13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e50333, enero-diciembre 2023 (Publicado Oct. 30, 2023)
Poorter, L., Bongers, L., & Bongers, F. (2006). Architecture
of 54 moist-forest tree species: Traits, trade-offs, and
functional groups. Ecology, 87, 1289–1301.
Poorter, H., & Evans, J. R. (1998). Photosynthetic nitrogen-
use efficiency of species that differ inherently in spe-
cific leaf area. Oecologia, 116, 26–37.
Poorter, L., Wright, S. J., Paz, H., Ackerly, D. D., Condit,
R., Ibarra-Manríquez, G., Harms, K. E., Licona, J. C.,
Martínez-Ramos, M., Mazer, S. J., Muller-Landau,
H. C., Peña-Claros, M., Webb, C. O., & Wright, I. J.
(2008). Are functional traits good predictors of demo-
graphic rates? Evidence from five neotropical forests.
Ecology, 89(7), 1908–1920.
Pozo-Rivera, W. E., Quiloango-Chimarro, C., Paredes, X.,
Landívar, M., Chiriboga, C., Hidalgo, D., García, K.,
& Villacís, J. (2023). Response of dung beetle diversity
to remediation of soil ecosystems in the Ecuadorian
Amazon. PeerJ, 11, e14975.
Reich, P. B., Walters, M. B., Tjoelker, M. G., Vanderklein,
D. W., & Buschena, C. (1998). Photosynthesis and
respiration rates depend on, leaf and root morphology
in nine boreal tree species differing in relative growth
rate. Functional Ecology, 12, 395–405.
Rivera-Parra, J. L., Vizcarra, C., Mora, K., Mayorga, H.,
& Dueñas, J. C. (2020). Spatial distribution of oil
spills in the north eastern Ecuadorian Amazon: A
comprehensive review of possible threats. Biological
Conservation, 252, 108820.
Rüger, N., Wirth, C., Wright, S. J., & Condit, R. (2012).
Functional traits explain light and size response of
growth rates in tropical tree species. Ecology, 93(12),
2626–2636.
Santiago, L. S., Goldstein, G., Meinzer, F. C., Fisher, J. B.,
Machado, K., Woodruff, D., & Jones, T. (2004). Leaf
photosynthetic traits scale with hydraulic conducti-
vity and wood density in Panamanian forest canopy
trees. Oecologia, 140, 543–550.
Sterck, F. J., Poorter, L., & Schieving, F. (2006). Leaf traits
determine the growth-survival trade-off across rain
forest tree species. The American Naturalist, 167(5),
758–765.
Swenson, N. G., & Enquist, B. J. (2007). Ecological and
evolutionary determinants of a key plant functional
trait: wood density and its community-wide variation
across latitude and elevation. American Journal of
Botany, 94(3), 451–459.
Tecco, P. A., Díaz, S., Cabido, M., & Urcelay, C. (2010).
Functional traits of alien plants across contrasting
climatic and land-use regimes: do aliens join the
locals or try harder than them? Journal of Ecology,
98(1), 17–27.
Tecco, P. A., Urcelay, C., Díaz, S., Cabido, M., & Pérez-
Harguindeguy, N. (2013). Contrasting functional trait
syndromes underlay woody alien success in the same
ecosystem. Austral Ecology, 38, 443–451.
Uriarte, M., Lasky, J. R., Boukili, V. K., & Chazdon, R. L.
(2016). A trait-mediated, neighbourhood approach
to quantify climate impacts on successional dynamics
of tropical rainforests. Functional Ecology, 30(2),
157–167.
Vendramini, F., Díaz, S., Gurvich, D. E., Wilson, P. J.,
Thompson, K., & Hodgson, J. G. (2002). Leaf traits
as indicators of resource-use strategy in floras with
succulent species. New Phytologist, 154(1), 147–157.
Villacís, J. (2016). Evaluación de las técnicas de remediación
vegetal utilizadas en plataformas petroleras mediante
estudios del desempeño de especies y análisis de diver-
sidad funcional (Doctoral dissertation). Universidad
Nacional de Córdoba, Argentina.
Villacís, J., Armas, C., Hang, S., & Casanoves F. (2016).
Selection of Adequate Species for Degraded Areas by
Oil-Exploitation Industry as a Key Factor for Reco-
very Forest in the Ecuadorian Amazon. Land Degra-
dation and Development, 27, 1771–1780.
Villacís, J., Casanoves, F., Hang, S., Keesstra, S., & Armas,
C. (2016). Selection of forest species for the rehabi-
litation of disturbed soils in oil fields in the Ecuado-
rian Amazon. Science of the Total Environment, 566,
761–770.
Wiemann, M. C., & Williamson, G. B. (2002). Geographic
variation in wood specific gravity: Effects of latitude,
temperature, and precipitation. Wood and Fiber Scien-
ce, 34, 96–107.
Wang, C., Jian, S., Ren, H., Yan, J., & Liu, N. (2021). A Web-
Based Software Platform for Restoration-Oriented
Species Selection Based on Plant Functional Traits.
Frontiers in Ecology and Evolution, 9, 570454.
Werden, L. K., Alvarado, J. P., Zarges, S., Calderón, E.,
Schilling, E., Gutierrez, M., & Powers, J. (2018). Using
soil amendments and plant functional traits to select
native tropical dry forest species for the restoration
of degraded Vertisols. Journal of Applied Ecology, 55,
1019–1028.
Wright, I. J., & Cannon, K. (2001). Relationships between
leaf lifespan and structural defences in a low-nutrient,
sclerophyll flora. Functional Ecology, 15, 351–359.
Wright, I. J., Groom, P. K., Lamont, B. B., Poot, P., Prior, L.
D., Reich, P. B., Schulze, E. D., Veneklaas, E. J., & Wes-
toby, M. (2004). Leaf trait relationships in Australian
plant species. Functional Plant Biology, 31, 551–558.
Yadav, M. R., Choudhary, M., Singh, J., Lal, M. K., Jha, P.
K., Udawat, P., Gupta, N. K., Rajput, V. D., Garg, N.
K., Maheshwari, C., Hasan, M., Gupta, S., Jatwa, T.
K., Kumar, R., Yadav, A. K., & Prasad, P. V. (2022).
Impacts, tolerance, adaptation, and mitigation of heat
stress on wheat under changing climates. Internatio-
nal Journal of Molecular Sciences, 23(5), 2838.