1016/j.envpol.2019.113227
Fuentes-Reines, J. M., Suárez-Morales, E., & Eslava-
Eljaiek, P. (2021). Occurrence of Notodiaptomus
maracaibensis Kiefer, 1954 (Copepoda, Calanoida,
Diaptomidae) from an ephemeral pond in northern
Colombia. Intropica, 16(2), 125–132. https://doi.
org/10.21676/23897864.3977
Giere, O. (2009). Meiobenthology: The microscopic motile
fauna of aquatic sediments (2nd ed.). Springer-Verlag.
Giere, O. (2019). Future trend lines in ecological meio-
benthos research. In O. Giere (Ed.), Perspectives in
Meiobenthology Reviews, Reflections and Conclu-
sions (pp. 37–49). Springer-Verlag.
González-Cueto, J., Quiroga, S., & Norenburg, J. (2014).
A shore-based preliminary survey of marine rib-
bon worms (Nemertea) from the Caribbean coast
of Colombia. ZooKeys, 439, 83–108. https://doi.
org/10.3897/zookeys.439.5965
Gusmão, F., Domenico, M. D., Amaral, A. C. Z., Martí-
nez, A., Gonzalez, B. C., Worsaae, K., do Sul, J. A.
I., & da Cunha-Lana, P. (2016). In situ ingestion
of microfibres by meiofauna from sandy beaches.
Marine Pollution Bulletin, 216, 584-590. https://doi.
org/10.1016/j.envpol.2016.06.015
Garcés-Ordóñez, O., Espinosa, L., Pereira, R., Barroso, B.,
& Meigikos, R. (2020b). Plastic litter pollution along
sandy beaches in the Caribbean and Pacific coast of
Colombia. Environmental Pollution, 267, 115495.
Garcés-Ordóñez, O., Espinosa, L., Pereira, R., & Costa, M.
(2020a). The impact of tourism on marine litter pollu-
tion on Santa Marta beaches, Colombian Caribbean.
Marine Pollution Bulletin, 160, 111558. https://doi.
org/10.1016/j.marpolbul.2020.111558
García, F., Palacio, C., & García, U. (2011). Constituyentes
de marea en la bahía de Santa Marta (Colombia).
Dyna, 78, 142–150.
Gheskiere, T., Vincx, M., Weslawski, J. M., Scapini, F.,
& Degraer, S. (2005). Meiofauna as descriptor of
tourism-induced changes at sandy beaches. Marine
Environmental Research, 60, 245–265. https://doi.
org/10.1016/j.marenvres.2004.10.006
Haegerbaeumer, A., Mueller, M. T., Fueser, H., & Trauns-
purger, W. (2019). Impacts of micro- and nano-sized
plastic particles on benthic invertebrates: A literature
review and gap analysis. Frontiers of Environmen-
tal Science & Engineering, 7, 1–33. https://doi.
org/10.3389/fenvs.2019.00017
Hourston, M., Warwick, R. M., Valesini, F. J., & Potter, I.
C. (2005). To what extent are the characteristics of
nematode assemblages in nearshore sediments on the
west Australian coast related to habitat type, season
and zone? Estuarine, Coastal and Shelf Science, 64,
601–612. https://doi.org/10.1016/j.ecss.2005.04.001
Hidalgo-Ruz, V., Gutow. L., Thompson, R. C., & Thiel,
M. (2012). Microplastics in the marine environment:
a review of the methods used for identification and
quantification. Environmental Science & Technology,
46, 3060–3075. https://doi.org/10.1021/es2031505
Hummon, W. (1974). Intertidal marine Gastrotricha from
Colombia. Bulletin of Marine Science, 24, 396–408.
de Jonge, V. N., & Bouwman, L. A. (1977). A simple den-
sity Kennedy: A rapid-freezing method separation
technique for quantitative isolation of meiobenthos
using the colloidal silica Ludox-TM. Marine Biology,
42, 143148.
Kutralam-Muniasamy, G., Pérez-Guevara, F., Elizalde-
Martínez, I., & Shruti, V. C. (2020). Review of
current trends, advances and analytical challenges
for microplastics contamination in Latin America.
Environmental Pollution, 267, 115463. https://doi.
org/10.1016/j.envpol.2020.115463
Lagos, A. M. (2018). Meiofauna intermareal de la región
de Santa Marta (Tesis de Maestría). Universidad
Nacional de Colombia, Colombia.
Lagos, A. M., Leon, M. V., Quiroga, S., & Martínez, A.
(2018). Interstitial annelids from the Caribbean coast
of Colombia. Revista de Biología Tropical, 66, 658-
673. http://doi.org/10.15517/rbt.v66i2.33399
Leasi, F., Sevigny, J. L., Laflamme, E. M., Artois, T.,
Curini-Galletti, M., Navarrete, A., Di Domenico,
M., Goetz, F., Hall, J. A., Hochberg, R., Jörger, K.
M., Jondelius, U., Todaro, M. A., Wirshing, H. H.,
Norenburg, L. J., & Thomas, W. K. (2018). Biodi-
versity estimates and ecological interpretations of
meiofaunal communities are biased by the taxonomic
approach. Communications Biology, 1, 1-12. http://
doi.org/10.1038/s42003-018-0119-2
Li, H. X., Getzinger, G. J., Ferguson, P. L., Orihuela, B.,
Zhu, M., & Rittschof, D. (2016). Effects of toxic lea-
chate from commercial plastics on larval survival and
settlement of the barnacle Amphibalanus amphitrite.
Environmental Science & Technology, 5, 924–931.
https://doi.org/10.1021/acs.est.5b02781
Liebezeit, G., & Dubaish, F. (2012). Microplastics in
beaches of the East Frisian islands Spiekeroog and
Kachelotplate. Bulletin of Environmental Conta-
mination and Toxicology, 89, 213-217. https://doi.
org/10.1007/s00128-012-0642-7
Liñero-Arana, I., Ojeda, S., & Amaro, M. E. (2012).
Variación espacio-temporal de la meiofauna subma-
real en una playa arenosa nororiental de Venezuela.
Revista de Biología Tropical, 61, 59-73.
Lorenzen, S. (1976a). Desmodoridae (nematoden) mit
extrem lange spicula aus South America. Mitteilungen
18 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
aus dem Instituto Colombo-Alemán Investigaciones
Científicas Punta Betín, 8, 63–78.
Lorenzen, S. (1976b). Calomicrolaimus rugatus n. gen.,
n.sp. (Desmodoridae, nematodos) in Sandy beaches.
Mitteilungen aus dem Instituto Colombo-Alemán
Investigaciones Científicas Punta Betín, 8, 79–82.
Lots, F. A. E., Behrens, P., Vijver, M. G., Horton, A. A.,
& Bosker, T. (2017). A large-scale investigation of
microplastic contamination: Abundance and charac-
teristics of microplastics in European beach sediment.
Marine Pollution Bulletin, 123, 219-226. https://doi.
org/10.1016/j.marpolbul.2017.08.057
Lu, K., Qiao, R., An, H., & Zhang, Y. (2018). Influence of
microplastics on the accumulation and chronic toxic
effects of cadmium in zebrafish (Danio rerio). Che-
mosphere, 202, 514–520. https://doi.org/10.1016/j.
chemosphere.2018.03.145
Lusher, A. (2015). Microplastics in the Marine Environ-
ment: Distribution, Interactions and Effects, In M.
Bergmann, L. Gutow, & M. Klages (Eds.), Marine
Anthropogenic Litter (pp. 245–307). Springer Inter-
national Publishing.
Mathalon, A., & Hill, P. (2014). Microplastic f ibers in the inter-
tidal ecosystem sur- rounding Halifax Harbor, Nova
Scotia. Marine Polluttion Bulletin, 81, 69–79. https://
doi.org/10.1016/j.marpolbul.2014.02.018
McLachlan, A., & Brown, A. C. (2006). The ecology of
sandy shores. Academic Press.
Martínez, A., Di Domenic, M., Leasi, F., Curini-Galletti,
M., Todaro, M. A., Dal Zotto, M., Gobert, S., Artois,
T., Norenburg, J., Jörger, K., Núñez, J., Fontaneto, D.,
& Worsaae, K. (2019). Patterns of diversity of soft-
bodied meiofauna in an oceanic island, Lanzarote
(Canary Islands). Marine Biodiversity, 49, 2033–
2055. https://doi.org/10.1007/s12526-019-01007-0
Martínez, A., Eckert, E. M., Artois, T., Careddu, G., Casu,
M., Curini-Galletti, M., Gazale, V., Gobert, S., Iva-
nenko, V. N., Jondelius, U., Marzano, M., Pesole, G.,
Zanello, A., Todaro, M. A., & Fontaneto, D. (2020).
Human access impacts biodiversity of microscopic
animals in sandy beaches. Communications Biology,
3, 1-9. https://doi.org/10.1038/s42003-020-0912-6
Mueller, M. T., Fueser, H., Höss, S., & Traunspurger,
W. (2020). Species-specific effects of long-term
microplastic exposure on the population growth
of nematodes, with a focus on microplastic inges-
tion. Ecological Indicators, 118, 106698. https://doi.
org/10.1016/j.ecolind.2020.106698
Mancera-Pineda, J. E. M., Pinto, G., & Vilardy, S. (2013).
Patrones de distribución estacional de masas de agua
en la bahía de Santa Marta, Caribe colombiano:
importancia relativa del upwelling y outwelling.
Bulletin of Marine and Coastal Research, 2, 329–360.
https://doi.org/10.25268/bimc.invemar.2013.42.2.55
MSFD-TSGML. (2013). Guidance on monitoring of mari-
ne litter in European Seas: a guidance document
within the common implementation strategy for the
marine strategy framework directive. EUR-26113 EN.
JRC Scientific and Policy Reports JRC83985. https://
mcc.jrc.ec.europa.eu/documents/201702074014.pdf
Nadal, M. A., Alomar, C., & Deudero, S. (2016). High
levels of microplastic ingestion by the semipelagic
fish Bogue Boops boops (L.) around the Balea-
ric Islands. Environmental Pollution, 214, 517–523.
https://doi.org/10.1016/j.envpol.2016.04.054
Nor, N. H. M., & Obbard, J. (2014). Microplastics in
Singapore’s coastal mangrove ecosystem. Mari-
ne Pollution Bulletin, 79, 278–283. https://doi.
org/10.1016/j.marpolbul.2013.11.025
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R.,
Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R.
B., Simpson, G. L., Solymos, P., Stevens, M. H. H.,
Szoecs, E., & WagnerVegan, H. (2018). Community
Ecology Package. R package version 2, 5–2. https://
CRAN.R-project.org/package=vegan
Ogonowski, M., Schür, C., Jarsén, Å., & Gorokhova,
E. (2016). The effects of natural and anthropoge-
nic microparticles on individual fitness in Daph-
nia magna. PLoS One, 11, e0155063. https://doi.
org/10.1371/journal.pone.0155063
Pereira, T. J., Gingold, R., Villegas, A. D. M., & Rocha-
Olivares, A. (2018). Patterns of spatial variation of
meiofauna in sandy beaches of Northwestern Mexico
with contrasting levels of disturbance. Thalassas, 34,
53–63. https://doi.org/10.1007/s41208-017-0038-x
Piperagkas, O., Papageorgiou, N., & Karakassis, I. (2019).
Qualitative and quantitative assessment of micro-
plastics in three sandy Mediterranean beaches, inclu-
ding different methodological approaches. Estuarine,
Coastal and Shelf Science, 219, 169–175. https://doi.
org/10.1016/j.ecss.2019.02.016
Portz, L., Portantiolo-Manzolli, R., Vasquez-Herrera, G.,
Laiton-Garcia, L., Villate, D. A., & do Sul, J. A. I.
(2020). Marine litter arrived: Distribution and poten-
tial sources on an unpopulated atoll in the Seaflower
Biosphere Reserve, Caribbean Sea. Marine Pollution
Bulletin, 157, 111323.
Peng, G., Zhu, B., Yang, D., Su, L., Shi, L., & Li, D.
(2017). Microplastic in sediments of the Changjaiang
Estuary, China. Environmental Pollution, 225, 283–
290. https://doi.org/10.1016/j.envpol.2016.12.064
R Core Team. (2016). R: A language and environment for
statistical computing. R Foundation for Statistical
Computing. Vienna, Austria. https://www.R-project.
org/
Rodríguez, J. G. (2004). Community structure of intertidal
meiofauna along a gradient of morphodynamic states
19
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
on an exposed North Sea beach. Sarsia, 89, 22–32.
https://doi.org/10.1080/00364820310003307
Rochman, C. M., Hoh, E., Kurobe, T., & The, S. J. (2013).
Ingested plastic transfers hazardous chemicals to fish
and induces hepatic stress. Scientific Reports, 3, 1–7.
https://doi.org/10.1038/srep03263
Rodríguez, J. G., López, J., & Jaramillo, E. (2001). Com-
munity structure of the intertidal meiofauna along
a gradient of morphodynamic sandy beach types in
southern Chile. Revista Chilena de Historia Natural,
74, 885–897.
Rangel-Buitrago, N. G., Anfuso, G., & Williams, A. T.
(2015). Coastal erosion along the Caribbean coast
of Colombia: magnitudes, causes and management.
Ocean & Coastal Management, 114, 129–144.
https://doi.org/10.1016/j.ocecoaman.2015.06.024
Rangel-Buitrago, N. G., Ruiz, A. G., & López, N. T. (2019).
Grain–size analysis and characterization of sedimen-
tary environments of the Sierra Nevada de Santa
Marta (SNSM) coastal zone, caribbean of Colombia.
Revista ITTPA, 1, 13–19.
Rubio-Polanía, J. C., & Trujillo-Arcila, C. A. (2013).
Características granulométricas de los fondos blan-
dos en un área de la bahía de Taganga (Colombia)
influenciada por la instalación de refugios bentó-
nicos. Revista U.D.C.A, 16, 193-203. https://doi.
org/10.31910/rudca.v16.n1.2013.875
Somerfield, P. (2008). Identification of the Bray-Curtis
similarity index: Comment on Yoshioka (2008). Mari-
ne Ecology Progress Series, 372, 303-306. https://doi.
org/10.3354/meps07841
Sevilla-Hernández, M. (2016). Ácaros marinos (Arach-
nida: Acari) asociados al alga Ulva lactuca de la
bahía de Taganga (Santa Marta, Colombia) (Tesis de
Bachillerato). Universidad del Magdalena, Colombia.
Setälä, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014).
Ingestion and transfer of microplastics in the plank-
tonic food web. Environmental Pollution, 185, 77–83.
https://doi.org/10.1016/j.envpol.2013.10.013
Strungaru, S. A., Jijie, R., Nicoara, M., Plavan, G., &
Faggio, C. (2019) Micro- (nano) plastics in fres-
hwater ecosystems: abundance, toxicological impact
and quantification methodology. TrAC Trends in
Analytical Chemistry, 110, 116–128. https://doi.
org/10.1016/j.trac.2018.10.025
Talvitie, J., Heinonen, M., Pääkkönen, J. P., Vahtera, E.,
Mikola, A., Setälä, O., & Vahala, R. (2015). Do
wastewater treatment plants act as a potential point
source of microplastics? Preliminary study in the
coastal Gulf of Finland, Baltic Sea. Water Science &
Technology, 72, 1495–1504. https://doi.org/10.2166/
wst.2015.360
Tsang, Y. Y., Mak, C. W., Liebich, C., Lam, S. W., Sze,
E. T., & Chan, K. M. (2017). Microplastic pollution
in the maine eater and sediments of Hong Kong.
Marine Pollution Bulletin, 115, 20–28. https://doi.
org/10.1016/j.marpolbul.2016.11.003
Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A.,
Rowland, S. J., John, A. W. G., McGonigle, D., &
Russell, A. E. (2004). Lost at sea: where is all the
plastic? Science, 304, 838.
Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M.
B., & Janssen, C. R. (2015). Microplastics are taken
up by mussels (Mytilus edulis) and lugworms (Areni-
cola marina) living in natural habitats. Environmen-
tal Pollution, 199, 10–17. https://doi.org/10.1016/j.
envpol.2015.01.008
Van Cauwenberghe, L., Vanreusel, A., Mees, J., Janssen,
C. R. (2013). Microplastic pollution in deep-sea
sediments. Environmental Pollution, 182, 495–499.
https://doi.org/10.1016/j.envpol.2013.08.013
Von Moos, N., Burkhardt-Holm, P., & Koehler, A. (2012).
Uptake and effects of microplastics on cells and
tissue of the blue mussel Mytilus edulis L. after an
experimental exposure. Environmental Science &
Technology, 46, 327–335. https://doi.org/10.1021/
es302332w
Wakkaf, T., Allouche, M., Harrath, A. H., Mansour, L.,
Alwasel, S., Thameemul-Ansari, K. G. M., Beyrem,
H., Sellami, B., & Boufahja, F. (2020). The individual
and combined effects of cadmium, polyvinyl chloride
(PVC) microplastics and their polyalkylamines modi-
fied forms on meiobenthic features in a microcosm.
Environmental Pollution, 266, 115263. https://doi.
org/10.1016/j.envpol.2020.115263
Wesch, C., Bredimus, K., Paulus, M., & Klein, R. (2016)
Towards the suitable monitoring of ingestion of
microplastics by marine biota: a review. Envi-
ronmental Pollution, 218, 1200-1208. https://doi.
org/10.1016/j.envpol.2016.08.076
Wright, L. D., Chappell, J., Thom, B. G., Bradshaw, M. P.,
& Cowell, P. (1979). Morphodynamics of reflective
and dissipative beach and inshore systems: southeas-
tern Australia. Marine Geology, 32, 105–140. https://
doi.org/10.1016/0025-3227(79)90149-X
Willis, K. A., Eriksen, R., Wilcox, C., & Hardesty, B. D.
(2017). Microplastic distribution at different sediment
depths in an urban estuary. Frontiers in Marine Scien-
ce, 4, 419. https:/doi.org/10.3389/fmars.2017.00419
Wang, T., Hu, M., Song, L., Yu, J., Liu, R., Wang, S., Wang,
Z., Sokolova, I. M., Huang, W., & Wang, Y. (2020).
Coastal zone use influences the spatial distribution of
microplastics in Hangzhou Bay, China. Environmen-
tal Pollution, 266, 115137. https://doi.org/10.1016/j.
envpol.2020.115137
20 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e50031, enero-diciembre 2023 (Publicado 25 de enero, 2023)
Wright, S. L., Rowe, D., Thompson, R. C., & Galloway,
T. S. (2013). Microplastic ingestion decreases
energy reserves in marine worms. Current Bio-
logy, 23, R1031-R1033. https://doi.org/10.1016/j.
cub.2013.10.068
Wright, L. D., & Short, A. D. (1984). Morphodynamic
variability of surf zones and beaches: a synthe-
sis. Marine Geology, 56, 93–118. https://doi.
org/10.1016/0025-3227(84)90008-2
Zubris, K. A. V., & Richards, B. K. (2005). Synthetic
fibers as an indicator of land application of sludge.
Environmental Pollution, 138, 201–211. https://doi.
org/10.1016/j.envpol.2005.04.013
Zeppilli, D., Sarrazin, J., Leduc, D., Martinéz-Arbizu,
P., Fontaneto, D., Fontanier, C., Gooday, A. J.,
Kristensen, R. M., Ivanenko, V. N., Sørensen, M. V.,
Vanreusel, A., Thébault, J., Mea, M., Allio, N., Andro,
T., Arvigo, A., Castrec, J., Danielo, M., Foulon, V.,
Fumeron, R., Hermabessiere, L., Hulot, V., James, T.,
Langonne-Augen, R., Le Bot, T., Long, M., Maha-
bror, D., Morel, Q., Pantalos, M., Pouplard, E., Rai-
mondeau, L., Rio-Cabello, A., Seite, S., Traisnel, G.,
Urvoy, K., Van Der Stegen, T., Weyand, M., & Fer-
nandes, D. (2015). Is the meiofauna a good indicator
for climate change and anthropogenic impact. Marine
Biodiversity, 45, 505–535. https://doi.org/10.1007/
s12526-015-0359-z
Zhu, L., Wang, H., Chen, B., Sun, X., Qu, K., & Xia,
B. (2019). Microplastic ingestion in deep-sea fish
from the South China Sea. Science of the Total Envi-
ronment, 677, 493–501. https://doi.org/10.1016/j.
scitotenv.2019.04.380