16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e51310, enero-diciembre 2023 (Publicado Ago. 24, 2023)
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.
Nature, 521(7553), 436–444. https://doi.org/10.1038/
nature14539
Lens, F., Liang, C., Guo, Y., Tang, X., Jahanbanifard,
M., da Silva, F. S. C., Ceccantini, G., & Verbeek, F.
J. (2020). Computer-assisted timber identification
based on features extracted from microscopic wood
sections. IAWA Journal, 41(4), 660–680. https://doi.
org/10.1163/22941932-bja10029
Livingston, S., & Risse, M. (2019). The future impact of arti-
ficial intelligence on humans and human rights. Ethics
and International Affairs, 33(2), 141–158. https://doi.
org/10.1017/S089267941900011X
Mata-Montero, E., Figueroa-Mata, G., Arias-Aguilar, D.,
Valverde-Otárola, J. C., Zamora-Villalobos, N., Pania-
gua-Bastos, J. C., & López-Aragón, S. (2020). Identi-
ficación automática de especies forestales maderables
amenazadas de Costa Rica, mediante técnicas de visión
artificial. TEC. https://hdl.handle.net/2238/13276
Morgenstern, L., & Mcilraith, S. (2011). John McCarthy’s
legacy. Artificial Intelligence, 175(1), 1–24. https://doi.
org/10.1016/j.artint.2010.11.003
Nouretdinov, I., Devetyarov, D., Vovk, V., Burford, B.,
Camuzeaux, S., Gentry-Maharaj, A., Tiss, A., Smith,
C., Luo, Z., Chervonenkis, A., Hallett, R., Waterfield,
M., Cramer, R., Timms, J. F., Jacobs, I., Menon, U.,
& Gammerman, A. (2015). Multiprobabilistic pre-
diction in early medical diagnoses. Annals of Mathe-
matics and Artificial Intelligence, 74(1-2), 203–222.
https://doi.org/10.1007/s10472-013-9367-5
Porcelli, A., & Martínez, A. (2020). Más allá de la ciencia
ficción: la inteligencia artificial un aliado contra el
COVID 19. Diario DPI, 57, 1–4.
Portugal, I., Alencar, P., & Cowan, D. (2015). The use
of machine learning algorithms in recommender
systems: a systematic review. Expert Systems with
Applications, 97, 205–227. https://doi.org/10.1016/j.
eswa.2017.12.020
Rajagopal, H., Khairuddin, A. S. M., Mokhtar, N., Ahmad,
A., & Yusof, R. (2019). Application of image quality
assessment module to motion-blurred wood ima-
ges for wood species identification system. Wood
Science and Technology, 53(4), 967–981. https://doi.
org/10.1007/s00226-019-01110-2
Ravindran, P., Costa, A., Soares, R., & Wiedenhoeft, A. C.
(2018). Classification of CITES-listed and other neo-
tropical Meliaceae wood images using convolutional
neural networks. Plant Methods, 14(1), 14–25. https://
doi.org/10.1186/s13007-018-0292-9
Ravindran, P., Ebanyenle, E., Ebeheakey, A., Abban, K.,
Lambog, O., Soares, R., Costa, A., & Wiedenhoeft,
A. (2019). Image based identification of ghanaian
timbers using the XyloTron: opportunities, risks and
challenges. 33rd Conference on Neural Information
Processing Systems, 2019, 1–10.
Ravindran, P., Thompson, B. J., Soares, R. K., & Wiedenho-
eft, A. C. (2020). The XyloTron: flexible, open-source,
image-based macroscopic field identification of wood
products. Frontiers in Plant Science, 11, 1015. https://
doi.org/10.3389/fpls.2020.01015
Richter, H. G., & Dallwitz, M. J. (2019). Commercial timbers:
descriptions, illustrations, identification, and informa-
tion retrieval. https://Www.Delta-Intkey.Com/Wood/
Es/Www/Mimcecat.Htm.
da Silva, R. N., De Ridder, M., Baetens, J. M., Van den
Bulcke, J., Rousseau, M., Martinez, O., Beeckman,
H., Van Acker, J., & De Baets, B. (2017). Automated
classification of wood transverse cross-section micro-
imagery from 77 commercial Central-African timber
species. Annals of Forest Science, 74(2), 30. https://doi.
org/10.1007/s13595-017-0619-0
Siew, K. F., Tang, X. J., & Tay, Y. H. (2017). Improved convo-
lutional networks in forest species identification task.
Second International Workshop on Pattern Recognition,
10443, 104430C. https://doi.org/10.1117/12.2280616
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis,
D. (2018). A general reinforcement learning algo-
rithm that masters chess, shogi, and Go through
self-play. Science, 362(6419), 1140–1144. https://doi.
org/10.1126/science.aar6404
Simić, S., Banković, Z., Simić, D., & Simić, S. D.
(2018). A hybrid clustering approach for diag-
nosing medical diseases. Hybrid Artificial Intelli-
gent Systems, 10870(2018), 741–752. https://doi.
org/10.1007/978-3-319-92639-1_62
Tang, X. J., Tay, Y. H., Siam, N. A., & Lim, S. C. (2018).
MyWood-ID: Automated macroscopic wood iden-
tification system using smartphone and macro-lens.
ACM International Conference Proceeding Series, 2018,
37–43. https://doi.org/10.1145/3293475.3293493
Turing, A. M. (1936). On computable numbers, with an
application to the entscheidungs problem. Proceedings
of the London Mathematical Society, 42(1), 230–265.
Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu,
M., Dudzik, A., Chung, J., Choi, D. H., Powell, R.,
Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M.,
Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J.
P., Jaderberg, M., … Silver, D. (2019). Grandmaster
level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782), 350–354. https://doi.
org/10.1038/s41586-019-1724-z
Yadav, A. R., Dewal, M. L., Anand, R. S., & Gupta, S. (2013).
Classification of hardwood species using ANN classi-
fier. 2013 Fourth National Conference on Computer
Vision, Pattern Recognition, Image Processing and