1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
Phytoplankton from a brackish lagoon
in the central region of Veracruz, Mexico
Gloria Garduño Solórzano1; https://orcid.org/0000-0002-3318-0891
José Manuel González Fernández1; https://orcid.org/0000-0003-1178-5600
Saúl Aldair Fuentes Zuno1; https://orcid.org/0000-002-0811-1720
1. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), México;
ggs@unam.mx (*Correspondence), m.gonzalez@iztacala.unam.mx, aldair.1559@gmail.com
Received 30-I-2024. Corrected 09-IV-2024. Accepted 01-VIII-2024.
ABSTRACT
Introduction: The brackish lagoons are ecosystems with great diversity and possibilities for human use.
Therefore, the knowledge about phytoplankton needs to be improved to understand its real impact.
Objective: To relate the Mandingas Lagoon phytoplankton to the limnological conditions during the dry and
wet seasons.
Methods: The material was collected in three stations: Isla Conchas (ICO), Mandinga Chica (MCH) and Isla del
Amor (IA) during the dry (March 2018) and wet (September 2017 and 2018) seasons. The limnological analysis
included ten abiotic variables, and the phytoplankton was analyzed by the Utermöhl method. Data was analyzed
with the Shannon index () and Canonical Correspondence Analysis (CCA).
Results: 136 species were identified: 68.4 % Heterokontophyta, 22.8 % Dinoflagellata, and 5.9 % Cyanobacteria;
with 40 euryhaline and 96 stenohaline. The most abundant species were: Bacillaria paxillifera, Chaetoceros
compressus, Coscinodiscus rothii, and Chaetoceros atlanticus. The highest abundance was in ICO (dry) and the
lowest in MCH (wet), with 307 x 103 and 76 x 103 cells/ml, respectively; the ranged from 1.31 to 0.70 bits/
ind. The CCA showed a relationship between salinity and dissolved oxygen with C. rothii and Ceratoneis closte-
rium. The phosphates were associated with B. paxillifera, C. atlanticus, and Podosira stelligera. The nitrate, water
temperature and pH were related to Tripos hircus, T. furca, Diploneis bombus, and Merismopedia elegans. In con-
trast, Skeletonema costatum, Cocconeis scutelum, and Nitzschia bicapitata did not correlate with the limnological
variables.
Conclusions: The Mandingas Lagoon is a shallow, euryhaline and well-oxygenated ecosystem. The dominance
of diatoms and dinoflagellates was evidenced by their ability to survive in different salinities and temperatures. It
is recommended monitor phytoplankton, in particular Microcystis wesenbergii, B. quinquecornis, Pseudo-nitzschia
cf. pungens, and P. cf. pseudodelicatissima as they are harmful algae.
Key words: Bacillariophytina; Dinoflagellata; tropical Lagoon; Canonical Correspondence Analysis; new records.
RESUMEN
Fitoplancton de una laguna salobre en la región central de Veracruz, México
Introducción: Las lagunas salobres son ecosistemas de alta diversidad y con posibilidades para uso humano. Por
lo que es necesario mejorar el conocimiento del fitoplancton para entender su impacto real.
Objetivo: Relacionar el fitoplancton de la Laguna Mandinga con las condiciones limnológicas durante épocas
de secas y lluvias.
https://doi.org/10.15517/rev.biol.trop..v72i1.51160
AQUATIC ECOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
INTRODUCTION
In coastal lagoons, the physical and chemi-
cal variables are influenced by tidal currents,
upwellings, and seasonal cycles, as well as by
the effect of topography, sediment, type of
vegetation, river discharge, the effect of wind-
induced mixing, and the system morphology
itself (Kjerfve & Magill, 1989; Millán et al.,
1982). This condition plays an essential role in
modifying the population structure of phyto-
plankton, which groups the microscopic pho-
tosynthesizing organisms that live suspended
in the photic zone. As we know, phytoplankton
is a vital component of marine ecosystems
since it produces approximately half of the
global net primary production (Contreras &
Warner, 2004).
Additionally, phytoplankton species are
good bioindicators of hydro-climatic and
anthropogenic changes, and some species can
produce Harmful Algal Bloom (HAB) under
certain environmental conditions. It causes
deleterious impacts on organisms coexisting
with them and human health, with negative
consequences on the socio-economic activities
of coastal communities (Cortés-Altamirano et
al., 2019). In Veracruz, the HAB date from
1984 when a contingency occurred in the
Alvarado, Tamiahua, Sontecomapan, and Port
of Veracruz due to B. quinquecornis (=Peri-
dinium quinquecorne), Ceratium furca var.
hircus, Cyclotella spp., Chaetoceros holsaticus,
Karenia brevis, Peridinium quinquecorne var.
trispiniferum, Pyrodinium bahamense var. baha-
mense, Prorocentrum cordatum, Skeletonema
spp., and T. furca (=Ceratium furca) (Aké-Cas-
tillo & Vázquez-Hurtado, 2008; Aké-Castillo
& Vázquez-Hurtado, 2011; Gómez-Aguirre &
Licea, 1998; Guerra-Martínez & Lara-Villa,
1996; Licea et al., 2004).
In the coastal lagoons of the Gulf of Mexico,
various studies have been carried out focusing
on listing and understanding the phytoplankton
ecology. In Lagartos Lagoon, Quintana Roo, 67
taxa were registered. The highest abundance
corresponded to Cyanobacteria, with about 80
% (Nava-Ruíz & Valadez, 2012). Furthermore,
in Terminos Lagoon, Campeche, Muciño-
rquez et al. (2014) tested the composition
and abundance of the phytoplankton and its
relationship with some physical and chemi-
cal variables in the Pom-Atasta and Palizada
del Este Lagoon systems, registering 263 and
348 taxa, with a predominance of diatoms
and dinoflagellates, respectively. In different
coastal lagoons of Veracruz, 14 genera of Cya-
nobacteria have been registered (Okolodkov
& Blanco, 2011). The Bacillariophyta exhibit
Métodos: El material se recolectó en tres estaciones: Isla Conchas (ICO), Mandinga Chica (MCH) e Isla del Amor
(IA) en secas (marzo 2018) y lluvias (septiembre 2017 y 2018). El análisis limnológico incluyó diez variables
abióticas, además del fitoplancton mediante el método de Utermöhl. Los datos fueron analizados por el índice de
Shannon () y Correspondencia Canónica (ACC).
Resultados: Análisis de 136 especies; 68.4 % Heterokontophyta, 22.8 % Dinoflagellata, 5.9 % Cyanobacteria; con
40 eurihalinas y 96 estenohalinas. Las especies más abundantes fueron: Bacillaria paxillifera, Chaetoceros com-
pressus, Coscinodiscus rothii y Chaetoceros atlanticus. La mayor abundancia se registró en ICO (secas) y la menor
en MCH (lluvias) con 307 x 103 y 76 x 103 cell/ml, respectivamente. El osciló entre 1.31 y 0.70 bits/ind. El
CCA mostró una relación entre salinidad y oxígeno disuelto con C. rothii y Ceratoneis closterium. Los fosfatos se
asociaron con B. paxillifera, C. atlanticus y Podosira stelligera. Los nitratos, temperatura y pH se correlacionaron
con Tripos hircus, T. furca, Diploneis bombus y Merismopedia elegans. Mientras, Skeletonema costatum, Cocconeis
scutelum y Nitzschia bicapitata no presentaron correlación con las variables limnológicas.
Conclusiones: La Laguna Mandinga es un ecosistema somero, eurihalino y bien oxigenado. La dominancia de
diatomeas y dinoflagelados se evidenció por su capacidad para sobrevivir en diferentes concentraciones de sali-
nidad y temperatura. Sugerimos monitorear al fitoplancton por la presencia de Microcystis wesenbergii, B. quin-
quecornis, Pseudo-nitzschia cf. pungens y P. cf. pseudodelicatissima ya que pueden formar proliferaciones dañinas.
Palabras clave: Bacillariophytina; Dinoflagellata; lagunas costeras; análisis de correspondencia canónica; nuevos
registros.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
high species richness in Coscinodiscus, Chaeto-
ceros, Nitzschia, Rhizosolenia, and Thalassiosira
(Krayesky et al., 2009). In the meantime, 32
species of Chlorophyta have been registered
in mixohaline coastal lagoons. Although they
are not very abundant, the Euglenophyta indi-
cates contamination. In Alvarados Lagoon, 18
taxa marine or mesohaline taxa were investi-
gated in phytoplankton (Margalef, 1975). In
the Tamiahua Lagoon, 39 Dinoflagellata have
been recorded; it is known that Chlorophyta,
Euglenophyta, and Chrysophyta are euryha-
line common, while eutrophic estuaries are
characterized by a high diversity of Cyano-
bacteria (Figueroa-Torres & Weiss-Martínez,
1999). Instead, in the Sontecomapan Lagoon,
the morphology and distribution of the genus
Skeletonema were analyzed (Aké-Castillo et
al., 1995). For Mandinga Lagoon, Contreras-
Espinosa et al. (1994) have recognized it as a
eutrophic lagoon. Barón-Campis et al. (2005)
reported the genera Lioloma, Navicula, Pleu-
rosigma, Pseudo-nitzschia, and Thalassionema.
Also, Salcedo-Garduño et al. (2019) studied
the influence of physicochemical parameters
on the distribution of 47 phytoplankton spe-
cies. The Mandinga Lagoon is a vital ecosystem
for its diversity and environmental services
that benefit human use. However, knowledge
about phytoplankton in this ecosystem must be
improved to understand its real impact. Thus,
the objective was to relate the phytoplankton
diversity of Mandinga Lagoon with the physi-
cal and chemical conditions during the dry and
wet seasons of 2017-2018, respectively.
MATERIALS AND METHODS
Study area: Mandingas Lagoon, Veracruz
is located between (18º 59’-19º 05’ N & 96º
02’-96º 07’ W), has an approximate length of
20 km and is composed of six interconnected
bodies of water: Estero del Conchal, Laguna
Larga, Estero de Horcones, Laguna de Man-
dinga Chica or Laguna Redonda, Estero de
Mandinga, and Laguna de Mandinga Grande
Fig. 1. A. Map of Mexico, B. Veracruz state, C. Study area, location of the sampling sites in the Mandinga Lagoon: IA, Isla del
Amor; MCH, Mandinga Chica, and ICO, Isla Conchas.
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
(Fig. 1). It is a tropical environment with a
temperature of 23.6-29 °C, the salinity of 18-31
PSU, and pH of 7.2. The dissolved oxygen con-
centration varies from 1.7 to 9.4 mg/L; NO3 and
PO4 between 0.15- 0.6 mg/L and 0.082 to 0.153
mg/L, respectively. In addition to chlorophyll-a
of 0.12 to 0.17 mg/L (Salcedo-Garduño et al.,
2016). Concerning rainfall, the highest annual
average was in September (2018) with 270 mm,
and the lowest was in April (2017) with 17 mm
during the dry season (Weather Spark, s.f.).
Also, in the lagoon, there are various fishing
resources of great economic value; it is one of
the primary Crassostrea virginica oyster pro-
ducers in the Gulf of Mexico, as well as Crys-
tal shrimp (Penaeus sp.) and crab (Callinectes
similis). Such products constitute an essential
income source for the surrounding settlements
(Lango et al., 2013).
Collection of biological material: The
samples of biological material were collected
in the wet (September 2017 and 2018) and dry
(March 2018) seasons in three stations: Isla
Conchas (ICO), Mandinga Chica (MCH), and
Isla del Amor (IA), respectively (Fig. 1). At each
station, horizontal trawling was performed for
five minutes using a net with a mesh size of 20
µm. This material was divided into two equal
fractions: the first was kept in vivo at a tempera-
ture of 4 °C, and the other was preserved with
formaldehyde at a final concentration of 4 %
with sodium borate (Tomas, 1997). Addition-
ally, two 500 ml samples were taken in the first
20 cm of the water column; one of them was
preserved with Lugol acetate for quantification
by the Utermöhl method (Edler & Elbrächter,
2010), and the second was used to determine
the limnological variables (APHA et al., 2005).
Limnological variables: In each study sta-
tion, registrations were made in situ for the
following variables. A Brannan thermometer
was used for water temperature; pH was mea-
sured using a Cole Parmer potentiometer and
Digi-sense model; the transparency and depth
were measured using Secchi Disc and Speed-
tech USA, respectively. Dissolved oxygen con-
centration and total alkalinity were measured
using the Winkler technique and methyl orange
titration. The salinity and electrical conduc-
tivity were recorded using an Atago PAL-03S
Japan refractometer and a Hanna HI98312.
Finally, a Hach spectrophotometer model
DR2800 was used, and the test package for
orthophosphates using the molybdovanadate
method 8114 and nitrates cadmium-reduction
method 8153 (APHA et al., 2005). Chloro-
phyll-a quantification (mg/m³): A 50 ml water
sample was collected using the Strickland &
Parsons (1972) technique.
Processing of biological material: The
phytoplankton samples were analyzed using a
Leica light microscope. In order to study the
thecal plates of dinoflagellates, 0.2 % trypan
blue (Taylor, 1978). For clean diatoms, the
oxidative method was used Hasle & Fryxell
(1970) and was subsequently observed with
a scanning electron microscope (SEM JEOL
model JSM6380LV) according to Ferrario et al.
(1995). The works of Tomas (1997), Komárek &
Anagnostidis (1999), Komárek & Anagnostidis
(2002), and Okolodkov (2008) were used for
taxonomic determination based on the classi-
fication indicated in the algae database (Guiry
& Guiry, 2024). Finally, the new registrations
for the Gulf of Mexico coasts were based on
Krayesky et al. (2009), León-Tejera et al. (2009),
Steidinger et al. (2009), and Salcedo-Garduño
et al. (2019). The material was placed in the
herbarium IZTA 1910-1914 (Thiers, 2020).
Statistical analysis: The Shannon-Wiener
Diversity Index and the Olmstead-Tukey analy-
sis were also carried out (Sokal & Rohlf, 1981).
Also, to know the relationship between the
dominant and constant species with limnologi-
cal variables, a CCA was performed using the
Monte Carlo permutation test (9999 permuta-
tions, α = 0.05) in the CANOCO software for
Windows 4.5 (Ter-Braak & Smilauer, 2009).
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
RESULTS
Physical, chemical, nutrient, and chlo-
rophyll-a variable: Water temperature ranged
from 21 to 29 °C and salinity from 0 to 32 PSU.
Water pH was slightly alkaline with 8.0-8.8,
and a well-oxygenated environment valued at
6.0-12 mg L-1. Chlorophyll-a, transparency and
depth were higher in the wet season (Table 1).
Phytoplankton of composition: Table 2
shows the specific richness of phytoplankton
in the study area exhibited 40 species of eury-
haline and 96 of stenohaline. The distribution
was different in each of the stations: 53 spe-
cies were recorded at ICO; in the MCH, there
were 64 species, and finally, in IA, 79 species
were recognized.
Table 1
Values of environmental variables registered during dry and wet seasons at the sampled sites in the Mandinga Lagoon.
Sites of sampling Station 1-ICO Station 2-MCH Station 3-IA
Interval Seasons Dry Wet Dry Wet Dry Wet
Environmental variables
1. Water temperature (°C) 29 22 27 21 28 21 21-29
2. Ionization potential (pH) 8.4 8.1 8.8 8.0 8.5 8.1 8.0-8.8
3. Dissolved oxigen (mg/L) 6.8 9.2 8.4 12 6 3.6 6-12
4. Alcalinity (mg/L CaCO3) 89 220 20 230 80 225 20-230
5. Conductivity (µS/cm) 31 36 40 37 20 45 31-45
6. Salinity (PSU) 0 0 32 32
0
25 25 0-32
7. Nitrate (mg/L) 1 0 1 0 0 0-1
8. Phosphate (mg/L) 1 2.2 1 1.1 0 0.1 0-2.2
9. Chlorophyll-a (mg/m³) 3.2 11 3 9.0 3 8.1 3-11
10. Transparency (cm) 43 80 28 100 60 200 28-200
11. Depth (cm) 52 98 28 126 100 420 28-420
Station1-ICO: Station 1-Isla Conchas; Station 2-MCH: Station 2-Mandinga Chica and Station 3-IA: Station 3-Isla del Amor.
Table 2
List of Taxa registered at the sampled sites in the Mandinga Lagoon.
Sites of sampling S1-ICO S2-MCH S3-IA
Salinity (PSU) mean values 0 PSU 32 PSU 25 PSU
Cyanobacteria
Anabaena sp. 100
Johannespbatistia sp. 010
Leptolyngbya gracilis (Lindstedt)Anagnostidis & Komárek 100
Lyngbya sp. 010
*Merismopedia elegans A. Braun ex Kützing 110
Merismopedia insignis Skorbatow [Shkorbatow] 010
Microcystis wesenbergii (Komárek) Komárek ex Komárek 100
*Spirulina robusta H. Welsh 110
Chlorophyta
Desmodesmus abundans (Kirchmer) E. H. Hegewald 100
Monactinus simplex (Meyen) Corda 100
Pseudopediastrum boryanum (Turpin) E. Hegewald 100
Euglenophyta 
Lepocinclis acus (O. F. Müller) B. Marin & Melkonian 100
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
Sites of sampling S1-ICO S2-MCH S3-IA
Salinity (PSU) mean values 0 PSU 32 PSU 25 PSU
Heterokontophyta (Bacillariophytina) 
Actinocyclus circellus T. P. Watkins 100
*Actinoptychus senarius (Ehrenberg) Ehrenberg 111
Actinoptychus splendens (Shadbolt) Ralfs 001
Alveus marinus (Grunow) Kaczmarska & Fryxell 011
Amphora proteus W. Gregory 010
*Asterionellopsis glacialis (Castracane) Round 101
Aulacoseira granulata (Ehrenberg) Simonsen 1 0 0
Azpeitia nodulifera (A. W. F. Schmidt) G. A. Fryxell & P. A. Sims 100
*Bacillaria paxillifera (O. F. Müller) T. Marsson 110
Bacteriastrum elongatum Cleve 011
Bacteriastrum furcatum Shadbolt 001
Bacteriastrum hyalinum Lauder 001
Sites of sampling S1-ICO S2-MCH S3-IA
Salinity (PSU) mean values 0 PSU 32 PSU 25 PSU
*Bellerochea malleus (Brightwell) Van Heurck 110
Biddulphia biddulphiana (J. E. Smith) Boyer 001
Biddulphia tridens (Ehrenberg) Ehrenberg 110
*Caloneis permagna (Bailey) Cleve 110
Campylodiscus braziliensis J. M. Deby 010
Cerataulus smithii Ralfs 001
Ceratoneis closterium Ehrenberg 001
Chaetoceros affinis Lauder 010
Chaetoceros brevis F. S chütt 010
Chaetoceros atlanticus Cleve 011
*Chaetoceros compressus Lauder 111
Chaetoceros curvisetus Cleve 011
Chaetoceros decipiens Cleve 011
Chaetoceros lorenzianus Grunow 011
Chaetoceros messanensis Castracane 110
Chaetoceros protuberans Lauder 001
Chaetoceros radicans F. S chütt 001
Chaetoceros rostratus Ralfs 001
*Cocconeis scutellum Ehrenberg 110
Coscinodiscus granii L. F. Gough 010
*Coscinodiscus radiatus Ehrenberg 111
Coscinodiscus rothii (Ehrenberg) Grunow 011
Coscinodiscus wailesii Gran & Angst 001
*Cyclotella stylorum Brightwell 111
*Cymbella tumida (Brébisson) Van Heurck 111
Detonula pumila (Castracane) Gran 011
*Diploneis bombus (Ehrenberg) Ehrenberg 111
Diploneis splendida Cleve 100
Ditylum brightwellii (T. West) Grunow 001
Sites of sampling S1-ICO S2-MCH S3-IA
Salinity (PSU) mean values 0 PSU 32 PSU 25 PSU
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
Sites of sampling S1-ICO S2-MCH S3-IA
Salinity (PSU) mean values 0 PSU 32 PSU 25 PSU
*Entomoneis alata (Ehrenberg) Ehrenberg 111
Fragilaria sp. 100
*Grammatophora sp. 111
Grammatophora marina (Lyngbye) Kützing 010
*Guinardia delicatula (Cleve) Hasle 101
Guinardia flaccida (Castracane) H. Peragallo 001
*Gyrosigma inflatum Ricard 111
*Hantzschia pseudomarina Husted 111
Hantzschia sigma Hustedt 001
Haslea wawrikae (Husedt) Simonsen 010
Helicotheca tamesis (Shrubsole) M. Ricard 001
Hobaniella longicruris (Greville) P. A. Sims & D. M. Williams 001
*Hemiaulus sinensis Greville 111
Lauderia annulata Cleve 001
*Licmophora sp. 110
*Lithodesmium undulatum Ehrenberg 110
Lyrella lyra (Ehrenberg) Karajeva 010
Navicula sp. 100
Navicula gastrum (Ehrenberg) Kützing 010
Navicula lanceolata Ehrenberg 100
Navicula pennata A. W. F. Schmidt 011
Neidium sp. 010
*Nitzschia bicapitata Cleve 110
Nitzschia braarudii Hasle 001
Nitzschia granulata Grunow 011
*Nitzschia longissima (Brébisson ex Kützing) Grunow 111
Nitzschia sicula (Castracane) Hustedt 010
*Nitzschia sigma (Kützing) W. Smith 101
Nitzschia spathulata Brébisson ex W. Smith 001
Sites of sampling S1-ICO S2-MCH S3-IA
Salinity (PSU) mean values 0 PSU 32 PSU 25 PSU
Odontella aurita (Lyngbye) C. Agardh 011
Palmerina hardmaniana (Greville) G. R. Hasle 001
Petrodictyon gemma (Ehrenberg) D. G. Mann 100
Petroneis granulata D. G. Mann 010
*Pleurosigma angulatum (J. T. Quekett) W. Smith 110
*Pleurosigma diversestriatum F. Meister 111
*Podosira stelligera (Bailey) A. Mann 111
Proboscia alata (Brightwell) Sundström 001
Pseudo-nitzschia cf. pungens (Grunow ex Cleve) Hasle 001
Pseudo-nitzschia cf. pseudodelicatissima (Hasle) Hasle 001
Rhizosolenia setigera Brightwell 010
Rhopalodia sp. 010
Skeletonema sp. 100
Skeletonema costatum (Greville) Cleve 011
Stephanopyxis sp. 010
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
Sites of sampling S1-ICO S2-MCH S3-IA
Salinity (PSU) mean values 0 PSU 32 PSU 25 PSU
*Surirella recedens A.W. F. Schmidt 111
*Surirella striatula Turpin 101
*Thalassionema bacillare (Heiden) Kolbe 110
Thalassionema nitzschioides (Grunow) Mereschkowsky 001
Thalassiosira lineoides Herzig & Fryxell 101
Thalassiosira delicatula Ostenfel 001
Thalassiothrix longissima Cleve & Grunow 001
Trieres mobiliensis (Bailey) Ashworth & E.C. Theriot 001
Dinoflagellata 
Azadinium cf. spinosum Elbrächter & Tillmann 001
*Blixaea quinquecornis (T. H. Abé) Gottschling 111
Cochlodinium sp. 001
Cochlodinium sp.1001
*Dinophysis fortii Pavillard 111
Sites of sampling S1-ICO S2-MCH S3-IA
Salinity (PSU) mean values 0 PSU 32 PSU 25 PSU
Diplopsalis sp. 001
Gonyaulax polygramma F. Ste in 010
Gonyaulax spinifera (Claparède & Lachmann) Diesing 011
Gonyaulax spirale Diesing 001
Gonyaulax sp. 010
Gyrodinium sp. 001
*Karenia mikimotoi (Miyake & Kominami ex Oda) Gert Hansen & Moestrup 101
Lingulodinium sp. 100
Peridinium quinquecorne var. trispiniferum Aké-Castillo & G. Vázquez 010
Protoperidinium abei (Paulsen) Balech 001
*Protoperidinium conicum (Gran) Balech 110
Protoperidium oceanicum (Vanhöffen) Balech 001
Protoperidium oviforme (P.J.L. Dangeard) Balech 001
Protoperidium ovum (J. Schiller) Balech 001
Protoperidinum pellucidum Bergh 001
Protoperidium pyriforme (Paulsen) Balech 001
Protoperidinium quarnerense (B. Schröder) Balech 001
Protoperidium subinerme (Paulsen) A. R. Loeblich III 001
*Prorocentrum gracile F. S chütt 110
*Prorocentrum micans Eh 101
*Tripos furca (Ehrenberg) F. Gómez 111
Tripos furca var. eugrammus (Ehrenberg) F. Gómez 0 1 0
*Tripos hircus (Schröder) F. Gómez 111
Scrippsiella trochoidea (F. Stein) A. R. Loeblich III 001
Scrippsiella spinifera G. Honsell & M. Cabrini 001
Warnowia sp. 001
53 64 79
S1-ICO: Station 1-Isla Conchas; S2-MCH: Station 2-Mandinga Chica, and S3-IA: Station 3-Isla del Amor. Practical Salinity
Unit (PSU): mean values, 1: Presence and 0: Absence. *Euryhaline taxa, and names of species in bold are new registers in
the area study
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
Fig. 3. SEM A. Cerataulus smithii, external view showing ocelli and spines. B. Bacteriastrum hyalinum, Internal valve view
showing terminal setae. C. Lithodesmium undulatum, Valval view triangular, showing the central spine, each side having
a median inflation. D. Diploneis bombus, inside view cell showing rafe and striae. E. Azpeitia nodulifera, valve face with
radial rows of areolate. F. A. nodulifera, areolae occluded by criba and external aperture of rimoportula (arrow). Scale bars
F = 1 µm, D = 5 µm; A, B, C, E = 10 µm.
Fig. 2. Number of species by Phylum Heterokontophyta (Bacillariophytina), Dinoflagellata, Cyanobacteriota, Chlorophyta
and Euglenophyta registered in the Mandinga Lagoon.
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
Table 3
Dominant species registered both in wet and dry seasons in the Mandinga Lagoon (2017-2018).
Taxa
ICOW17 MCHW17 ICOD18 MCHD18 IAD18 ICOW18 MCHW18 IAW18 Total
Bacillaria paxillifera 0 41 165 0 10 22 0 0 238
Chaetoceros compressus 0 0 42 19 147 0 0 0 208
Coscinodiscus rothii 0 0 29 7 20 24 22 29 132
Chaetoceros atlanticus 0 0 30 17 23 20 37 0 127
Merismopedia elegans 10 0 0 98 0 0 0 0 108
Nitzschia bicapitata 72 28 0 0 0 0 0 0 100
Skeletonema costatum 0 39 11 0 0 0 0 49 99
Gyrosigma inflatum 0 24 6 15 5 18 17 0 85
Blixaea quinquecornis 54 0 16 0 10 0 0 0 80
Navicula pennata 53 0 8 8 0 0 0 0 69
188 132 307 163 214 83 76 79
Data expressed in 103 cells/ml. ICOW17: Isla Conchas Wet 2017; MCHW17: Mandinga Chica Wet 2017; ICOD18: Isla
Conchas Dry 2018; MCHD18: Mandinga Chica Dry 2018; IA18: Isla del Amor Dry 2018; ICOW: Isla Conchas Wet/Rainfall
2018; MCHW: Mandinga Chica Wet 2018 and IAW18: Isla del Amor Wet 2018.
Phytoplankton composition: A total of
136 taxa distributed in five Phylum were regis-
tered, 68.4 % (93) to Heterokontophyta (Baci-
llariophytina), 22.8 % (31) to Dinoflagellata, 5.9
% (8) of which correspond to Cyanobacteria,
2.2 %, (3) to Chlorophyta, and 0.7 % (1) to
Euglenophyta (Fig. 2 and Fig. 3).
Abundance phytoplankton: Heterokon-
tophyta species rank eight places out of the first
10 in abundance: B. paxillifera, C. compressus,
C. rothii, C. atlanticus, N. bicapitata, S. costa-
tum, G. inflatum, and N. pennata. To complete
the list one Cyanobacteria: M. elegans, and one
Dinoflagellata: B. quinquecornis. Regarding the
stations and seasons studied, the highest abun-
dance was 307 x 103 cells/ml during the dry
season in the ICO station in 2018; instead, the
lowest abundance was observed in the MCH
station during the wet season in 2018 with 76 x
103 cells/ml (Table 3).
Diversity Index and species dominance:
The Shannon index showed a maximum value
of 1.31 bits/ind. at ICO in the dry season
(2018), the minimum value was 0.70 bits/ind.
in IA during the wet season (2018).
According to the Olmstead-Tukey diagram,
the dominant groups were Heterokontophyta
and Dinoflagellata; 48 % of the phycoflora were
rare species, followed by 29 % dominants, 20 %
constant, and 3 % occasional—some examples
of the dominant: B. paxillifera, C. compressus,
C. rothii, and C. atlanticus. In contrast, the con-
stant was G. marina. Moreover, the occasional
was D. abundans. Lastly, A. proteus was rare
(Fig. 4).
Analysis of phytoplankton and limnolog-
ical variables: Our results show that quadrant
I was related to salinity and dissolved oxygen
with C. rothii and C. closterium (Heterokon-
tophyta). The quadrant III was associated with
phosphates, whose taxa were represented by B.
paxillifera, C. atlanticus, P. stelligera, A. senari-
us, and B. quinquecornis (Dinoflagellata). The
quadrant IV was related to pH, nitrates and
temperature; the highest water temperature val-
ues, 27-29 °C, with T. furca, T. hircus, P. m ic a n s ,
C. curvisetus, and M. elegans (Cyanobacteria).
At the same time, the species of quadrant II did
not show a relation with limnological variables,
e.g. S. costatum, C. scutellum, and N. bicapitata
(Fig. 5).
DISCUSSION
Limnological variables: The variables
showed the following based on the data
obtained during 2017-2018 (Table 1). The
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
Fig. 4. Olmstead-Tukey diagram showing the importance of species: dominant, occasional, constant and rare from Mandinga
Lagoon.
Fig. 5. Canonical Correspondence Analysis. The relationship between species and environmental variables studied from
Mandinga Lagoon. The axes explain 56 % of total variance.
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
surface temperature of the water ranged from
27-29 °C in the dry season, while in the wet sea-
son, it ranged from 21-22 °C. For this reason,
during the dry season, water temperature falls
into the classification of tropical environments,
according to Lara-Domínguez et al. (2011) for
several lagoons in Veracruz.
In contrast, data from 1975 by Arreguín-
Sánchez (1982) indicated temperatures from
16 to 32 °C, with the lowest temperatures
during January and February. Also, Salcedo-
Garduño et al. (2016) and Salcedo-Garduño
et al. (2019) showed temperature registrations
from 20.8 to 29.9 °C, as well as temperatures
from 28 to 31 °C in the dry season and rains
in the same lagoon by González-Vázquez et
al. (2019). There also similar temperature reg-
istrations from 23 to 33 °C for the Alvarado
Lagoon (Rivera-Guzmán et al., 2014) and from
22.8 to 26.2 °C in Sontecomapan (Muciño-
rquez et al., 2012).
For the study area, the average pH value
was 8.3 ± 0.26, while the minimum was 8 in
the wet season; these are slightly basic chemi-
cal conditions due to the influence of seawater
intrusion into the coastal lagoons. For other
habitats of Veracruz, such as the Tapamachoco
Lagoon, Contreras & Warner (2004) indicate a
pH of 8.0-8.2. While for the winters, the regis-
tered pH was 7.1-7.8, which can be explained
by the degradation of organic matter or by
removing sediment due to the effects of the cur-
rent, causing remineralization (López-Ortega
et al., 2012). Also, for the La Mancha Lagoon,
the pH in the dry season is 7.8 and rainy is 8.1
respectively (Rivera-Guzmán et al., 2014). At
Sotecomapan Lagoon value was near neutral,
7.3-7.8 (Muciño-Márquez et al., 2012).
The salinity in this study ranged between
0 to 32 PSU, which is why it is considered an
euryhaline environment. Therefore, it is not
confirmed as polyhaline (10-20 PSU) as indi-
cated by Lara-Domínguez et al. (2011), Salcedo-
Garduño et al. (2016) and Salcedo-Garduño et
al. (2019), whose values ranged between 21-31
PSU. Likewise, Arreguín-Sánchez (1982) and
González-Vázquez et al. (2019) recorded in
Mandinga Lagoon values of 0.5 to 33 PSU
during dry and wet seasons. These data should
not be forgotten that they can be very dynamic
due to the change of tides, such as that recorded
in the Sontecomapan Lagoon, Veracruz, during
the nyctemeral cycle in the rainy season where
the change of tides explains the values 3 to 6
PSU in the morning while 30.5 PSU later at 5:00
P.M. (Muciño-Márquez et al., 2012).
The values for dissolved oxygen ranged
from 6.7 to 9.3 mg/L, which is why this envi-
ronment is recognized as well-oxygenated
(Salcedo-Garduño et al., 2016). These data
confirm what was stated by Lara-Domínguez
et al. (2011) for the coastal lagoons of the Gulf
of Mexico, where the efficient pattern of water
circulation and renewal, as well as an intense
activity of primary producers, allow a dynamic
of this limnological condition in a well-oxygen-
ated coastal environment.
Our nitrate and phosphate values for Man-
dinga Lagoon ranged from 0 to 1 mg/L and 0 to
2.2 mg/L, respectively. The highest values were
initially recorded in the wet season, explained
by the nutrient incorporation and dragging
into the basin. Instead, Salcedo-Garduño et
al. (2016) indicated concentrations of nitrates
from 0.15 to 0.6 mg/L and phosphates from
0.08 to 0.15 mg/L from 2011 to 2012. For its
part, Contreras-Espinosa et al. (1994) indicated
that nitrates from 33 Mexican coastal lagoons
ranged from 0.049 to 0.070 mg/L and support-
ed the idea that these nutrients are generally
higher in the wet season. These values do not
correspond to the nutrient ranges found in the
coastal lagoons of Veracruz, where the number
of nitrates ranged from 0.05 to 0.14 mg/L and
the number of phosphates from 0 to 0.15 mg/L
(Lara-Domínguez et al., 2011). Vázquez et al.
(2007) mainly report nitrate amounts of 1.6, 1.1,
and 1.4 mg/L and phosphorus amounts of 0.9,
1.5, and 1.8 mg/L for eutrophic lakes Chalchoa-
pan, Verde, and Mogo, Veracruz, respectively.
During the study period in Mandinga
Lagoon, the chlorophyll-a levels ranged from 3
to 11 mg/m3, implying low primary productivity
in the system. Contreras-Espinosa et al. (1994)
and Lara-Domínguez et al. (2011) recorded
values from 30 to 40 mg/m³ during the same
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
seasons, which indicates that the registration
was higher at another season. Also, Salcedo-
Garduño et al. (2019) indicated values from 8 to
15 mg/m3 in the same climatic seasons. On the
other hand, in Tampamachoco Lagoon, values
from 10 to 20 mg/m³ were recorded in 1980; a
decade later, the records were 20 to 30 mg/m³,
which indicates that there are changes in limno-
logical dynamics over time, associated with the
abundance of photosynthetic organisms that, in
turn, are responsible for the dissolved oxygen
concentrations reached in the water column.
During the wet season, the maximum con-
centration of chlorophyll-a, Secchi transpar-
ency, and lower phytoplankton abundance was
observed compared to the dry season (Table 1).
These differences in chlorophyll-a and abun-
dances could be because, in this work, the
picoplankton photosynthetics were not quanti-
fied in both periods, whose lighting and mixing
variables in the water column contributed to
these differences.
Phytoplankton composition: In this study,
136 taxa were found, 68.4 % Heterokontophyta,
followed by 22.8 % Dinoflagellata (Table 2);
such composition is typical of euryhaline envi-
ronments. That is, diatom and dinoflagellate
dominance are similar to that registered in
brackish aquatic Dzilam, Tamiahua and Man-
dinga Lagoons from Yucatan and Veracruz,
Mexico (Figueroa-Torres & Weiss-Martínez,
1999; Herrera-Silveira et al., 1999; Salcedo-
Garduño et al., 2019).
Of the total phycoflora, the following Phy-
lum are cited for the first time: Cyanobacteria,
Euglenophyta, and Chlorophyta; in the last
Phylum, the Pseudopediastrum can grow in
an oligohaline habitat whose salinity intervals
range from 0 to 10 PSU. This genus is one
of the typical phytoplankton components of
a polyhaline environment such as Tamiahua
Lagoon, where salinities are from 18 to 30 PSU
(Figueroa-Torres & Weiss-Martínez, 1999).
Otherwise, from the composition of the dia-
toms indicated by Barón-Campis et al. (2005),
the presence of six genera Chaetoceros, Navicu-
la, Pleurosigma, Pseudo-nitzschia, Skeletonema,
and Thalassionema was confirmed, during the
study, while the genus Lioloma was not record-
ed in this work.
The specific phytoplankton richness reg-
istered in Mandinga Lagoon can be rated as
high, as opposed to what was indicated for
other coastal lagoons in the Gulf of Mexico,
such as Tamiahua with 39 species of Dinoflagel-
lata (Figueroa-Torres & Weiss-Martínez, 1999),
Alvarado with 18 species (Margalef, 1975), and
Lagartos with 67 species (Nava-Ruíz & Valadez,
2012). We recognized 93 species of diatoms, of
which the genera with the highest species rich-
ness were Chaetoceros with eleven and Nitzschia
with seven. Krayesky et al. (2009) indicate simi-
lar data for the Southwestern Gulf of Mexico,
where both genera present the highest richness
with 27 and 16 species, respectively.
Pseudo-nitzschia species in the study area
can warn about the need for surveillance as
they are HAB-causing agents (Salcedo-Gardu-
ño et al., 2019). Regarding the Dinoflagellata,
the studied stations registered 31 species, cor-
responding to 12 % of that indicated for the
Southwest of the Gulf of Mexico (Steidinger
et al., 2009), where the genus with the highest
number of species was Protoperidinium with
nine species. This taxon was mainly associ-
ated with the IA station, the closest area to the
systems mouth. Therefore, many of its com-
ponents are typically marine, where 25 PSU
were registered, conditions consistent with the
high diversity of species defined by Okolodkov
(2008) for the marine coasts of Veracruz, where
46 species of that genus were found. In three
stations studied, B. quinquecornis was found in
low 80 x 103 cells/ml concentrations. This spe-
cies has been associated with HAB in the port
of Veracruz (Barón-Campis et al., 2005), for
which it is highly recommended to monitor the
dynamics of this population to prevent future
environmental contingencies in the study area.
For the Cyanobacteria, eight species were
found only at the ICO and MCH stations, and
M. elegans, M. insignis, and M. wesenbergii were
registered for the first time. These taxa corre-
spond to 18 % of those listed for the Southwest
of the Gulf of Mexico (León-Tejera et al., 2009).
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
Abundance phytoplankton: Out of the
ten abundant species in the study area, the
maximum quantification corresponded to the
2018 period in the ICO station, with 307 x
103 cells/ml in the dry season. In contrast, the
minimum concentration was 76 x 103 cells/ml
in the MCH station in the wet season (Table 3).
High amounts of productivity, if we compare
them with the records of 4 x 103 cells/ml in the
rainy and windy seasons at Alvarados Lagoon
indicated by Margalef (1975). Therefore, both
lagoons record minimum phytoplankton con-
centrations in the rainy season. This suggests a
variation in the quantification of phytoplank-
ton, which showed a higher record in the dry
season when the depth of the Secchi disk was
43 cm, where the picoplankton could be essen-
tial components of chlorophyll production in
the system. The support mentioned above was
indicated by Kjerfve & Magill (1989); they say
that, during the wet seasons, cyclone, hurri-
cane, tropical storm, and waterspout seasons
are associated, which produce changes in the
ecosystem and its components, e.g., salinity,
nutrients, winds, and the deposition of fresh-
water by the tributaries. For that reason, the
phytoplankton cannot grow appropriately.
Instead, during the dry season, where con-
ditions remain similar, some components of
the phytoplankton can grow exponentially. The
species with the highest abundance in the study
area was B. paxillifera.
According to Jahn & Schmid (2007), this
diatom, a ubiquitous taxon, has been recorded
worldwide in freshwater, brackish, and marine
habitats. Despite the changes in limnological
conditions, these species do not experience
growth limitations. Likewise, this species has
also been indicated as an abundant component
of 39 x 103 cells/L from Sontecomapan Lagoon,
Veracruz (Muciño-Márquez et al., 2012).
Species dominance: Our results showed a
phytoplankton composition mainly made up of
diatoms and dinoflagellates in 91.6 %. This is
consistent with some authors’ statements that
Bacillariophyta and Dinoflagellata account for
approximately 80 % of the eukaryotic species
of marine phytoplankton (Licea et al., 2004;
Licea et al., 2011; Muciño-Márquez et al., 2014).
As well as the presence of Alveus marinus,
Chaetoceros atlanticus, C. lorenzianus, D. bom-
bus, N. pennata, N. granulata, N. longissima, S.
costatum, Gonyaulax spinifera, Dinophysis fortii,
Pseudo-nitzschia cf. pseudelicatissima, and P. cf.
pungens, among others. This indicates seawater
intrusion into the lagoon by tidal currents or
wind, consistent with what was stated in stud-
ies for different coastal lagoons. As opposed to
Lagartos Lagoon, Quintana Roo, more than 80
% of its phytoplankton comprises Cyanobacte-
ria, which suggests that the system is eutrophi-
cated (Nava-Ruíz & Valadez, 2012).
The highest Shannon-Wiener index in this
study was 1.31 bits/ind., indicating some spe-
cies’ high dominance and low equity. These
results are lower than the one cited for the
Palizada del Este Lagoon, Campeche-Mexico;
there was an index of 3.2 bits/ind. (Muciño-
rquez et al., 2014). Also, in a marine region
near Punta Limón, Veracruz, the data were from
1.9 to 4.1 bits/ind. (Santoyo & Signoret, 1988).
Relationship between phytoplankton
and limnological variables: Some species of
the abundant genera in this study, includ-
ing Chaetoceros, Grammatophora, Gyrosigma,
and Nitzschia (Table 2 and Table 3), have
been used as indicators of salinity in previous
studies and are associated with wide tempera-
ture ranges, which gives them the category of
salinity eurythermal and euryhaline (Rivera-
Guzmán et al., 2014).
Phosphates and salinity (zero) explain the
presence of Chlorophyta species in the wet
season at ICO (Table 2). This would be relevant
for the variables indicated, as well as for the
environmental conditions recorded, for exam-
ple, some species of Pediastrum sensu lato for
Central Europe and Mexico (Lenarczyk, 2015;
Garduño et al., 2016).
On the other hand, nitrates, water temper-
ature, and pH explain the presence of dinofla-
gellates in the dry season in ICO and IA. These
results have also been recorded in the Celes-
tun Lagoon, Yucatan, where dinoflagellates
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
withstand wide temperature ranges (Herrera-
Silveira et al., 1999). This group shows a cor-
relation between temperature and abundance,
which is consistent with the results obtained
in this study. However, it should be noted that
some species of the genera Ceratium, Prorocen-
trum, and Gyrodinium can tolerate salinities
from 10 to 70 PSU (Taylor, 1978). In general,
the limnological variable and the phytoplank-
ton diversity show temporality, which reflects
variations in the environment and the activities
of human populations that depend directly or
indirectly on the lagoon water, precipitation
and deposition of the tributaries mainly. Sal-
cedo-Garduño et al. (2019) indicated a shallow
environment for Mandinga Lagoon with the
influence of marine and continental water from
the Jamapa River. They also report a more sig-
nificant variability in the phytoplankton abun-
dance during the wet season.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
ACKNOWLEDGMENT
We would like to thank all colleagues who
helped us work SEM Rafael Quitanar Zuñiga
and pictures Daniel Sánchez Ávila. Finally,
the anonymous reviewers added their valuable
comments to the final writing.
REFERENCES
Aké-Castillo, J. A., & Vázquez-Hurtado, G. (2008). Phyto-
plankton variation and its relation to nutrients and
allochthonous organic matter in a coastal lagoon
on the Gulf of Mexico. Estuarine Coastal and Shelf
Science, 78, 705–714. https://doi.org/10.1016/j.
ecss.2008.02.012
Aké-Castillo, J., & Vázquez, G. (2011). Peridinium quinque-
corne var. trispiniferum var. nov. (Dinophyceae) from
a brackish environment. Acta Botánica Mexicana, 94,
125–140. https://doi.org/10.21829/abm94.2011.273
Aké-Castillo, J., Meave del Castillo, M., & Hernández-
Becerril, D. (1995). Morphology and distribution of
species of the diatom genus Skeletonema in a tropical
coastal lagoon. European Journal Phycology, 30, 107–
115. https://doi.org/10.1080/09670269500650871
American Public Health Association (APHA), Ameri-
can Water Works Association (AWWA), & Water
Environment Federation (WEF). (2005). Standard
methods for the examination of water and wastewater.
(21th ed). American Public Health Association/Ame-
rican Water Works Association/Water Environment
Federation. Washington D.C. https://doi.org/10.5860/
choice.37-2792
Arreguín-Sánchez, F. (1982). Contribución al conocimien-
to de la hidrobiología de las lagunas de Mandinga,
Veracruz, México. Anales de la Escuela Nacional de
Ciencias Biológicas México, 26, 111–134.
Barón-Campis, S. A., Hernández-Becerril, D. U., Juárez-
Ruíz, N. O., & Ramírez-Camarena, C. (2005). Marea
roja producida por el dinoflagelado Peridinium quin-
quecorne en Veracruz, México (oct-nov, 2002): morfo-
logía del agente causal. Hidrobiológica, 15 (1), 73–78.
Contreras-Espinosa, F., Castañeda-López, O., & García-
Nagaya, A. (1994). La clorofila “a” como base para un
índice trófico en lagunas costeras mexicanas. Anales
del Instituto de Ciencias del Mar y Limnología, UNAM.
21, 55–66.
Contreras, E. F., & Warner, B. G. (2004). Ecosystem charac-
teristics and management considerations for coastal
wetlands in Mexico. Hydrobiologia, 511, 233–245.
https://doi.org/10.1023/b:hydr.0000014097.74263.54
Cortés-Altamirano, R., Alonso-Rodríguez, R., & Salas de
León, D. A. (2019). Historical observations of algal
blooms in Mazatlán Bay, Sinaloa, México (1979-
2014). PLoS ONE, 14(1), e0210631. https://doi.
org/10.1371/journal.pone.0210631
Edler, L., & Elbrächter, M. (2010). The Utermöhl method
for quantitative phytoplankton analysis. In B. Karlson,
C. Cusack & E. Bresnan (Eds.), Microscopic and mole-
cular methods for quantitative phytoplankton analysis
(pp. 3–20). United Nations Educational, Scientific and
Cultural Organization.
Ferrario, M. E., Sar, E., & Salas, S. (1995). Metodología
básica para el estudio del fitoplancton con especial
referencia a las diatomeas. En K. Alveal, M. E. Ferra-
rio, E. C. Oliveira & E. Sar (Eds.), Manual de métodos
ficológicos (pp. 1–19). Universidad de Concepción.
Figueroa-Torres, M. G., & Weiss-Martínez, I. (1999).
Dinoflagelados (Dinophyceae) de la laguna de Tamia-
hua, Veracruz, México. Revista Biología Tropical,
47(1), 43–46.
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
Garduño, S. G., Guillén-Ruiz, D. L., Martínez-García, M.,
Quintanar-Zúñiga, R. E., Campos, J. E., & Comas-
González, A. (2016). Pediastrum sensu lato (Chloro-
phyceae) of central México. Cryptogamie Algologie,
37(4), 273–295. https://doi.org/10.7872/crya/v37.
iss4.2016.273
Gómez-Aguirre, S., & Licea, S. (1998). Blooms of Pyrodi-
nium bahamense (Dinophyceae) in coastal lagoons of
the southern Gulf of Mexico and Mexican Caribbean.
In B. Reguera, J. Blanco, M. L. Fernández, & T. Wyatt
(Eds.), Harmful Algae (pp. 61–62). Xunta de Galicia
and Intergovernmental Oceanographic Commission
of United Nations Educational, Scientific and Cultural
Organization.
González-Vázquez, J. A., Hernández-Vivar, E., Rojas-Serna,
C., & Del Valle-Morales, J. (2019). Diagnóstico de la
circulación del agua en un estuario: Caso de estudio
del río Jamapa y las lagunas de Mandinga, Veracruz,
México. Ciencias Marinas, 45(1), 1–16. https://doi.
org/10.7773/cm.v45i1.2923
Guerra-Martínez, S. L., & Lara-Villa, M. A. (1996). Floreci-
miento de Ceratium furca (Peridiniales: Ceratiaceae)
en un ambiente salobre: Laguna de Sontecomapan,
México. Revista Biología Tropical, 44(1), 23–30.
Guiry, M. D., & Guiry, G. M. (2024). Algabase. World-wide
electronic publication, National University of Ireland,
Galway. https://www.algaebase.org
Hasle, G. R., & Fryxell, G. A. (1970). Diatoms: cleaning
and mounting for light and electron microscopy.
Transactions of the American Microscopical Society, 89,
469–474. https://doi.org/10.2307/3224555
Herrera-Silveira, J. A., Martín, M. B., & Días-Arce, V.
(1999). Variaciones del fitoplancton en cuatro lagunas
costeras del estado de Yucatán, México. Revista de
Biología Tropical, 47, 47–56.
Jahn, R., & Schmid, A. M. M. (2007). Revision of the
brackish-freshwater diatom genus Bacillaria
Gmelin (Bacillariophyta) with the description
of a new variety and two new species. European
Journal of Phycology, 42(3), 295–312. https://doi.
org/10.1080/09670260701428864
Kjerfve, B., & Magill, K. E. (1989). Geographic and
hydrodynamic characteristics of shallow coastal
lagoons. Marine Geology, 88, 187–199. https://doi.
org/10.1016/0025-3227(89)90097-2
Komárek, J., & Anagnostidis, K. (1999). Cyanoprokariota
1. Teil: Oscillatoriales. Gustav Fischer, Jena Stuttgart
Lubeck Ulm, Band 19/1.
Komárek, J., & Anagnostidis, K. (2002). Cyanoprokariota 2.
Teil: Chroococcales. Spektrum Akademischer Verlag,
Band 19/2. Italy.
Krayesky, D., Meave del Castillo, M., Zamudio, E., Norris, J.
N., & Fredericq, S., (2009). Diatoms (Bacillariophyta)
of the Gulf of Mexico. In D. L. Felder & D. K. Camp
(Eds.), Gulf of Mexico: its origins, waters and biota (pp.
155–186). College Station, Texas. A & M University
Press.
Lango, R. F., Castañeda-Chávez, M. R., Pérez, S. M., Aldana,
A. D., & Martínez, I. M. (2013). Reproducción del
ostión americano Crassostrea virginica en el sur del
estado de Veracruz. En D. Aldana, A. Enríquez, & M.
D. Elías (Eds.), Manejo de los recursos pesqueros de
la cuenca del Golfo de México y del mar Caribe (pp.
31–72). La Ciencia en Veracruz. México.
Lara-Domínguez, A. L., Contreras-Espinosa, F., Castañeda-
López, O., Barba-Macías, E., & Pérez-Hernández, M.
A. (2011). Lagunas costeras y estuarios. En A. Cruz
(Ed.), La Biodiversidad en Veracruz: Estudio de Estado
(Vol. 1, pp. 301–318). CONABIO, Gobierno del Esta-
do de Veracruz, Universidad Veracruzana, Instituto
de Ecología. México.
Lenarczyk, J. (2015). Pediastrum Meyen sensu lato (Chlo-
rophyceae) in the phytoplankton of lowland and
upland water bodies of Central Europe (Poland). Fot-
tea, Olmouc, 15(2), 165–177. https://doi.org/10.5507/
fot.2015.017
León-Tejera, H., Gold-Morgan, M., & Montejano, G. (2009).
Benthic Cyanophyta. In J. W. Tunnell., L. Darryl Fel-
der & S. Earle (Eds.), Gulf of Mexico. Origin, waters
and Biota: Biodiversity (Vol. 1, pp. 47–57). Texas A. &
M. University Press, College Station, Texas.
Licea, S., Zamudio, M. E., Luna, R., Okolodkov, Y. B.,
& Gómez-Aguirre, S. (2004). Toxic and harmful
Dinoflagellates in the Southern Gulf of Mexico. In
K. A. Steidinger, J. H. Landsberg, C. R. Tomas, & G.
A. Vargo (Eds.), Harmful Algae 2002 (pp. 380–382).
Florida Fish and Wildlife Conservation Commission
Florida Institute of Oceanography and Intergover-
nmental Oceanographic Commission of UNESCO.
Licea, S., Zamudio, M. E., Moreno-Ruíz, J. L., & Luna, R.
(2011). A suggested local regions in the southern Gulf
of Mexico using a diatom database (1979-2002) and
oceanic hydrographic features. Journal of Environ-
mental Biology, 32, 443–453.
López-Ortega, M., Pulido-Flores, G., Serrano-Solís, A.,
Gaytán-Oyarzún, J. C., Monks-Sheets, W. S., & López-
Jiménez, M. A. (2012). Evaluación estacional de las
variables fisicoquímicas del agua de la Laguna de
Tapamachoco, Veracruz, México. Revista Científica
UDO Agrícola, 12(3), 713–719.
Margalef, R. (1975). Fitoplancton invernal de la laguna
costera de Alvarado (México). Anales del Instituto de
Botánica Cavaniles, 32(2), 381–387.
Millán, N. R., Álvarez, B. S., & Nelson, D. M. (1982).
Effects of physical phenomena on the distribution of
nutrients and phytoplankton productivity in a coastal
lagoon. Estuarine, Coastal and Shelf Science, 15, 317–
335. https://doi.org/10.1016/0272-7714(82)90066-x
17
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e51160, enero-diciembre 2024 (Publicado Ago. 21, 2024)
Muciño-Márquez, R. E., Figueroa-Torres, M. G., & Gárate-
Lizárraga, I. (2012). Especies fitoplanctónicas forma-
doras de proliferaciones algales nocivas en la boca de
la laguna costera de Sontecomapan, Veracruz, Méxi-
co. Cuadernos de Investigación UNED, 3(2), 209–218.
https://doi.org/10.22458/urj.v3i2.150
Muciño-Márquez, R. E., Figueroa-Torres, M. G., & Aguirre-
León, A. (2014). Composición fitoplanctónica en los
sistemas fluvio-lagunares Pom-Atasta y Palizada del
Este, adyacentes a la laguna de Términos Campeche,
México. Acta Biológica Colombiana, 19(1), 63–84.
http://dx.doi.org/10.15446/abc.v19n1.38032
Nava-Ruíz, V. M., & Valadez, F. (2012). Flora planctónica de
laguna Lagartos, Quintana Roo. Revista Mexicana de
Biodiversidad, 83, 561–582. https://doi.org/10.7550/
rmb.24868
Okolodkov, Y. B. (2008). Protoperidinium Bergh (Dino-
phyceae) of the National Park Sistema Arrecifal Vera-
cruzano, Gulf of Mexico, with a key for identification.
Acta Botánica Mexicana, 84, 83–149. https://doi.
org/10.21829/abm84.2008.1068
Okolodkov, Y. B., & Blanco, R. (2011). Ecología y producti-
vidad primaria de microalgas marinas y mixohalinas.
En A. Cruz (Ed.), La Biodiversidad en Veracruz:
Estudio de Estado (Vol. 1, pp. 319–325). CONABIO,
Gobierno del Estado de Veracruz, Universidad Vera-
cruzana, Instituto de Ecología.
Rivera-Guzmán, N. E., Moreno-Casasola, P., Ibarra-Oban-
do, S. E., Sosa, V. J., & Herrera-Silveira, J. (2014). Long
term state of coastal lagoons in Veracruz, México:
Effects of land use changes in watersheds on seagras-
ses habitats. Ocean & Coastal Management, 87, 30–39.
https://doi.org/10.1016/j.ocecoaman.2013.10.007
Salcedo-Garduño, M. G., Galaviz-Villa, I., Castañeda-
Chávez, M., & Lango-Reynoso, F. (2016). Evaluación
de la concentración de nutrientes y clorofila a en la
laguna de Mandinga, Ver. Durante un ciclo anual.
En F. Lango-Reynoso, M. R. Castañeda-Chávez, I.
Galaviz-Villa, J. Montoya-Mendoza, J. Adame-García,
M. J. Martínez-Hernández, A. L. Del Ángel-Pérez, F.
Gallardo-López, & C. Landeros-Sánchez (Eds.), Agro
Veracruzano (pp. 40–52). Instituto Tecnológico Supe-
rior de San Andrés Tuxtla.
Salcedo-Garduño, M. G., Castañeda-Chávez, M. R., Lan-
go-Reynoso, F., Sosa-Villalobos, C. A., Landeros-
Sánchez, C., & Galaviz-Villa, I. (2019). Influencia
de los parámetros fisicoquímicos en la distribución
de fitoplancton en el Sistema lagunar de Mandinga,
México. Revista Bio Ciencias, 6, 1–25. http://dx.doi.
org/10.15741/revbio.06.e427
Santoyo, H., & Signoret, M. (1988). Algunas características
ecológicas del fitoplancton de la región marina adya-
cente a Punta Limón, Veracruz. Anales de la Escuela
Nacional Ciencias Biológicas México, 32, 177–212.
Sokal, R., & Rohlf, F. J. (1981). Biometry (2nd Ed). W. H.
Freeman, San Francisco, California.
Steidinger, K. A., Faust, M. A., & Hernández-Becerril, D.
U. (2009). Dinoflagellates (Miozoa) of the Gulf of
Mexico. In J. W. Tunnell., L. Darryl Felder, & S. Earle
(Eds.), Gulf of Mexico. Origin, Waters and Biota: Biodi-
versity (Vol. 1, pp. 131–154). Texas A & M. University
Press, College Station.
Strickland, J. H. D., & Parsons, T. R. (1972). A Practical
Handbook of Sea-water Analysis. Ottawa. Canadian
Science Publishing.
Taylor, F. J. R. (1978). Dinoflagellates: Identification pro-
blems. Some specific preparations. In A. Sournia
(Ed.), Phytoplankton Manual (pp. 143–147). Mono-
graphs on Oceanographic Methodology 6. UNESCO.
Ter-Braak, C. J. F., & Smilauer, P. (2009). CANOCO for
Windows (Version 4.5., Software). Biometrics-Plant
Research International, Wageningen.
Thiers, B. (2020). Index Herbarium. A Global Directory of
Public Herbaria and Associated Staff. New York Bota-
nical Gardens Virtual Herbarium. http://sweetgum.
nybg.org/science/ih
Tomas, C. R. (1997). Identifying Marine Phytoplankton.
Academic Press, San Diego.
Vázquez, G., Caballero, M., Lozano, S., & Rodríguez, A.
(2007). Lagos cráter de la región de los Tuxtlas: lim-
nología floral, algal y estudio paleolimnológico de la
deforestación reciente. En G. De la Lanza (Ed.), Las
Aguas Interiores de México. Conceptos y Casos. (pp.
215–232). AGT Editor S. A.
Weather Spark (s.f.). Datos históricos metereológicos de
(2017) Veracruz- México. https://es.weatherspark.
com/h/y/8657/2017/Datos-históricos-meteorológi-
cos-de-2017-en-Veracruz-México.