1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. 10, 2023)
Foraging ecology of the bird Eupsittula canicularis
(Psittaciformes: Psittacidae) in a modified Mexican landscape
Itzel Flores-Yllescas1; https://orcid.org/0009-0002-6961-1830
Miguel Ángel De Labra-Hernández2*; https://orcid.org/0000-0002-0361-4919
1. Licenciatura en Biología, Universidad del Mar, campus Puerto Escondido, Km 2.5, Carretera Federal Puerto
Escondido-Sola de Vega, 71980, San Pedro Mixtepec, Oaxaca, México; flowers.itzel@gmail.com
2. Instituto de Ecología, Universidad del Mar, campus Puerto Escondido, Km 2.5, Carretera Federal Puerto Escondido-
Sola de Vega, 71980, San Pedro Mixtepec, Oaxaca, México; ma.delabrah@zicatela.umar.mx (*Correspondence).
Received 09-XI-2022. Corrected 29-III-2023. Accepted 13-VI-2023.
ABSTRACT
Introduction: Seasonal phenological variations in tropical forests cause changes in food resource availabil-
ity. Animals use foraging strategies to follow the food supply in these settings. The Orange-fronted Parakeet
(Eupsittula canicularis) mainly inhabits the tropical dry forest of the Mexican Pacific to Northwest Costa Rica,
although little is known about its diet and foraging strategies.
Objective: To assess spatial variability in food resource abundance, diet, and foraging behavior of the Orange-
fronted Parakeet in a modified landscape in Oaxaca Coast, Mexico.
Methods: 30 phenology transects (200 × 6 m) were established during the dry season (February-June 2019) to
measure food resource availability in primary deciduous, semi-deciduous, and secondary forests. The Orange-
fronted Parakeets diet was determined by focal foraging observations, and dietary niche breadth and resource
selection were considered to determine feeding strategies.
Results: Orange-fronted Parakeets fed on fruits (42.3 %), seeds (29.3 %), and flowers (28.4 %) of 13 plant
species and presented a broad dietary niche breadth with a higher frequency of foraging in primary forest. The
Orange-fronted Parakeets select resources and adapt their foraging strategies based on food resource availability
in each habitat.
Conclusions: The study findings highlights the need to maintain the complete forest structure in a modified
landscape to ensure food resources availability for Orange-fronted Parakeets during the breeding season.
Key words: conservation; dietary niche; foraging strategies; Hurlbert index; primary forest; Psittacidae.
RESUMEN
Ecología de forrajeo del ave Eupsittula canicularis (Psittaciformes: Psittacidae)
en un paisaje mexicano modificado
Introducción: Los bosques tropicales presentan variaciones estacionales fenológicas provocando cambios en la
disponibilidad de los recursos alimenticios. Bajo estas condiciones, los animales emplean estrategias de forrajeo
al seguir la oferta del alimento. El perico frente naranja (Eupsittula canicularis) habita principalmente en el
bosque tropical caducifolio desde el Pacífico mexicano hasta Costa Rica, sin embargo, su dieta y estrategias de
forrajeo son poco conocidas.
Objetivo: Evaluar la variabilidad espacial en la abundancia de recursos alimenticios, la dieta y el comportamien-
to de alimentación del perico en un paisaje modificado de la costa de Oaxaca, México.
https://doi.org/10.15517/rev.biol.trop..v71i1.52180
TERRESTRIAL ECOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. l0, 2023)
INTRODUCTION
Seasonal tropical forests exhibit a signifi-
cant variation in plant phenological, causing
temporal patterns in fruit availability through-
out the year (Bullock & Solis-Magallanes,
1990; Morales-Pérez, 2005; Quigley & Platt,
2003). Under these conditions, animals may
employ different foraging strategies in response
to changes in food resource availability (Flem-
ing, 1992; Leighton & Leighton, 1983). Psit-
taciformes (cockatoos, macaws, parrots, and
the like) feed on fruits, seeds, and flowers of
different plant species (Galetti, 1993; Renton,
2001; Renton et al., 2015), which show high
phenological variability in their productivity
(Hilty, 1980; Loiselle & Blake, 1991). Given
the variation in the food supply, parrots make
seasonal movements between habitats, and
they show fluctuations in local abundance
and dietary switching (Renton et al., 2015). In
addition, parrots can adjust the dietary niche
breadth or select resources according to food
resources abundance (De Labra-Hernández &
Renton, 2019; Díaz et al., 2012; Renton, 2001;
Robinet et al., 2003). However, the continu-
ous degradation of the tropical forests that the
parrots inhabit causes landscapes with food
resources distributed in discontinuous patches
of remnant forest (Laurance, 1999; Saunders,
1990). Therefore, generating information on
the availability and use of food resources in
modified landscape is essential to identify
foraging areas and the most important plant
species in the diet of parrots populations (De
la Parra-Martínez et al., 2019; Rivera et al.,
2020). Thus, these data can be used as a con-
servation tool for this critically endangered
group of birds (Berkunsky et al., 2017; Olah
et al., 2016).
The Orange-fronted Parakeet (OFP) (Eup-
sittula canicularis) has a wide distribution
from the Mexican Pacific slope (Southeast of
Sinaloa) to Northwestern Costa Rica (Forshaw,
1989; Howell & Webb, 1995). It is one of the
most common psittacines in the deciduous
and semi-deciduous tropical forest and is con-
sidered endemic to Mesoamerica (Palomera-
García, 2010). However, the rapid destruction
of its habitat (e.g. 48.6 % loss of OFP historical
distribution area in Mexico) due to the conver-
sion of primary forests to secondary vegetation
and illegal poaching have caused a population
decline (BirdLife International, 2018; Cantú-
Guzmán et al., 2007; Monterrubio-Rico et
al., 2016; Pires, 2012). Despite this, there are
information gaps on the OFP foraging ecol-
ogy. In Mexico, there are lists of different plant
species that are part of the OFP diet (De la
Parra-Martínez et al., 2016; Eguiarte & del Río,
1985; Palomera-García, 2010). Additionally,
it has been reported that, in degraded areas,
the species can feed resources from corn, sor-
ghum, and fruit crops (González-Gómez, 2018;
Palomera-García, 2010). However, OFP forag-
ing strategies in modified landscapes have not
yet been assessed.
Métodos: Se establecieron 30 transectos para estudios fenológicos (200 × 6 m) durante la época seca (febrero-
junio 2019) para determinar la disponibilidad de recursos alimenticios en el bosque tropical caducifolio, subca-
ducifolio y la vegetación secundaria. La dieta del perico se determinó mediante observaciones del forrajeo, y se
consideró la amplitud del nicho alimenticio y la selección de recursos como estrategias de forrajeo.
Resultados: En el área de estudio, el perico consume frutos (42.3 %), semillas (29.3 %) y flores (28.4 %) de 13
especies arbóreas y presenta un nicho alimenticio amplio con mayor frecuencia de forrajeo en el bosque primario.
El perico selecciona recursos y ajusta sus estrategias de forrajeo de acuerdo a la disponibilidad del alimento en
cada hábitat.
Conclusiones: Los resultados del estudio resaltan la necesidad de mantener la estructura completa del bosque en
paisajes modificados para asegurar la disponibilidad de recursos alimenticios para para el perico frente naranja
durante la época reproductiva.
Palabras clave: bosque primario; conservación; estrategia de forrajeo; índice de Hurlbert; nicho alimenticio;
Psittacidae.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. 10, 2023)
In Mexico, anthropogenic activities have
severely degraded the tropical deciduous forest
(De Jong et al., 2010; Trejo & Dirzo, 2000). In
the state of Oaxaca, it is estimated that tropical
deciduous forest covers an area of 26 731 km2
(28.8 % of the state), but only 52.4 % remains
preserved (Meave et al., 2012). On the coast
of Oaxaca, particularly in the municipality of
Santa María Colotepec, where this study was
carried out, 67.8 km2 of primary forest were
deforested between 2000 and 2011, while agri-
cultural and livestock areas increased by up
to 75 %; 36.9 km2 and 44.7 km2, respectively
(Leija-Loredo et al., 2016). The loss of primary
forests could modify the food resource avail-
able for the OFP. Therefore, this study aims to
determine spatial variability in food resource
abundance, diet, and foraging behavior (par-
ticularly dietary niche breadth and resource
selection) of OFP in a modified landscapes in
Oaxaca Coast, México.
MATERIALS AND METHODS
Study site: The study was carried out in
the Coastal region of Oaxaca in Mexico, spe-
cifically in the town of Camalote (15°56’03’ N
& 96°52’27’ W) and Corozalito (15°54’09’ N
& 96°49’58’ W) belonging to the municipality
of Santa María Colotepec, covering an area of
30.7 km2. These localities have both conserved
areas of primary forest (tropical deciduous and
semi-deciduous forest) and degraded areas
made up of pastures, crops, and secondary for-
est. The climate is warm and subhumid, with
rains in summer (Aw0), and the temperature
varies between 24-28 °C. The dry season occurs
from November to May, while the rainy season
occurs from June to October; precipitation var-
ies between 800-2 000 mm (Trejo, 2004).
The predominant vegetation is decidu-
ous forest (DF), where tree species measur-
ing between 7-15 m in height, such as Ceiba
parvifolia, Guaiacum coulteri, Bursera sp.,
Guazuma ulmifolia, and Jacaratia mexicana
(Rzedowski, 2006). In addition, semi-decidu-
ous forest (SDF) is present in the most humid
areas, such as ravines and along rivers, with
20-30 m tall trees such as Tabebuia rosea,
Bursera simaruba, Ficus insipida, Astronium
graveolens and Homalium trichostemon (Rze-
dowski, 2006). In recent decades, 67.8 km2 of
primary forest were deforested (Leija-Loredo
et al., 2016), and most of this area is now sec-
ondary forest in different stage of succession.
Food resources availability: On each for-
est types (DF, SDF, and SF), 30 phenology
transects (200 × 6 m) were established to deter-
mined food availability for the OFP (Chapman
et al., 1994). From February to June 2019, 250
fruiting trees with a diameter at breast height
(DBH) 10 cm were marked and monitored
to record DBH and estimated fruit abundance
index was measured by multiplying tree DBH
by the proportion of fruits in the canopy of
each tree (Boyes & Perrin, 2010; Chapman
et al., 1994). In order to make comparisons
between forest types, the following variables
were considered in each phenology transect:
(1) number of fruiting trees, (2) number of
fruiting tree species, and (3) fruiting abundance
index. Tree species were identified in the field
or using botanical sampling collected for later
identification at the Laboratory of Biological
Collections of the Universidad del Mar, campus
Puerto Escondido, Oaxaca, with the help of
specialized bibliography (García-Mendoza &
Meave, 2011; Pennington & Sarukhán, 2005;
Pérez & Barajas-Morales, 2011; Salas-Morales
et al., 2003; Salas-Morales et al., 2007).
Orange-fronted Parakeet diet: The OFP
diet was determined by focal observations of
feeding activity during the first four hours
after sunrise (06:30-10:30 h, N = 112 hours of
observation), along different survey routes in
the same areas where phenology transects were
established. Each survey route was visited once
a week from February to June 2019. Forag-
ing records were obtained by walking in one
direction within the routes and stopping only to
record OFP feedig activity. In addition, oppor-
tunistic observations were considered when
observing the OFP feeding off the routes and
during evening observations. For each foraging
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. l0, 2023)
activity, date, time, habitat type, number of
parakeets, tree species, and tree part consumed
(fruit, seed, leaf, flower or wood) were record-
ed. A single foraging record was considered
when observing one or more parakeets feeding
in a tree; when the parakeets change to another
resource item or tree, it was considered a sec-
ond feeding record (Galetti, 1993).
Data analysis: Data from the phenology
transects were used to determine food resource
abundance and availability for the OFP. Shap-
iro-Wilk normality tests were applied of data
from the phenology transects. Number of fruit-
ing trees variable presented a normal distri-
bution, while the fruiting abundance index
presented a normal distribution only after log
transformation. For this reason, analysis of
variance (ANOVA) was applied to determine
spatial (DF, SDF, and SF) differences in food
resource availability with the post hoc Tukey-
Kramer test (Zar, 1999). The number of fruiting
tree species was not normally distributed even
after log transformation. Therefore, a non-
parametric Kruskal-Wallis test was applied to
determine food resource availability between
forest types (Zar, 1999). Analyses were per-
formed in R version 3.3.0 (R Core Team, 2016).
To assess the OFP dietary niche breadth,
standardized Levin’s index was estimated as
Best = (B–1) / (n–1) where: B is Levin’s index
that includes the proportion of parakeets that
fed on each resource, and n is the number of
resources used (Krebs, 1999; Levins, 1968).
Index expresses the breadth of the niche on
a scale that varies from 0 (narrow niche),
indicating that the use is concentrated on few
resources, to 1 (broad niche), indicating that
the use is equally distributed over the resources
used (Colwell & Futuima, 1971). On the other
hand, Hurlbert niche index (Hurlbert, 1978)
was calculating to evaluated the OFP dietary
selection, which estimates the niche breadth
considering the proportion used and the avail-
ability of each resource. Index is expressed as
Ha = Σ(piji) where: pij is the proportion of the
resources used by the parakeets and âi is the
quantity or availability of each resource (Krebs,
1999). In this case, a value close to 0 indicates
dietary selection, while a value close to 1 indi-
cates that dietary resources are consumed based
on availability, without selection. Additionally,
G-test with 95 % Bonferroni confidence inter-
vals (CI) was performed to determine whether
use of resources by the OFP differed signifi-
cantly from that expected by their availability
in each forests type, and to determine whether
the frequency of foraging by OFP recorded in
each forests type corresponded to that expected
according to the fruiting abundance index
(Byers et al., 1984; Neu et al., 1974).
RESULTS
Food resources availability: A total of
34 tree species grouped into 20 families were
recorded in the phenology transects. Species
richness was higher in DF (N = 21 species),
followed by SDF (N = 18 species), and SF
(N = 9 species). Considering the three forest
types, the Fabaceae family predominated with
nine trees species. In the DF, the most abundant
tree species were Jacaritia mexicana (N = 25
trees; Caricaceae), Cocholspermum vitifolium
(N = 22 trees; Cochlospermaceae), and Gua-
zuma ulmifolia (N = 16 trees; Malvaceae). In
the SDF, the most abundant tree species were
Homalium trichostemon (N = 29 trees; Salica-
ceae), Inga vera (N = 19 trees; Fabaceae), and
Bursera simaruba (N = 17 trees; Burseraceae).
While in the SF, the most abundant tree species
were G. ulmifolia (N = 17 trees) and Helio-
carpus pallidus (N = 13 trees; Malvaceae).
ANOVA analyses demonstrated significant dif-
ferences for the number of fruiting trees by
forest types (F2,27 = 10.6, P < 0.001); the DF
had significantly higher fruiting trees during
February and March (Fig. 1A). Nevertheless,
the number of fruiting tree species by forest
type did not differ significantly (H2 = 0.01, P
> 0.05, Fig. 1B). Regarding the fruiting abun-
dance index, there were statistically significant
differences between forest types (F2,27 = 5.7,
P = 0.008); the SDF had significantly higher
food resources availability mainly during April
to June (Fig. 1C).
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. 10, 2023)
Orange-fronted Parakeet diet: During
the study period, 41 OFP feeding records (N =
201 individuals) was obtained on 13 plant spe-
cies from 10 families (Table 1). Of the all OFP
feeding records, 42.3 % (N = 85 parakeets) cor-
responded to fruits, 29.3 % (N = 59 parakeets)
to seeds, and 28.4 % (N = 57 parakeets) flow-
ers. Regarding the forest types, the principal
items consumed in DF were fruits of F. cotini-
folia (39.5 %), and seeds of Bursera sp (29.6
%). In the SDF, the most frequent food item
were fruits of F. insipida (32.8 %), followed
by flowers of H. trichostemon (28.6 %), and
seeds of B. simaruba (21.4 %). In the SF, the
main foot item were fruits (pulp) of Mangifera
indica (29.3 %), followed by the seeds (20.7 %)
of G. ulmifolia, along with flowers (11.7 %) of
G. sepium.
Dietary niche breadth and resource
selection: The niche breadth was broad (Best =
0.619), with seven plants contributing > 5 % of
Fig. 1. Mean (± SD) of the availability of food resources in three forests types in Santa María Colotepec, Coast of Oaxaca,
Mexico during the middle to end dry season. A. number of fruiting trees, B. number of fruiting species, C. fruiting
abundance index (Σ DBH x the proportion of fruits in the canopy). Different letters on the bars indicate significant
differences (Tukey-Kramer, P < 0.05).
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. l0, 2023)
the OFP diet. Nevertheless, F. cotinifolia (19.4
%), and G. sepium (18.4 %), were consumed
more by the OFP. However, differences in the
dietary niche breadth were found when separat-
ing the analysis by forest types. In the DF, the
niche breadth was moderately (Best = 0.505)
which indicates that the OFP generally uses
few food resources, where F. cotinifolia, G.
sepium, and Bursera sp. contributed > 5 % of
the diet. In the SDF, the niche breadth was nar-
rower (Best = 0.450), the use of food resources
by the OFP is concentrated on few resources;
where F. insipida and H. trichostemon had the
highest number of parakeets feeding (N = 44).
In the SF, the niche breadth remained broad
(Best = 0.637), with four species (M. indica, G.
sepium, B. crassifolia, and G. ulmifolia) repre-
senting > 5 % of the OFP diet.
Hurlbert niche index was narrower (Ha =
0.295), which suggests that the OFP selects
food resources (G11 = 58.5, P < 0.001). Bonfer-
roni 95 % CI (Table 2), showed that in DF, the
OFP consumed F. cotinifolia, G. sepium, C.
spinosa, Bursera sp., F. insipida, and Bursera
sp., more than expected from their availability
(Fig. 2A). Also, J. mexicana is consumed in a
significantly lower proportion than expected
(Fig. 2A). In SDF, F. insipida and F. cotinifolia
are consumed in more significant proportion
than expected from their availability (P < 0.05,
Fig. 2B). Also, H. trichostemon and B. sima-
ruba are consumed in a significantly lower
proportion than expected (Fig. 2B). In SF, M.
indica and B. crassifolia are consumed in more
significant proportion than expected from their
availability (Fig. 2C). Also, G. ulmifolia is con-
sumed in a significantly lower proportion than
expected (Fig. 2C). Conversely, the consump-
tion of all other plant species did not differ
significantly from that expected according their
availability (Fig. 2C).
The frequency of OFP foraging records
differed significantly in each forest type (G2
= 34.3, P < 0.01, Fig. 3). In particular, the
Bonferroni 95 % CI indicate that OFP feeds
more in the DF (Pobs = 0.40, 95 % CI = 0.293-
0.583) in accordance with the greater fruiting
abundance index (Pesp = 0.27). In the SDF, OFP
feeds a significantly lower proportion (Pobs =
0.33, 95 % CI = 0.195-0.471) than expected
from their availability of food resources (Pesp
= 0.54, P < 0.05). Finally, in the SF, OFP feeds
(Pobs = 0.29) did not differ significantly from
that expected (Pesp = 0.18; P > 0.05); the OFP
Table 1
Tree species that are part of the diet of Eupsittula canicularis during the middle to end dry season in Santa María Colotepec,
Oaxaca. In addition, number of foraging records, number of individuals feeding, tree part consumed, and date of the record
are included.
Family / Species Common name Tree part
consumed
Foraging
records
Number
of parrots Month
Anacardiaceae / Mangifera indica Mango Fruit (pulp) 4 17 April May
Burseraceae / Bursera simaruba Palo mulato Seed 5 16 March/May
Burseraceae / Bursera sp. Copal Seed 1 6 April
Caricaceae / Jacaratia mexicana Bonete Seed 2 4 April
Fabaceae / Gliricidia sepium Cacahuanano Flower 3 37 February/April
Fabaceae / Senna sp. candelillo Seed 1 2 February
Malpighiaceae / Byrsonima crassifolia Nanche Seed 3 12 April -May
Malvaceae / Guazuma ulmifolia Caulote Seed 1 8 February
Moraceae / Ficus cotinifolia frutillo Fruit (syconium) 5 39 February-April
Moraceae / Ficus insipida Higo Fruit (syconium) 5 22 May-June
Rubiaceae / Chomelia spinosa Malacahuite Seed 2 9 April
Salicaceae / Homalium trichostemon Palo de piedra Flower 4 22 February/March
Urticaceae / Cecropia obtusifolia Chancarro Fruit 5 7 February, April, May
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. 10, 2023)
feeds as would be expected from the fruiting
abundance index.
DISCUSSION
Food resource availability: Food resource
availability for the OFP demonstrated spatial
fluctuations at the study site. In particular, the
SDF produced greater food resource abundance
in April to June (end dry season). The findings
are consistent with that found by Renton (2001)
in tropical deciduous forest of Jalisco, México,
where there was a greater food abundance for
the Lilac-crowned Amazon (Amazona finschi)
in the SDF during the early to end dry season.
Food resource availability plays an important
role on parrot reproduction (Renton, 2002;
Renton & Salinas-Melgoza, 2004; Rivera et al.,
2020). The OFP breeds in the dry season during
January to June (Collar et al., 2022; De Labra-
Hernández, 2022; Palomera-García, 2010). The
pattern of resource availability demonstrates
the importance of SDF in providing essential
food resources during the OFP breeding season
(raising young period) (Collar et al., 2022).
Also, the DF may be important in providing
food resources at the February to March, when
OFP are egg laying and during hatching period
(De Labra-Hernández, 2022). Conversely, the
SF produced little food resource abundance.
However, the SF could supplement the food
demand that the OFP requires at the end breed-
ing season in April to May. In fragmented
forests, SF provided complementary resources
for parrots species during the breeding season,
as reported for the Northern Mealy Amazon
(Amazona guatemale) (De Labra-Hernández &
Renton, 2019). The information generated in
this study highlights the need to maintain the
complete forest structure in a modified land-
scape to ensure food resources availability for
OFP during the breeding season.
Orange-fronted Parakeet diet: Fruits
(42.3 %) were the most common item eaten by
the OFP, supporting the results by Palomera-
García (2010) in tropical deciduous forest of
Colima, México. In general, smaller-bodied
parrot species consume more fruit (22-44 %) in
the diet, as reported in other psittacine species
Table 2
Food resource availability and use by Eupsittula canicularis, with Bonferroni confidence intervals (95 %), during the middle
to end dry season in three forest types in Santa María Colotepec, Coast of Oaxaca, Mexico.
Vegetation Tree species Available proportion Usage Proportion Bonferroni confidence intervals
DF Ficus cotinifolia 0.07 0.40 0.33 obs 0.51*
Gliricidia sepium 0.00 0.30 0.23 obs 0.40*
Bursera sp. 0.00 0.07 0.03 obs 0.13*
Jacarantia mexicana 0.93 0.05 0.01 obs 0.09*
Chomelia spinosa 0.00 0.11 0.06 obs 0.18*
Cecropia obtusifolia 0.00 0.07 0.00 obs 0.03
SDF Ficus insipida 0.04 0.33 0.25 obs 0.41*
Homalium trichostemon 0.59 0.33 0.25 obs 0.41*
Bursera simaruba 0.35 0.24 0.16 obs 0.31*
Ficus cotinifolia 0.02 0.10 0.05 obs 0.16*
SF Mangifera indica 0.00 0.32 0.21 obs 0.38*
Gliricidia sepium 0.00 0.13 0.15 obs 0.30
Byrsonima crassifolia 0.00 0.23 0.13 obs 0.30*
Guazuma ulmifolia 0.94 0.15 0.07 obs 0.28*
Senna sp. 0.06 0.13 0.05 obs 0.16
Cecropia obtusifolia 0.00 0.04 0.00 obs 0.07
DF = tropical deciduous forest, SDF = tropical semi-deciduous forest, and SF = secondary forest. *P < 0.05.
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. l0, 2023)
(Galetti, 1997; Hingston et al., 2004; Renton
et al., 2015). Among the species consumed by
the OFP, fruits (syconia) of Ficus insipida and
F. cotinifolia showed a highest feeding records
and OFP consumed this trees species more than
expected from their availability. Ficus has been
reported to be importan in the diet of other
parrots species during the dry season (Matuzak
et al., 2008; Ragusa-Netto, 2002; Ragusa-Net-
to, 2007; Silva & Melo, 2013; Wermundsen,
1997) and for several tropical frugivorous birds
(Bleher et al., 2003). Furthermore, seed of B.
simaruba and flowers of G. sepium, and H.
trichostemon are also usually eaten by the OFP.
Fig. 2. Proportion of use and availability of food resources for Eupsittula canicularis during the middle to end dry season.
A. tropical deciduous forest, B. tropical semi-deciduous forest, C. secondary forest in Santa María Colotepec, Coast of
Oaxaca, Mexico. *P < 0.05.
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. 10, 2023)
Fruits such as figs are high in water,
carbohydrates, and calcium, while seeds are
high in protein, minerals, and lipid content
(Gilardi, 1996; Jordano, 2000). In addition,
the flowers contain essential oil, protein, and
carbohydrates (Fonte et al., 2013). In the study
area, the fruits of Ficus, seed of B. simaruba
and flowers of G. sepium, and H. trichostemon
productions play a critical role for providing
nutrients during the OFP breeding season.
The potential loss of these tree species, as a
result of forest degradation, may have conse-
quences in the maintenance of OFP population.
Therefore, the knowledge of principal keystone
trees for the OFP diet is essential for the for-
ests management decisions, especially in a
modified landscape.
Foraging strategies of the Orange-front-
ed parakeet: The OFP respond to spatial
fluctuations in food availability, showing flex-
ibility in the items consumed among forest
types. The OFP had a narrower dietary niche
in the DF and SDF, while dietary niche is
broad in the SF. These results suggest that the
OFP has preferences for some resources in
primary forests, while in SF, the resources are
consumed equally. Similar results have been
observed in other psittacine species that can
adjust their dietary niche based on abundant
resources between habitats (Botero-Delgadillo
et al., 2010; Boyes & Perrin, 2010; Matuzak et
al., 2008; Renton, 2001). In addition, the OFP
selects resources during the breeding season
(narrow Hurlbert index), similarly to reported
for the Ouvea Island Parakeet Eunymphicus
uvaeensis and the Military Macaw A. militaris
(Contreras-González et al., 2009; Robinet et
al., 2003). These results show that the OFP can
modify its foraging strategies by following the
food resources available throughout the dry
season, consuming certain plant species at the
beginning of the breeding season, and includ-
ing other species at the end. This foraging
pattern has been reported in other species of
psittacines of the genus Eupsittula and Arat-
inga (Barros & Marcondes-Machado, 2000;
Paranhos et al., 2009; Silva & Melo, 2013;
Wermundsen, 1997).
The OFP foraged more frequently in
primary forest (DF and SDF) where more
resources are available, compared to the SF
where the lowest number of feedings parakeets
was recorded. These results indicate that the
spatial variation in food availability determine
foraging strategies and influences habitat use
by the OFP inhabit in modified landscape of
the Central Pacific, Mexico. Habitat use pat-
terns by the Lilac-crowned Amazon A. finschi
are determined by spatial heterogeneity in the
availability of food resources (Renton, 2001).
Plasticity in food resources use could be advan-
tageous for psittacine that inhabit in modified
landscape, where the resources availability is
localized in patches of vegetation (Clark &
Mangel, 1984).
The present study demonstrates a flexibil-
ity in OFP diet according to spatial variations
in availability of food resources. The fruits of
Ficus species, seed of B. simaruba and flow-
ers of G. sepium, and H. trichostemon could
be key resources for OFP during the breeding
season. In modified landscape of the Central
Pacific, Mexico, it is necessary to maintain
the complete forest structure to ensure food
resources availability for OFP. The result from
this study is an advance on the knowledge of
OFP foraging ecology in a modified landscape.
Likewise, the information provided in this
study is essential for to develop conservation
Fig. 3. Proportion of availability (fruiting abundance index)
and use of food resources for Eupsittula canicularis during
the middle to end dry season in Santa María Colotepec,
Coast of Oaxaca, Mexico.
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. l0, 2023)
strategies for OFP populations and habitat
management decisions.
ACKNOWLEGDMENTS
This study was part of an Universidad
del Mar (UMAR) internal project (project
ID = CUP: 21E1902) managed by MADLH.
MADLH thanks UMAR for the logistical sup-
port. The authors thank the authorities of Santa
María Colotepec for allowing them to work
within the municipality, as well as the local
people of the Camalote and Corozalito com-
munities for their support as field guides. In
addition, the authors thank Santiago Sinaca
Colín for the taxonomic identification of the
plant species.
REFERENCES
Barros, Y. M., & Marcondes-Machado, L. O. (2000).
Comportamento alimentar do periquito-da-caatinga
Aratinga cactorum em Curacá, Bahia. Araujuba, 8,
55–59.
Berkunsky, I., Quillfeldt, P., Brightsmith, D. J., Abbud, M.
C., Aguilar, J. M. R. E., Alemán-Zelaya, U., Arambu-
ru, R. M., Arce Arias, A., Balas McNab, R., Balsby,
T. J. S., Barredo Barberena, J. M., Beissinger, S. R.,
Rosales, M., Berg, K. S., Bianchi, C. A., Blanco,
E., Bodrati, A., Bonilla-Ruz, C., Boterp-Delgadillo,
E., Canavelli, S. B., … & Barberena, J. B. (2017).
Current threats faced by Neotropical parrot popula-
tions. Biological Conservation, 214, 278–287. https://
doi.org/10.1016/j.biocon.2017.08.016
BirdLife International. (2018). Eupsittula canicula-
ris. The IUCN Red List of Threatened Species.
http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.
T22685739A129606565.en
Bleher, B., Potgieter, C. J., Johnson, D. N., & Böhning-
Gaese, K. (2003). The importance of figs for fru-
givores in a South African coastal forest. Journal
of Tropical Ecology, 19(4), 375–386. https://doi.
org/10.1017/S0266467403003420
Botero-Delgadillo, E., Verhelst, J. C., & Páez, C. A. (2010).
Ecología de forrajeo del periquito de Santa Marta
(Pyrrhura viridicata) en la Cuchilla de San Lorenzo,
Sierra Nevada de Santa Marta. Ornitologia Neotropi-
cal, 21, 463–477. https://sora.unm.edu/sites/default/
files/ON%2021%20%284%29%20463-477.pdf
Boyes, R. S., & Perrin, M. R. (2010). Aerial surveillan-
ce by a generalist seed predator: food resource
tracking by Meyer’s parrot Poicephalus meyeri in
the Okavango Delta, Botswana. Journal of Tropical
Ecology, 26(4), 381–392. https://doi.org/10.1017/
S0266467410000210
Bullock, S. H., & Solis-Magallanes, J. A. (1990). Pheno-
logy of canopy trees of a Tropical Deciduous Forest
in Mexico. Biotropica, 22(1), 22–35. https://doi.
org/10.2307/2388716
Byers, C. R., Steinhorst, R. K., & Krausman, P. R. (1984).
Clarification of a technique for analysis of utilization-
availability data. Journal of Wildlife Management,
48(3), 1050–1053. https://doi.org/10.2307/3801467
Cantú-Guzmán, J. C., Sánchez, M. A., Grosselet, M., &
Silva, J. (2007). Tráfico ilegal de pericos en México:
una evaluación detallada. Defenders of Wildlife y
Teyeliz.
Chapman, C. A., Wrangham, R., & Chapman, L. J. (1994).
Indices of habitat-wide fruit abundance in tropi-
cal forests. Biotropica, 26(2), 160–171. https://doi.
org/10.2307/2388805
Clark, C. W., & Mangel, M. (1984). Foraging and flocking
strategies: information in an uncertain environment.
The American Naturalist, 123(5), 626–641.
Collar, N., Boesman, P. F. D., & Kirwan, G. M. (2022).
Orange-fronted Parakeet (Eupsittula canicularis).
Birds of the World. Cornell Lab of Ornithology.
https://birdsoftheworld.org/bow/species/orfpar/cur/
introduction
Colwell, R. K., & Futuyma, D. J. (1971). On the measure-
ment of niche breadth and overlap. Ecology, 52(4),
567–576. https://doi.org/10.2307/1934144
Contreras-González, A. M., Rivera-Ortiz, F. A., Soberanes-
González, C., Valiente-Banuet, A., & Arizmendi, M.
C. (2009). Feeding ecology of Military Macaws (Ara
militaris) in a semi-arid region of Central Mexico.
The Wilson Journal of Ornithology, 121(2), 384–391.
https://www.jstor.org/stable/20616910
De Jong, B., Anaya, C., Masera, O., Olguin, M., Paz,
F., Etchevers, J., Martinez, R. D., Guerrero, G., &
Balbontín, C. (2010). Greenhouse gas emissions
between 1993 and 2002 from land-use change and
forestry in Mexico. Forest Ecology and Manage-
ment, 260, 1689–1701. https://doi.org/10.1016/j.
foreco.2010.08.011
De Labra-Hernández, M. A. (2022). Observaciones sobre
el comportamiento reproductivo del perico frente
naranja Eupsittula canicularis (Psittacidae) en el Jar-
dín Botánico de la Universidad del Mar campus Puer-
to Escondido, Oaxaca. Huitzil, Revista Mexicana de
Ornitología, 23(2), e-644. https://doi.org/10.28947/
hrmo.2022.23.2.666
De Labra-Hernández, M. A., & Renton, K. (2019). Lear-
ning-by-consequence foraging model of the Northern
Mealy Amazon in a modified landscape of tropical
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. 10, 2023)
moist forest. Journal of Ornithology, 160, 497–507.
https://doi.org/10.1007/s10336-019-01629-y
De la Parra-Martínez, S. M., De Labra-Hernández, M. A.,
& Renton, K. (2016). Requerimientos ecológicos en
las aves: un enfoque en psitácidos. En M. F. G. Cupul
(Ed.), Tópicos sobre ciencias biológicas (pp. 33–60).
Universidad de Guadalajara.
De la ParraMartínez, S. M., MuñozLacy, L. G., Salinas-
Melgoza, A., & Renton, K. (2019). Optimal diet
strategy of a largebodied psittacine: food resource
abundance and nutritional content enable faculta-
tive dietary specialization by the Military Macaw.
Avian Research, 10, 38–47. https://doi.org/10.1186/
s4065701901772
Díaz, S., Kitzberger, T., & Peris, S. (2012). Food resources
and reproductive output of the Austral Parakeet (Eni-
cognathus ferrugineus) in forest of northern Patago-
nia. Emu, 112(3), 234–243. https://doi.org/10.1071/
MU12005
Eguiarte, E. L., & del Río, C. M. (1985). Feeding habitats
of the Citreoline Trogon in a tropical deciduous forest
during the dry season. Auk, 102(4), 872–874.
Fleming, T. H. (1992). How do fruit- and nectar-feeding
birds and mammals track their food resources? In M.
D. Hunter, T. Ohgushi, & P. W. Price (Eds.), Effects of
Resource Distribution on Animal-Plant Interactions
(pp. 355–391). Academic Press.
Fonte, L., Machado, R., Díaz, M., & Blanco, D. (2013).
Caracterización mofológica de Gliicidia sepium,
composición bromatológica y producción de azúcaes
en sus flores. Pastos y Forrajes, 36(4), 423–428.
Forshaw, J. M. (1989). Parrots of the world (3rd ed.). Lans-
downe Editions.
Galetti, M. (1993). Diet of the Scaly-headed Parrot (Pionus
maximiliani) in a semi-deciduous forest in southeas-
tern Brazil. Biotropica, 25(4), 419–425. https://doi.
org/10.2307/2388865
Galetti, M. (1997). Seasonal abundance and feeding eco-
logy of Parrots and Parakeets in a lowland Atlantic
Forest of Brazil. Ararajuba, 5(2), 115–126.
García-Mendoza, A. J., & Meave, J. A. (2011). Diversidad
florística de Oaxaca: de musgos a angiospermas
(colecciones y lista de especies). Universidad Nacio-
nal Autónoma de México-CONABIO.
Gilardi, J. D. (1996). Ecology of parrots in the Peruvian
Amazon: Habitat use, nutrition and geophagy (Doc-
toral dissertation). University of California, Davis,
California, USA.
González-Gómez, R. (2018). Influencia de un evento
climático extremo en el uso espacio-temporal de
cultivos por la cotorra frente naranja (Eupsittula
canicularis) y sus implicaciones sociales (Tesis de
maestría). Universidad Nacional Autónoma de Méxi-
co, México.
Hilty, S. L. (1980). Flowering and fruiting periodicity in a
premontane rain forest in Pacific Colombia. Biotropi-
ca, 12(4), 292–306. https://doi.org/10.2307/2387701
Hingston, A. B., Potts, B. M., & McQuillan, P. B. (2004).
The Swift Parrot, Lathamus discolor (Psittacidae),
social bees (Apidae) and native insects as pollinators
of Eucalyptus globulus ssp. globulus (Myrtaceae).
Austral Journal of Botany, 52, 371–379. https://doi.
org/10.1071/BT03018
Howell, S. N. G., & Webb, S. (1995). A guide to the birds
of Mexico and Northern Central America. Oxford
University Press.
Hurlbert, S. H. (1978). The measurement of niche overlap
and some relatives. Ecology, 59(1), 67–77. https://
doi.org/10.2307/1936632
Jordano, P. (2000). Fruits and frugivory. In M. Fenner (Ed.),
Seeds: the ecology of regeneration in plant communi-
ties (2nd ed., pp.125–165). CAB International.
Krebs, C. J. (1999). Ecological Methodology (2nd ed.).
Benjamin Cummings.
Laurance, W. F. (1999). Reflections on the tropical defores-
tation crisis. Biological Conservation, 91, 109–117.
https://doi.org/10.1016/S0006-3207(99)00088-9
Leighton, M., & Leighton, D. R. (1983). Vertebrate res-
ponses to fruiting seasonality within a Bornean rain
forest. In T. C. Whitmore, A. C. Chadwick, & S.
L. Sutton (Eds.), Tropical Rainforest: Ecology and
Management (pp. 181–196). Blackwell Scientific
Press.
Leija-Loredo, E. G., Reyes-Hernández, H., Reyes-Pérez,
O., Flores-Flores, J. L., & Sahagún-Sánchez, F. J.
(2016). Cambios en la cubierta vegetal, usos de la
tierra y escenarios futuros en la región costera del
estado de Oaxaca, México. Maderas y Bosque, 22(1),
125–140.
Levins, R. (1968). Evolution in changing environments.
Princeton University Press.
Loiselle, B. A., & Blake, J. G. (1991). Temporal variation
in birds and fruits along an elevational gradient in
Costa Rica. Ecology, 72(1), 180–193. https://doi.
org/10.2307/1938913
Matuzak, G. D., Bezy, M. B., & Brightsmith, D. J. (2008).
Foraging ecology of parrots in a modified landsca-
pe: seasonal trends and introduced species. Wilson
Journal of Ornithology, 120(2), 353–365. https://doi.
org/10.1676/07-038.1
Meave, J. A., Romero-Romero, M. A., Salas-Morales,
S. H., Pérez-García, E. A., & Gallardo-Cruz, J. A.
(2012). Diversidad, amenazas y oportunidades para
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. l0, 2023)
la conservación del bosque tropical caducifolio en
el estado de Oaxaca, México. Ecosistemas, 21(1–2),
85–100.
Monterrubio-Rico, T. C., Charre-Medellín, J. F., Pacheco-
Figueroa, C., Arriaga-Weiss, C. S., Valdez-Leal, J.,
Cancino-Murillo, R., Escalona-Segura, G., Bonilla-
Ruz, C., & Rubio-Rocha, Y. (2016). Distribución
potencial histórica y contemporánea de la familia
Psittacidae en México. Revista Mexicana de Biodiver-
sidad, 87(3), 1103–1117. https://doi.org/10.1016/j.
rmb.2016.06.004
Morales-Pérez, L. (2005). Evaluación de la abundancia
poblacional y recursos alimenticios para tres géneros
de psitácidos en hábitats conservados y perturbados
de la costa de Jalisco, México (Tesis de maestría).
Universidad Nacional Autónoma de México, México.
Neu, C. W., Byers, C. R., & Peek, J. M. (1974). A technique
for analysis of utilization-availability data. Journal
of Wildlife Management, 38(3), 541–545. https://doi.
org/10.2307/3800887
Olah, G., Butchart, S. H., Symes, A., Guzmán, I. M.,
Cunningham, R., Brightsmith, D. J., & Heinsohn,
R. (2016). Ecological and socio-economic factors
affecting extinction risk in parrots. Biodiversity and
Conservation, 25, 205–223. https://doi.org/10.1007/
s10531-015-1036-z
Palomera-García, C. (2010). Habitat use and local har-
vesting practices of the Orange-fronted Parakeet
(Aratinga canicularis) in western Mexico. Studies on
Neotropical Fauna and Environment, 45(3), 139–147.
https://doi.org/10.1080/01650521.2010.523292
Paranhos, S. J., De Araújo, C. B., & Marcondes Machado,
L. O. (2009). Comportamento de Aratinga aurea
(Psittacidae) no sudeste de Minas Gerais, Brasil.
Revista Brasileira de Ornitologia, 17(3-4), 187–193.
Pennington, T. D., & Sarukhán, J. (2005). Árboles tropica-
les de México. Manual para la identificación de las
principales especies (3rd ed.). Universidad Nacional
Autónoma de México.
Pérez, J. L. A., & Barajas-Morales, J. (2011). Árboles de
selvas secas de México. Identificación mediante cor-
tezas. Universidad Nacional Autónoma de México.
Pires, S. F. (2012). The illegal parrot trade: a literature
review. Global Crime, 13(3), 176–190. https://doi.org
/10.1080/17440572.2012.700180
Quigley, M. F., & Platt, W. J. (2003). Composition and
structure of seasonally deciduous forest in the Ame-
ricas. Ecological Monographs, 73(1), 87–106. https://
doi.org/10.1890/0012-9615(2003)073[0087:CASOS
D]2.0.CO;2
R Core Team. (2016). R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. http://www.R-project.
org/
Ragusa-Netto, J. (2002). Fruiting phenology and consump-
tion by birds in Ficus calyptroceras (Miq.) Miq. (Mora-
ceae). Brazilian Journal of Biology, 62, 339–346.
https://doi.org/10.1590/s1519-69842002000200018
Ragusa-Netto, J. (2007). Nectar, fleshy fruits and the
abundance of parrots at a gallery forest in the
southern Pantanal (Brazil). Studies on Neotropical
Fauna and Environment, 42(2), 93–99. https://doi.
org/10.1080/01650520600979643
Renton, K. (2001). Lilac-crowned Parrots diet and food
resource availability: resource tracking by a parrot
seed predator. Condor, 103(2), 62–69. https://doi.
org/10.1093/condor/103.1.62
Renton, K. (2002). Influence of environmental varia-
bility on the growth of Lilac-crowned Parrot
nestlings. Ibis, 144, 331–339. https://doi.
org/10.1046/j.1474-919X.2002.00015.x
Renton, K., & Salinas-Melgoza, A. (2004). Climactic
variability, nest predation, and reproductive output of
Lilac-crowned Parrots (Amazona finschi) in tropical
dry forest of western Mexico. Auk, 121, 1214–1225.
Renton, K., Salinas-Melgoza, A., De Labra-Hernández, M.
A., & De la Parra-Martínez, S. M. (2015). Resou-
rce requirements of parrots: nest site selectivity
and dietary plasticity of Psittaciformes. Journal of
Ornithology, 156, S73–S90. https://doi.org/10.1007/
s10336-015-1255-9
Rivera, L., Politi, N., & Bucher, E. H. (2020). Feeding
ecology and key food resources for the endemic and
threatened Tucuman Amazon Amazona tucumana
in Argentina. Acta Ornithologica, 54(2), 225–234.
https://doi.org/10.3161/00016454AO2019.54.2.008
Robinet, O., Bretagnolle, V., & Clout, M. (2003). Activity
patterns, habitat use, foraging behavior and food
selection of the Ouvéa Parakeet (Eunymphicus cor-
nutus uvaeensis). Emu, 103(1), 71–80. https://doi.
org/10.1071/MU00032
Rzedowski, J. (2006). Vegetación de México. Comi-
sión Nacional para el Conocimiento y Uso de la
Biodiversidad.
Salas-Morales, S. H., Saynes-Vásquez, A., & Schibli, L.
(2003). Flora de la costa de Oaxaca, México: lista flo-
rística de la región de Zimatán. Boletín de la Sociedad
Botánica de México, 72, 21–58.
Salas-Morales, S. H., Schibli, L., Nava-Zafra, A., & Say-
nes-Vásquez, A. (2007). Flora de la costa de Oaxaca,
México (2): lista florística comentada del Parque
Nacional Huatulco. Boletín de la Sociedad Botánica
de México, 81, 101–130.
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e52180, enero-diciembre 2023 (Publicado Jul. 10, 2023)
Saunders, D. A. (1990). Problems of survival in an exten-
sively cultivated landscape: the case of Carnaby’s
Cockatoo Calyptorhynchus funereus latirostris. Bio-
logical Conservation, 54(3), 277–290. https://doi.
org/10.1016/0006-3207(90)90057-V
Silva, A. P., & Melo, C. (2013). Foraging of the Golden-
capped Parakeet (Aratinga auricapillus) in an anthro-
pogenic landscape in Brazil. Ornitologia Neotropical,
24, 55–66.
Trejo, I. (2004). Clima. En A. J. García-Mendoza, M. J.
Ordoñez, & M. Briones-Salas (Eds.), Biodiversi-
dad de Oaxaca (pp. 67–85). Instituto de Biología
UNAM-Fondo Oaxaqueño para la Conservación de
la Naturaleza.
Trejo, I., & Dirzo, R. (2000). Deforestation of seasonally
dry tropical forest: a national and local analysis
in Mexico. Biological Conservation, 94, 133–142.
https://doi.org/10.1016/S0006-3207(99)00188-3
Wermundsen, T. (1997). Seasonal change in the diet of the
Pacific Parakeet Aratinga strenua in Nicaragua. Ibis,
139, 566–568.
Zar, J. H. (1999). Biostatistical analysis (4th ed.). Prentice
Hall Inc.