1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
A new vector emerges? Aedes vittatus (Diptera: Culicidae): ecological
description and current and future potential global geographic invasion
Estefanía Mejía-Jurado1, 2; https://orcid.org/0000-0003-3105-5998
Emmanuel Echeverry-Cárdenas1; https://orcid.org/0000-0001-9827-2626
Oscar Alexander Aguirre-Obando1, 2 *; https://orcid.org/0000-0003-2480-7004
1 Escuela de Investigación en Biomatemática, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío.
Carrera 15 Calle 12 Norte, Armenia, Colombia; emejiaj@uqvirtual.edu.co, eecheverryc@uqvirtual.edu.co, oscaragu-
irre@uniquindio.edu.co (*Correspondence)
2 Programa de Biología, Universidad del Quindío. Carrera 15 Calle 12 Norte, Armenia, Colombia.
Received 16-II-2023. Corrected 06-IX-2023. Accepted 16-V-2024.
ABSTRACT
Introduction: The Aedes vittatus mosquito is an important vector of yellow fever in Africa, with vectorial com-
petence for dengue, chikungunya and Zika. Its presence has been reported in some places in Africa, Asia, Europe,
and –recently– America. However, information on its distribution is fragmented, with limited descriptions of the
specific characteristics of its habitats.
Objective: To compile records of its occurrence, describe the ecological characteristics of its habitat and estimate
its current and future global potential invasion.
Methods: We employed both first-record data and global occurrence records to describe its habitat. Additionally,
we used an ecological niche model, specifically the MaxEnt algorithm, with bioclimatic variable layers to estimate
potential invasion areas. Since the native range of A. vittatus is unknown, we calibrated accessible areas using two
hypotheses, Africa and Asia, based on available genetic information.
Results: Regardless of its native area, A. vittatus appears to be distributed in tropical and subtropical areas in all
continents with potential to reach even currently colder climates as global climate change. It is found mainly in
tropical and urban areas, likely through transcontinental and terrestrial passive transport.
Conclusions: The mosquito can be found on all continents, ranging from sea level to 2 500 m.a.s.l., at tempera-
tures between 15 and 30 °C, and has the potential for further expansion.
Key words: Zika; Culicidae; climate change; niche modeling; tropical mosquito; vector ecology; dengue; yellow
fever; chikungunya.
RESUMEN
En español el título sería: ¿Un nuevo vector emerge? Aedes vittatus (Diptera: Culicidae):
descripción ecológica e invasión geográfica potencial mundial actual y futura
Introducción: El mosquito Aedes vittatus es un importante vector de la fiebre amarilla en África, con competen-
cia vectorial para el dengue, la chikungunya y el Zika. Se ha informado de su presencia en algunas áreas de África,
Asia, Europa y, recientemente, América. Sin embargo, la información sobre su distribución es fragmentada, con
descripciones limitadas de las características específicas de sus hábitats.
Objetivo: Recopilar registros de su presencia, describir las características ecológicas de su hábitat y estimar su
potencial de invasión actual y futuro a nivel mundial.
https://doi.org/10.15517/rev.biol.trop..v72i1.54166
INVERTEBRATE BIOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
INTRODUCTION
Aedes (Fredwardsius) vittatus (Diptera:
Culicidae) (Bigot 1861) was characterized
based on phenotypic features of adults (N =
86), larvae (N = 41), and pupae (N = 29). It
is distinguished within the Aedes genus by
several synapomorphies. These include a dark
proboscis with a median scattering of pale
yellowish scales, bilateral small patches of nar-
row white scales on the clypeus, three pairs of
distinct, small, white spots of narrow scales
on the anterior two-thirds of the scutum, a
relatively short maxillary palpus with a white-
scaled apical portion, and a white spot at the
mid-point of tibia III (in anterior view) (Bigot,
1861; Huang, 1977; Pagac et al., 2021; Reinert,
2000). However, it is currently recognized that
A. vittatus has a widespread distribution in
the tropical regions of Africa and Asia, with
some known occurrences in the Mediterra-
nean region of Europe, including France, Italy,
Portugal, and Spain, primarily due to favor-
able climate conditions (Díez-Fernández et al.,
2018; Sudeep & Shil, 2017). Similarly, this spe-
cies has recently been identified in Cuba and
the Dominican Republic (tropical region of
America) (Alarcón-Elbal et al., 2020; Pagac et
al., 2021; Pérez-Menzies et al., 2022).
The invasion of A. vittatus, as well as other
species within the same genus such as Aedes
aegypti and Aedes albopictus, into new locations
is often linked to passive transport facilitated
by large-scale anthropogenic activities, such
as transcontinental trade (Brown et al., 2011;
Medlock et al., 2012; Scholte et al., 2008), as
well as local vehicular transport, including
both public and private land cargo (Eritja et
al., 2017; Guagliardo et al., 2014). In particular,
it has been proposed that tire transport could
be a significant mechanism for the large-scale
spread of A. vittatus (Díaz-Martínez et al.,
2021). This is due to the remarkable tolerance
of Aedes and other culicid eggs to desiccation,
allowing them to remain viable at extreme
temperatures for extended periods. This allows
them to preserve their characteristics over
extensive distances or throughout various times
of the year until conditions become optimal for
hatching and subsequent development (Diniz
et al., 2017). Furthermore, their small size poses
challenges in identification and, consequently,
in vector control.
Overall, this mosquito is hematophagous,
with females feeding on the blood of goats,
cattle, humans, and sheep (Chepkorir et al.,
2018). It exhibits ecological plasticity by breed-
ing in various habitats, including rock pools,
artificial containers, tree holes, puddles, and
fresh fruit peels. It is found in forests, savan-
nas, and arid lands, displaying both sylvatic
and peri-domestic behavior (Ali et al., 2014;
Diallo et al., 2012a; Obi et al., 2022; Suganthi
et al., 2014). The presence and distribution of
this mosquito in these microhabitats are pri-
marily influenced by climate factors. Below 10
°C, conditions are unfavorable for its biological
development; between 11 and 14 °C, only a
Métodos: Utilizamos datos de primeros registros y registros de presencia a nivel global para describir su hábitat.
Además, empleamos un modelo de nicho ecológico, específicamente el algoritmo MaxEnt, con capas de variables
bioclimáticas para estimar las áreas de potencial invasión. Dado que se desconoce el área nativa de A. vittatus,
calibramos áreas accesibles bajo dos hipótesis, África y Asia, basadas en la información genética disponible.
Resultados: Independientemente de su área nativa, A. vittatus parece distribuirse en regiones tropicales y subtro-
picales en todos los continentes, con el potencial de expandirse incluso hacia climas actualmente más fríos debido
al cambio climático global. Se encuentra principalmente en áreas tropicales y urbanas, posiblemente a través del
transporte pasivo transcontinental y terrestre.
Conclusiones: El mosquito se puede encontrar en todos los continentes, desde el nivel del mar hasta altitudes de
2 500 m.s.n.m., a temperaturas que oscilan entre 15 y 30 °C, y presenta el potencial para una mayor expansión
geográfica.
Palabras clave: Zika; Culicidae; cambio climático; modelado de nicho; mosquito tropical; ecología de vectores;
chikungunya; dengue; fiebre amarilla.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
few individuals can survive, and egg and larva
mortality increases. However, between 24 and
27 °C, with humidity levels above 75 %, 75 % to
89 % of the eggs hatch. Remarkably, it exhibits
thermophilic characteristics, as evidenced by
preimaginal development occurring between
36 and 45 °C, and it displays good tolerance to
desiccation (McClelland & Green, 1970; Rob-
erts, 2004; Service, 1970).
Additionally, A. vittatus plays a crucial
role in transmitting yellow fever in rural areas
of tropical Africa (Bueno-Marí & Jiménez-
Peydró, 2010). It also possesses vector com-
petence for dengue (Angel & Joshi, 2008),
chikungunya (Diallo et al., 1999) and Zika
(Diallo et al., 2014). Similarly, A. vittatus has
the vectorial capacity to transmit arboviruses
like Japanese encephalitis, West Nile virus,
Chandipura, and Chittoor (Sudeep et al., 2020).
The diseases transmitted by species of the Aedes
genus, including those mentioned earlier, have
raised significant concerns in global public
health due to the lack of effective vaccines
for most arboviruses, with a few exceptions
that have shown limited effectiveness, such as
the dengue vaccine (Carvalho & Long, 2021;
Girard et al., 2020).
Traditional mosquito vector control meth-
ods include the use of chemical products, pri-
marily insecticides, and biological products
(Baldacchino et al., 2015; Wilson et al., 2020).
Biological methods now encompass releasing
mosquito populations infected with Wolbachia
sp. to render natural populations refractory
to the arboviruses they transmit (Caputo et
al., 2019; ONeill, 2018), or using transgenic
mosquitoes to suppress populations and inter-
rupt the vector transmission cycles (Bellini et
al., 2013; Carvalho et al., 2015). Nevertheless,
these efforts primarily target A. aegypti and A.
albopictus, which are global vectors responsible
for the transmission of diseases such as den-
gue, Zika, and chikungunya (Weeratunga et
al., 2017). In the Americas, these diseases are
primarily transmitted by A. aegypti (Kotsakiozi
et al., 2017) and occasionally by A. albopictus,
which has evidenced possible vertical transmis-
sion of Zika, yellow fever, and dengue by this
mosquito (Alencar et al., 2021; Martins et al.,
2012; Rúa-Uribe et al., 2012). If populations of
A. aegypti or A. albopictus were controlled, A.
vittatus could become a significant vector for
these diseases.
Currently, research on A. vittatus primar-
ily centers on its vector competence for spe-
cific arboviruses in Africa (Diallo et al., 2014;
Mulwa et al., 2018) and Asia (Angel & Joshi,
2008; Sudeep et al., 2020). There is limited
and outdated research on its biology and ecol-
ogy, primarily conducted in the same regions
(Roberts, 2001; Roberts, 2004; Service, 1970).
Furthermore, there are reports of its presence in
Europe (Bueno-Marí & Jiménez-Peydró, 2010;
Eritja et al., 2018), and it has recently become
established in the Americas. Additionally, pop-
ulation genetic analysis is being conducted to
understand the origin of the A. vittatus invasion
in the Caribbean (Alarcón-Elbal et al., 2020;
Pagac et al., 2021). Hence, it is crucial to track
potential new sites of invasion by this species,
as it could complicate the epidemiological land-
scape in public health.
Ecological niche modeling (ENM) serves
as a prediction tool for identifying areas glob-
ally with suitable environmental conditions
for A. vittatus. This tool uses species presence
records and layers of bioclimatic variables,
employing a mathematical algorithm to iden-
tify geographic areas where the species could
potentially invade. This, in turn, helps identify
potential locations for arbovirus transmission
(Carvalho et al., 2017; Peterson et al., 2011).
For instance, this method has been employed
to predict the potential distribution areas of sig-
nificant mosquitoes in public health, both glob-
ally, such A. aegypti and A. albopictus (Kamal et
al., 2018) and locally, including Culex pipiens
pallens (a primary vector of lymphatic filariasis
and Japanese encephalitis) and Culex pipiens
quinquefasciatus (a primary vector of West Nile
fever and lymphatic filariasis) (Chandel et al.,
2013; Cui et al., 2013; Liu et al., 2020).
Disease-vector mosquitoes are influenced
by climatic variables such as temperature and
humidity, as they exhibit positive responses
to environmental conditions. For instance,
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
A. aegypti and A. albopictus thrive in tem-
peratures between 20 and 32 °C. Conversely,
they exhibit negative responses to temperatures
exceeding 39 °C or falling below 16 °C, which
extends their life cycle (Ezeakacha & Yee, 2019;
Marinho et al., 2016). These factors significant-
ly affect their survival, bite rates, and distribu-
tion, consequently impacting the transmission
of diseases, either positively or negatively (da
Cruz-Ferreira et al., 2017).
One approach to predict the impact of
climate change on mosquito distribution is
to use prediction models, such as the Shared
Socioeconomic Pathways (SSP), which estimate
future concentrations of greenhouse gases,
including CO2. These include SSP245, SSP370,
and SSP585, which can help identify poten-
tial future invasion areas by considering the
impact of climate change under these scenarios
(ONeill et al., 2017; Riahi et al., 2017).
A. vittatus, along with other vectors, has
been the subject of niche modeling studies
for chikungunya virus vectors in southeast
Senegal’s Kedougou region (Richman et al.,
2018), potential distribution of Aedes genus
species in Nigeria (Omar et al., 2021), and
arbovirus vectors in Morocco (Abdelkrim et al.,
2021). Recently, a global study, which included
three mosquito species, including A. vittatus,
estimated their potential global distribution
under current and future climate conditions
(Abdelkrim et al., 2022). However, the study
did not account for the vectors ecological
characteristics in currently registered zones.
Additionally, unlike other mosquito species
(Echeverry-Cárdenas et al., 2021; Kamal et al.,
2018), the present study did not use the native
area for calibration model. Since the native
origin of A. vittatus remains unknown, calibra-
tion of the accessible area relied on available
genetic information. Furthermore, estimations
were conducted using new models and climate
change scenarios (CMIP6) (Eyring et al., 2016).
Hence, understanding the characteristics
of its habitats and identifying potential invasion
areas, both current and future in the context of
climate change, is essential. This knowledge will
help assess its potential global epidemiological
impact and enable the inclusion of this vector
in surveillance and control strategies for local
transmission scenarios. Therefore, our objec-
tive was to describe the ecology of the new
vector, A. vittatus (Diptera: Culicidae), based
on occurrence records and estimate its global
invasion potential under two hypothetical ori-
gins, Asia, and Africa, for both the present and
the future.
MATERIALS AND METHODS
Study area: This global study identified
A. vittatus in tropical Africa, tropical Asia,
the western Mediterranean region of Europe,
and recently, in some Caribbean islands (Alar-
cón-Elbal et al., 2020; Bueno-Marí & Jimé-
nez-Peydró, 2010; Díaz-Martínez et al., 2021;
Pérez-Menzies et al., 2022; Sudeep & Shil, 2017).
Bibliographic review: We conducted a
systematic search for scientific articles report-
ing the first records of A. vittatus at the country
level. We used the following databases to iden-
tify its geographical presence: Scopus (https://
www.scopus.com/), PubMed (https://pubmed.
ncbi.nlm.nih.gov/), Springer link (https://link.
springer.com/), Science direct (https://www.
sciencedirect.com/), Google Scholar (https://
scholar.google.es/) and Google (www.google.
com). Google was employed to gather non-
scientific information, such as news, notes,
and reports. In each of the databases, keywords
were used, like “Aedes vittatus, followed by the
Boolean operator “AND” and “first registry”
and the Boolean operator “OR” and “registries.
To broaden the dataset of vector occurrences,
we used the keyword “Aedes vittatus” for the
general search of vector registries. We reviewed
titles and abstracts from the search results and
selected only those that met the criteria, such as
the first registry in a country or the presence of
the vector in a specific site. The search in each
database covered all dates in English, Spanish,
and Portuguese.
Registries of presence of Aedes vittatus:
We created a dataset from the results of the
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
previous section and data obtained from the
Global Biodiversity Information Facility (GBIF,
2021; https://www.gbif.org/). This dataset was
used to create a table containing all the first
registries and records reported in scientific
articles for A. vittatus in each country. The table
includes relevant information such as the con-
tinent, year of the registry, and reference. In
addition, georeferencing of this dataset served
as the foundation for estimating the global
geographic distribution and potential invasion
of A. vittatus (further details in the ‘Estima-
tion of the Geographic Distribution’ section).
Data lacking georeferencing information were
excluded from this study.
Additionally, this dataset was cleaned to
remove duplicate entries and address geospa-
tial issues (Kamal et al., 2018; Kraemer et al.,
2015). To achieve this, we used the R Studio
environment (R CoreTeam 2017) along with
the sp 1.4-1 (Pebesma et al., 2020), raster
3.4-5 (Hijmans et al., 2020a), and dismo 1.3-3
(Hijmans et al., 2020b) packages. Due to the
absence of data regarding the native area of A.
vittatus, we relied on existing genetic evidence
from the COI gene. This evidence, as presented
in the haplotype network suggested by Pagac et
al. (2021), primarily links most of the analyzed
populations to Africa (6 haplotypes) and Asia
(21 haplotypes). Haplotype networks help pro-
pose the geographic origin or ancestral lineage
of species using molecular markers (Leigh &
Bryant, 2015). Two scenarios were evaluated,
one assuming the native area of A. vittatus is in
Africa, and the other in Asia. Under the African
origin hypothesis, the occurrence dataset was
divided into two subgroups: A, which included
occurrences from Africa used for calibration,
and B, containing occurrences from the rest of
the world for validation. Similarly, under the
Asian origin hypothesis, subgroups C and D
were formed, with C including Asian occur-
rences used for calibration, and D contain-
ing occurrences from the rest of the world
for validation.
Ecological niche modeling and estima-
tion of the accessible area: To predict the
potential invasion of A. vittatus under cur-
rent and future conditions, we employed the
maximum entropy algorithm implemented in
MaxEnt v3.4.3 software (Phillips et al., 2021).
This allows us to assess the influence of envi-
ronmental variables in the estimations and
calibrate models using datasets of various sizes.
Additionally, it is suitable for predictions at
both temporal and spatial scales (Peterson et
al., 2011; Phillips et al., 2006). To calibrate the
ENM, we defined the accessible area (M) of
the species, including its occurrence records in
both continents, Africa, and Asia, following the
approach outlined by Barve et al. (2011). This
involved implementing a convex minimal poly-
gon that covered a significant portion of the
species’ distribution area, as per Rochlin et al.
(2013). Similarly, 10 000 random background
points were placed within each accessible area
for model calibration (Peterson et al., 2011).
For each continent, we employed two model-
ing methods: spatial modeling, projecting ideal
current environmental conditions for A. vit-
tatus invasion worldwide, and spatial-temporal
modeling, suggesting potential vector invasion
on a global scale considering the effects of cli-
mate change.
Climate data and ecological character-
ization: To estimate the current geographic
distribution, we used bioclimatic data from
WorldClim v2.1 (https://www.worldclim.org/),
encompassing 19 bioclimatic variables collected
from global weather stations (Fick & Hijmans,
2017). The data had a spatial resolution of 2.5
min, approximately 5 km² (Kamal et al., 2018;
Kraemer et al., 2015; Medley, 2010). These
variables underwent a Variance Inflation Factor
(VIF) analysis in R Studio using the raster 3.4-5
(Hijmans et al., 2020a), rgdal 1.5-23 (Bivand
et al., 2021), and usdm 1.1-18 (Naimi, 2017)
packages to reduce multicollinearity (Pradhan,
2016). The resulting variable layers were then
used to estimate the species potential invasion
under current and future conditions.
To estimate the future invasion of A. vitta-
tus in the context of climate change, we used the
selected variables from WorldClim v2.1 under
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
the SSP245, SSP370, and SSP585 scenarios for
the periods 2041-2060 and 2081-2100. This
was performed using Global Circulation Mod-
els (GCMs), as they offer a flexible and robust
framework to evaluate the statistical signifi-
cance and importance of variables, providing
a straightforward and solid interpretation of
the model (Flato et al., 2013; Guisan et al.,
2002; Marengo et al., 2014). We used the fol-
lowing models: GISS‒E2‒1‒H, MIROC‒ES2L,
MPI‒ESM1‒2‒HR, MRI‒ESM2‒0 (Hausfather
et al., 2022), IPSL‒CM6A‒LR, and UKESM1‒0‒
LL (Flynn & Mauritsen, 2020). These models
were selected based on their values of ECS
(2.5-4 °C) and TCR (1.4-2.2 °C) to repre-
sent different climate sensitivities. All selected
variable layers were adjusted to match the
defined accessible area (M) and were used to
construct invasion scenarios for the specified
climate change periods.
To characterize the habitats where A. vit-
tatus is currently found, we extracted tem-
perature (mean, standard deviation, minimum,
and maximum) and precipitation (mean, stan-
dard deviation, minimum, and maximum) data
from the WorldClim v2.1 dataset (https://www.
worldclim.org/). These variables are crucial for
understanding the mosquito vectors’ life cycle
(Echeverry-Cárdenas et al., 2021; Leyton et al.,
2020; Valencia-Marín et al., 2020). We obtained
and extracted elevation data from WorldClim
v2.1 (https://www.worldclim.org/) and land
coverage data from Diva-gis (https://www.diva-
gis.org/). We determined the type of urbaniza-
tion through visual exploration of occurrences
using QGIS v3.16 with the available Google
Hybrid layer. Urban occurrences were classi-
fied as those located within urban areas, while
those in urbanization perimeters or immedi-
ate vicinity were considered peri-urban areas.
Occurrences without human establishments
nearby were categorized as rural areas. Addi-
tionally, we obtained sea route data (Benden,
2022) and overlaid it on the current invasion
potential to assess the potential influence of
transcontinental freight transportation routes
on the species’ spread.
Estimation of the geographic distribu-
tion: To estimate the potential geographic dis-
tribution of A. vittatus, we considered four
contexts that accounted for latitudinal and
longitudinal variations. For model calibration,
we used subgroups A and C with environmen-
tal variable layers under current conditions
confined to accessible areas. Subsequently, we
estimated the potential effects of climate change
in areas of potential A. vittatus invasion for the
periods 2041-2060 and 2081-2100 under the
SSP245, SSP370, and SSP585 emission path-
ways for each respective period.
We conducted all estimations using the
maximum entropy algorithm in MaxEnt soft-
ware v.3.4.3 (Phillips et al., 2021). Each esti-
mation consisted of ten replicates with 1 000
iterations, using the logistic output format.
Parameters ‘Do Clamping’ and ‘Extrapola-
tion’ were deactivated for current and future
estimations to prevent ecological variable
extrapolations (non-analogous climates) (Ech-
everry-Cárdenas et al., 2021; Kamal et al.,
2018). To represent each emission scenario
under future conditions, we calculated the
mean between the predictions generated by
each selected GCM, resulting in a final map
(Abdelkrim et al., 2022). We reclassified all
resulting maps into a binary format, distin-
guishing potential invasion areas based on a
threshold corresponding to the lowest environ-
mental suitability value associated with known
presence records. We considered an omission
value (E) of 0.05 (Jiménez-García & Peterson,
2019; Liu et al., 2005; Marques et al., 2020).
The potential extension area was quantified
in all scenarios.
Validation of the model: We validated
the models only under current conditions, as
the behavior of A. vittatus under future climate
change scenarios is unknown. We used the
ntbox packages (Osorio-Olvera et al., 2020) in
R Studio to estimate the area under the curve
(AUC), with metric values between 0.7 to 0.9
indicating good models and values > 0.9 con-
sidered excellent (Peterson et al., 2011). To fur-
ther assess model performance, we determined
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
the significance level of the AUC using partial
analysis of Receiver Operating Characteristics
(ROC-partial). This analysis utilized the B and
D subsets of A. vittatus presence records (Lobo
et al., 2008). This analysis aimed to address AUC
deficiencies (Peterson et al., 2008) by adjusting
the parameter to 0.05 per 1 000 iterations. To
evaluate the models significance, we consid-
ered AUC values with P < 0.05, indicating that
the predictions were statistically superior to
those from a random model (Echeverry-Cárde-
nas et al., 2021; Peterson et al., 2008).
RESULTS
The systematic search resulted in over 1 300
results, with 63 meeting the search criteria.
Among these, seven articles reported the first
registries of A. vittatus, while the remaining
110 registries were from various locations in
Africa, Asia, Europe, and America (Table 1; Fig.
1A). The search on the GBIF platform initially
retrieved 395 occurrences, which were reduced
to 94 after purging. Therefore, the final dataset
from the systematic search and GBIF platform
comprises 212 occurrences (Fig. 1A).
Table 2 lists the selected variables for cali-
brating the ENM, all of which are important in
the biological cycle of A. vittatus. The supple-
mentary material (SMT1) contains the ecologi-
cal characterization data, which indicates that
A. vittatus is mainly found in urban zones (42.4
%), followed by rural (39.6 %) and peri-urban
(17.9 %) zones (Fig. 1B). In these zones, the
Table 1
Records of A. vittatus worldwide were obtained from a bibliographic review. The data are presented chronologically, from
oldest to most recent.
Continent Country Year Reference
Europe France 1861 (Bigot, 1861)*
Africa Morocco 1916 (Gaud, 1947)*
Europe Spain 1925 (Gil-Collado, 1930)*
Europe Spain 1927 (Gil-Collado, 1930)
Europe Spain 1929 (Gil-Collado, 1930)
Asia Bangladesh 1949 (Nasir-ud-din, 1952)
Africa Tunisia 1952 (Vermeil, 1953)*
Europe France 1952 (Hamon & Remmert, 1952)
Europe Italy 1960 (Coluzzi, 1961)*
Europe France 1960 (Callot, 1962)
Asia Pakistan 1960 (Qutubuddin, 1960)
Africa Zimbabwe 1967 (Freyvogel & McClelland, 1969)
Africa Senegal 1972 (Diallo et al., 1999)
Africa Uganda N.A (Mukwaya, 1974)
Africa Nigeria 1973 (Service, 1974)
Africa Nigeria N.A (Stafford, 1981)
Africa Nigeria 1981 (Irving-Bell et al., 1987)
Asia Pakistan 1993 (Suleman & Khan, 1993)
Asia India 1997 (Patel, 2016)
Asia India 1998 (Rajavel et al., 2005)
Asia Oman 2000 (Roberts, 2004)
Asia Saudi Arabia 2000 (Miller et al., 2002)
Asia Pakistan 2000 (Ilahi & Suleman, 2013)
Asia India 2006 (Angel & Joshi, 2008)
Africa Central African Republic 2006 (Ngoagouni et al., 2012)
Europe Spain 2007 (Bueno-Marí, 2010)
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
Asia India 2008 (Kumari et al., 2011)
Africa Senegal 2009 (Diagne et al., 2014)
Asia Saudi Arabia 2009 (Al Ashry et al., 2014)
Africa Nigeria 2010 (Idowu et al., 2012)
Asia Saudi Arabia 2010 (Alikhan et al., 2014)
Africa Senegal 2011 (Diallo et al., 2014)
Africa Nigeria 2011 (Adeleke et al., 2013)
Asia Iran 2011 (Nasirian et al., 2014)
Africa Ghana 2012 (Suzuki et al., 2016)
Africa Ghana 2012 (Esena et al., 2013)
Asia Pakistan 2013 (Ali et al., 2013)
Africa Ivory Coast 2013 (Zahouli et al., 2017b)
Africa Ivory Coast 2014 (Zahouli et al., 2017a)
Asia Pakistan 2014 (Khan et al., 2015)
Africa South Africa 2014 (Guarido et al., 2021)
Africa South Africa 2014 (Johnson et al., 2020)
Europe Spain 2015 (Díez-Fernández et al., 2018)
Africa Kenya 2015 (Chepkorir et al., 2018)
Africa Ghana 2015 (Captain-Esoah et al., 2020)
Europe Spain 2017 (Eritja et al., 2018)
Africa Kenya 2017 (Mulwa et al., 2018)
Africa Nigeria 2017 (Afolabi et al., 2019)
Asia United Arab Emirates 2017 (Roberts, 2020)
Asia Sri Lanka 2017 (Chandrasiri et al., 2019)
Africa Ethiopia 2017 (Ferede et al., 2018)
Africa South Africa 2017 (Omar et al., 2021)
Africa Benin 2017 (Anges et al., 2018)
Africa Sudan 2017 (Eshag et al., 2019)
Africa Tunisia 2017 (Ben Ayed et al., 2019)
Asia India 2018 (Singh et al., 2019)
Asia India 2018 (Sudeep et al., 2020)
Africa Ghana 2018 (Joannides et al., 2021)
Asia Sri Lanka 2018 (Surendran et al., 2021)
America Dominican Republic 2019 (Alarcón-Elbal et al., 2020)*
America Cuba 2019 (Pagac et al., 2021)*
America Cuba 2020 (Díaz-Martínez et al., 2021)
Asia India 2020 (Reegan et al., 2020)
* First registries; N.A Year not available.
mosquito is found in various habitats, includ-
ing tropical forests (37.2 %), tropical grass-
lands (30.1 %), deserts (16.0 %), Mediterranean
forests (9.4 %), lakes (2.8 %), high-altitude
grasslands (1.8 %), temperate forests (0.9 %),
mangroves (0.9 %), and temperate grasslands
(0.5 %). Based on global registries collected and
with a 30-year data history for temperature and
precipitation variables, on average A. vittatus in
Africa is found at temperatures of 25.4 °C ± 2.4
(min 9.7-33.3 max), precipitations up to 100.9
mm ± 85.1 (min 0.0-466.0 max), and altitudes
of 451.9 m ± 359.9 (min 4-1 656 max). In Asia,
the mosquito is found at temperatures averag-
ing 25.9 °C ± 3.0 (min 6.5-35.9 max), with
precipitation levels averaging 67.6 mm ± 57.4
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
(min 0-1 594 max), and altitudes around 415.6
m ± 521.4 (min 2-2 403 max). In Europe, the
conditions are characterized by temperatures
averaging 15.4 °C ± 5.6 (min 1.4-27 max),
precipitation averaging 74.6 mm ± 58.1 (min
2-324 max), and altitudes around 357.9 m ±
376.1 (min 19-1 497 max). In the Americas,
A. vittatus typically experiences temperatures
averaging 24.7 °C ± 1.6 (min 20.2-27.5 max),
precipitation averaging 42.3 mm ± 15.4 (min
25-222 max), and altitudes around 263.3 m ±
317.9 (min 64-630 max). Furthermore, a Krus-
kal-Wallis analysis determined that between
altitude and zone type no statistically signifi-
cant differences exist (chi-squared= 2.2375,
df= 2, P = 0.3267). In turn, in any of the three
zones, A. vittatus has been recorded principally
between 100 and 500 m approximately, never-
theless, it has been registered in altitudes up to
1 600 m in urban zones and > 2 000 m in peri-
urban and rural zones (Fig. 2).
Fig. 1. World map showing records of A. vittatus occurrence. A. Zones where it is found based on the occurrences. B. In both
maps the isoclines are presented. The isoclines show the tropical and subtropical regions.
Table 2
Climatic variables selected for the ENM of A. vittatus in
the world.
Variable Unit
Rainfall seasonality %
Isothermality %
Annual precipitation mm
Precipitation of the wettest month mm
Precipitation of the driest quarter mm
Mean annual temperature °C
Mean diurnal range °C
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
The estimations under the current con-
text, for both hypotheses of native areas, Afri-
ca (AUC= 0.90 and ROC partial P = 0.00)
and Asia (AUC= 0.83 and ROC partial P =
0.00), suggest that both models are suitable
for making predictions. The invasion scenar-
ios obtained in both estimations indicate that
A. vittatus would primarily inhabit tropical
regions rather than subtropical ones. These
models predict its potential presence in Ocea-
nia, North America, and South America, where
its presence has not been reported to date. In
these estimations, A. vittatus could be found at
altitudes of up to 2 900 m in Africa and Europe
and 3 900 m in Asia. Conversely, for the African
hypothesis, it is estimated that it could inhabit
areas up to 3 900 m in America and 900 m
in Oceania, while for the Asian hypothesis, it
could be found up to 4 900 m in America and
749 m in Oceania.
In the African hypothesis, which assumes
Africa as the native area, the proposed inva-
sion encompasses a smaller area (in square
kilometers) and fewer sites compared to the
Asian hypothesis, where Asia is considered the
native area (Table 3). In the African continent,
A. vittatus could be found in 96 % of its total
extent, spanning across 52 countries, with a
Fig. 2. Box diagram showing the results of the Kruskal-Wallis test for the global registries of A. vittatus with respect to altitude
and type of zone.
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
more scattered distribution in the northern and
southern regions of the continent. In contrast,
the Asian hypothesis suggests a distribution that
covers regions in every country on the African
continent. In the Asian continent, the African
hypothesis covers 39 % of the continent (31
countries), while the Asian hypothesis covers
52 % (27 countries) with a greater distribution
towards the western regions. It is noteworthy
that both hypotheses for the Asian invasion
exhibit similarities and include regions such as
the Philippine islands, Indonesia, Japan, Malay-
sia, and Taiwan. In the European continent, the
African hypothesis encompasses suitable areas
in 91 % of the continent (45 countries). In con-
trast, the Asian hypothesis concentrates its dis-
tribution primarily in the Mediterranean region
and eastern Europe, covering approximately 86
% of the continent. Additionally, suitable areas
were identified in Iceland, which is not the case
in the African hypothesis. In Oceania, accord-
ing to both hypotheses, the mosquito could
be found in much of Australia, with a lesser
presence in New Caledonia, New Zealand, and
Papua New Guinea. Furthermore, in the Amer-
ican continent, according to both hypotheses,
the distribution extends to all countries except
Surinam under the Asian hypothesis. In this
same hypothesis, the presence of the mosquito
could also be noted along the coastline of Alas-
ka (the United States) (Fig. 3).
Overall, in the future context for both
hypotheses, the invasion of A. vittatus reaches
very similar zones. The invasion consistently
tends to increase in tropical zones regardless
of the scenario and period, and this trend
becomes even more pronounced in subtropical
zones with high emission scenarios (SSP370
and SSP585). For the Asian hypothesis, it is
estimated that A. vittatus can potentially invade
colder zones, which is not the case in the
African hypothesis. In both hypotheses, for
the 2041-2060 period and across all three sce-
narios, the mosquito could be found at altitudes
of up to 3 900 m in Asia, Africa, and America.
Nevertheless, in the Asian hypothesis, it could
reach altitudes exceeding 4 000 m in America
within all three emission scenarios. In Europe,
for both hypotheses, the mosquito could reach
altitudes up to 2 900 m. In addition, in Oceania,
the maximum altitude is between 500 and 749
m. For the 2081-2100 period, under the African
hypothesis, A. vittatus could invade altitudes
> 4 000 m in America in scenarios SSP370
and SSP585. Likewise, A. vittatus can reach
altitudes > 5 000 m in Asia (China) under the
three scenarios in the Asian hypothesis, while
for the African hypothesis, this occurs only in
Table 3
Expansion of current and future potential global invasion areas for A. vittatus.
Hypothesis Period Scenario Native area (km2)Invasion area (km2)Absence area (km2)
Africa Current 18 693 336.5 13 082 744.5 108 343 919.0
2041-2060 SSP245 17 679 724.5 14 006 475.7 108 433 799.8
SSP370 18 019 071.4 14 279 094.5 107 821 834.2
SSP585 18 538 825.1 14 667 354.9 106 913 820.0
2081-2100 SSP245 18 538 230.5 15 239 057.0 106 342 712.5
SSP370 25 046 653.9 26 009 563.2 89 063 782.9
SSP585 23 682 315.9 26 163 646.0 90 274 038.2
Asia Current ‒ 7 123 754.9 23 307 443.3 109 688 801.8
2041-2060 SSP245 13 010 899.4 28 791 713.6 98 317 387.0
SSP370 12 609 887.7 28 476 616.3 99 033 496.0
SSP585 14 260 564.9 29 400 383.6 96 459 051.5
2081-2100 SSP245 18 498 701.5 29 065 207.7 92 556 090.9
SSP370 17 591 115.3 29 199 422.3 93 329 462.4
SSP585 17 555 140.0 28 984 905.5 93 579 954.5
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
high scenarios (SSP585). Furthermore, within
the invasion zone encompassing Greenland
and Antarctica, the mosquito could be found at
altitudes reaching up to 1 900 m.
In future estimations, under a context
of climate change, in the African hypothesis
for the first period (2041-2060), the potential
invasion of A. vittatus in the three scenarios
(SSP245, 370 and 585) was quite similar to the
current conditions. In SSP245 scenario, the
invasion area expanded compared to the inva-
sion under current conditions (Table 3). This
is evident in countries across the Americas,
including Brazil, Guyana, Suriname, French
Guiana, Honduras, El Salvador, Guatemala,
Belize, Puerto Rico, the Dominican Republic,
the United States, and Canada. However, the
potential invasion area decreased in Argen-
tina, Colombia, Ecuador, Panama, and Mexico.
Meanwhile, in Asia, it expanded in China and
Fig. 3. Model of global potential invasion by A. vittatus under current conditions, assuming A. Africa, and B. Asia as its native
regions. In both maps the principal seaports and their principal maritime trade routes are represented.
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
South Korea but contracted in Saudi Arabia,
Oman, Yemen, India, Turkey, Iran, Kazakh-
stan, southwestern Russia, Burma, Iraq, and
North Korea. In the European continent, the
potential invasion area expanded in Norway,
Sweden, Poland, Ukraine, Romania, Hungary,
Slovakia, Lithuania, and the Czech Republic
but decreased in Spain. Furthermore, in Africa,
it increased in certain areas of Tanzania and
Kenya but diminished in Morocco, Algeria,
Mauritania, Mali, Niger, Chad, Sudan, Ethio-
pia, Somalia, Eritrea, the Democratic Republic
of Congo, and Madagascar. In Oceania, the
potential invasion area decreased in Australia
and New Zealand (Fig. 4A).
In SSP370 scenario, both the invasion area
and the native distribution area expanded (Table
3). The trends are observed in various countries
across different continents. In the Americas,
countries such as Colombia, Brazil, Venezu-
ela, Guyana, Suriname, Peru, Bolivia, Argen-
tina, Panama, Nicaragua, Guatemala, Belize,
the Dominican Republic, Puerto Rico, Mexico,
the United States, and Canada have seen these
changes. In Asia, we have witnessed increases
in Laos, Vietnam, Kazakhstan, Turkmenistan,
Turkey, Saudi Arabia, Pakistan, Tajikistan, and
Yemen, with decreases noted in Oman and
China. In Europe, expansion has been observed
in Sweden, Poland, Belarus, Ukraine, Romania,
and Spain. In Africa, the invasion has intensi-
fied in Algeria, Morocco, Libya, Egypt, Nigeria,
Tanzania, Kenya, Uganda, Botswana, Congo,
Zimbabwe, and South Africa, while variation
Fig. 4. A.-C. Global potential invasion model for Africa and, D.-F. Asia, during the 2041-2060 period under three climate
change scenarios (SSP245, SSP370, and SSP585).
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
is evident in Senegal, Mali, Niger, Chad, and
Sudan. Finally, Oceania has seen an increase
in Australia (Fig. 4B). In scenario SSP585, the
invasion increases (Table 3) for the sites men-
tioned, including India (Asia), diminishing in
Senegal, Mali, Niger, Chad, and Sudan (Africa)
(Fig. 4C).
For the second period (2081-2100) in sce-
nario SSP245, the potential invasion remained
similar to that of the first period, with a broader
extension observed in the Americas, including
Brazil, Guyana, Suriname, French Guiana, Peru,
Colombia, Venezuela, Argentina, Bolivia, Pan-
ama, Nicaragua, Honduras, Guatemala, Belize,
El Salvador, Mexico, Puerto Rico, the Domini-
can Republic, the United States, and Canada.
In Asia, the invasion expands in China, India,
Pakistan, Tajikistan, Kazakhstan, Afghanistan,
Turkmenistan, Turkey, Iraq, Iran, Saudi Arabia,
southwestern Russia, and South Korea, while
decreasing in Oman and Yemen. In Africa, the
potential distribution varies across the conti-
nent, particularly in Algeria, Morocco, Libya,
Egypt, Eritrea, Senegal, Mali, Niger, Chad,
Sudan, Angola, and the Democratic Republic
of Congo. In Oceania, the invasion increases in
Australia (Fig. 5A).
In scenarios SSP370 and SSP585, the inva-
sion of A. vittatus in the continents is broader
(Table 3), given that for the first scenario,
it reaches almost the entire American conti-
nent, except for Canada and some sites in the
United States and around Colombia, Venezu-
ela, Brazil, Ecuador, and Peru. Similarly, the
Fig. 5. A.-C. Global potential invasion model for Africa and, D.-F. Asia during the 2081-2100 period under three climate
change scenarios (SSP245, SSP370, and SSP585).
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
invasion extends to nearly the entire African
continent, with estimates suggesting an inva-
sion into parts of the Sahara. In Europe, the
distribution remains unchanged compared to
scenario SSP245. However, in Asia, the invasion
extends into the central part of the continent
and intensifies around Iran, Saudi Arabia, and
in islands such as Malaysia and Indonesia. In
Oceania, the invasion increases in some zones
of Australia, New Zealand, and Papua New
Guinea (Fig. 5B). In scenario SSP585, the inva-
sion remains unchanged compared to scenario
SSP370; nevertheless, a decrease is projected in
certain areas of South America, southern Asia,
and Australia (Fig. 5C).
In the Asian hypothesis for the initial
period (2041-2060), the potential invasion of
A. vittatus in scenario SSP245 increases in
the southern part of Asia, particularly around
Saudi Arabia and Iran, as well as in North
and South America. However, there are varia-
tions in certain areas of Africa, such as the
Democratic Republic of Congo and countries
surrounding the Sahara (Morocco, Mauritania,
Senegal, Mali, Niger, Chad, and Sudan). In
turn, in Europe, the invasion increases in Spain,
Sweden, the United Kingdom, Italy, France,
Rumania, Ukraine, Germany, and Austria (Fig.
4D). In scenarios SSP370 and SSP585, the
distribution remains quite similar to scenario
SSP245 except for some zones where the inva-
sion diminishes for scenario SSP370, as in
America (Argentina, Mexico, the United States,
and Canada), Asia (Saudi Arabia, China, and
Afghanistan), Europe (Germany, Poland, Belar-
us, Ukraine, Sweden, and Finland), and Africa
(Mauritania, Mali and Sudan) (Fig. 4E). In sce-
nario SSP585, the invasion increases for all con-
tinents, varying in Africa in Mauritania, Mali,
Niger, Chad, and Sudan (Table 3) (Fig. 4F).
For the second period (2081-2100) across
all three emission scenarios, an invasion is pro-
jected in southern Greenland and an area of the
Antarctic, extending through South America
(Fig. 5D, Fig. 5E, Fig. 5F). In scenarios SSP245
and SSP370, the invasion expands in North
America, encompassing larger areas in Canada
and the United States, and in South America,
affecting certain regions of Brazil, Colombia,
Venezuela, Peru, Ecuador, and Argentina. Simi-
larly, an increase is projected in the Asian
continent in China, Mongolia, and southeast-
ern Russia. However, for scenario SSP370, a
decrease is expected in certain areas of Africa,
particularly around the Sahara (Burkina Faso,
Mauritania, Niger, Nigeria, Somalia, Eritrea,
Senegal, Mali, Niger, Chad, Sudan, South
Sudan) (Fig. 5D, Fig. 5E). For scenario SSP585,
a decrease is estimated in the invasion in
South America, Africa, and Australia, with an
increase in some zones of the United States, like
Alaska (Fig. 5F).
DISCUSSION
The A. vittatus mosquito is found in tropi-
cal and subtropical regions on all continents,
except Oceania. It is distributed across urban
areas (42.4 %), rural areas (39.6 %), and peri-
urban zones (17.9 %), with altitudes ranging
from 2 to 2 403 m. No global studies exist for
A. vittatus focusing on its latitudinal and altitu-
dinal distribution. Existing studies are based on
faunal surveys that indirectly address A. vittatus
in rural, peri-urban, and urban zones in Africa
(Captain-Esoah et al., 2020; Diallo et al., 2012a;
Diallo et al., 2012b) and Asia (Alikhan et al.,
2014; Angel & Joshi, 2008; Nasirian et al., 2014).
Furthermore, our current estimations indicate
the invasion of large areas in countries across
every continent. Consequently, A. vittatus can
currently be found in rural, peri-urban, and
urban zones. Various studies on other invasive
mosquito species and disease vectors suggest
that the spread and colonization of new areas
are associated with factors such as urbaniza-
tion, climate, reproductive needs, and habitat
preferences (Day, 2016; Rose et al., 2020; Wilke
et al., 2019).
Global results indicate that A. vittatus
is typically found in areas with temperatures
averaging between 24 and 26°C and precipi-
tation ranging from 42 to 101 mm. Species
of medical and veterinary importance, such
as A. aegypti and A. albopictus, which have a
tropical and subtropical distribution, exhibit
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
optimal development temperatures between 20
and 32 °C (Reinhold et al., 2018), while spe-
cies of the genus Culex thrive at optimal tem-
peratures between 24 and 30 °C (Ciota et al.,
2014). Regarding A. vittatus, a study assessing
the potential distribution of arbovirus vectors
in Morocco suggests that it may be found in
regions with a mean annual temperature rang-
ing from 20 to 30 °C (Abdelkrim et al., 2021).
However, the mean temperature for Europe
was found to be 15.4 °C. Nevertheless, our
simulations under current conditions estimate
suitable areas on this continent. Reproductive
success in colder zones may be attributed to the
diapause capacity observed in eggs and larvae
of species from genera such as Aedes, Anoph-
eles, Ochlerotatus, Orthopodomyia, among oth-
ers (Denlinger & Armbruster, 2014; Diniz et al.,
2017), as well as population growth during the
summer or until conditions become optimal for
development (Fonseca et al., 2015).
Based on occurrence records, A. vitta-
tus is primarily found in tropical forests and
tropical grasslands, followed by dry (desert)
and temperate habitats (Mediterranean forests,
temperate forests, and temperate grasslands).
At present, there are no studies that provide a
detailed description or specification of the hab-
itats where A. vittatus is globally distributed.
However, studies in Africa for A. vittatus and
other mosquito species have documented their
abundance in arid lands, savannas, forests, agri-
cultural soils, and villages in which it has been
dominant in microhabitats, like puddles, fruits,
rock pools and tree holes. In the absence of nat-
ural breeding sites, the vector can reproduce in
artificial containers such as plastic bottles, cups,
used cans, broken clay pots, and so on (Ali et
al., 2014; Diallo et al., 2012a; Obi et al., 2022).
Models obtained under current conditions
estimate that A. vittatus is primarily distributed
in the tropical region (up to 3 900 m for the
African hypothesis and 4 900 m for the Asian
hypothesis) and in some subtropical zones (up
to 2 900 m for the African hypothesis and 3 900
m for the Asian hypothesis). Currently, it is sug-
gested that A. vittatus is mostly distributed in
the tropical region with suitable areas of lower
probability in subtropical regions (Abdelkrim et
al., 2022). Invasive species at a global scale, such
as A. aegypti (African) and A. albopictus (Asian)
have distributions in both regions. Specifically,
A. aegypti exhibits a wider invasion in tropical
regions compared to subtropical regions. In
contrast, A. albopictus has a broad invasion in
both tropical and subtropical regions, and it is
estimated to have established in areas including
Europe, Iceland, Greenland, the United States,
and Japan (Kamal et al., 2018; Kraemer et al.,
2015). According to our estimations, A. vittatus
could potentially exhibit a pattern similar to
A. albopictus. Regardless of its native area, this
mosquito has the potential to invade tropical
and subtropical zones with altitudes exceeding
2 000 m. Furthermore, under future condi-
tions, it is estimated that the invasion of both
A. aegypti and A. albopictus will increase. In
contrast, for A. vittatus, its range of invasion is
expected to decrease in high emission scenarios
(RCP 8.5) in areas such as Spain, Portugal,
Australia, Morocco, and Algeria (Abdelkrim et
al., 2022). However, our estimations indicate a
decrease in Australia for the period 2081-2100
in both hypotheses. Additionally, reduced inva-
sion is also projected in other regions of Africa,
Asia, America, and Oceania under scenario
SSP585. In contrast, our results for the period
2081-2100, under the Asian hypothesis, sug-
gest that A. vittatus could be present in areas of
Greenland and Iceland, similar to the estimates
for A. albopictus in 2050 (Kamal et al., 2018).
In both hypotheses, invasion is projected
to occur in tropical and subtropical regions.
In the case of the native African hypothesis, it
suggests a higher level of invasion toward the
European continent and North America. Con-
versely, for the Asian hypothesis, the distribu-
tion and invasion rates at these sites are lower.
In the future, under the African hypothesis,
invasion is projected to extend further into the
tropical and subtropical zones of all continents,
including Asia. Conversely, under the Asian
hypothesis, the extension into Europe remains
limited, with a notable increase in Asia, par-
ticularly towards cold zones such as Greenland
and Antarctica. Global transport networks,
17
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
climate change, and increased urbanization
have facilitated the spread of invasive species.
Additionally, their ability to colonize new ter-
ritories leads to economic, environmental, and
public health damage due to various human
activities that favor their proliferation (Schaff-
ner et al., 2013; Weaver & Reisen, 2010). As a
result, invasive species such as A. aegypti and
A. albopictus have expanded their distribution
range (Kraemer et al., 2019). In this case, sea
lanes play a crucial role in the distribution and
invasion of vectors at continental scales (Louni-
bos, 2002; Service & Place, 1997) as they enable
access to new sites through seaports (Wilke et
al., 2022). Consequently, A. vittatus, which had
previously been documented only in Africa,
Asia, and occasionally in Europe, has recently
been reported in the Americas. Estimations
suggest a future cosmopolitan behavior for this
vector, with the potential to be found in conti-
nents where it has not been previously recorded
and the possibility of colonizing colder cli-
mates, including suitable areas in Greenland,
Iceland, and Antarctica.
In conclusion, A. vittatus exhibits a tropical
and subtropical distribution, inhabiting rural,
urban, and peri-urban areas at altitudes ranging
from sea level to 2 500 m.a.s.l., with tempera-
tures between 15 and 30 °C, in various land-
scapes such as forests, grasslands, deserts, and
lakes. The mosquito has the potential to invade
new areas in Europe, America, and Oceania.
Climate change is expected to drive invasions
towards colder subtropical zones in coun-
tries across Asia, Europe, and North America,
regardless of its native range. In a period of
around 80 years (2081-2100), invasion is sug-
gested toward zones of Greenland and the Ant-
arctic with the hypothesis that A. vittatus being
native of Asia and reaching altitudes up to 5 000
m in China under the three scenarios. There-
fore, given A. vittatus’ potential for invasion
and ecological adaptability, vector control and
epidemiological disease management programs
should include monitoring for the presence of
this vector in the locations described in this
study. Likewise, it is important that in the areas
where the vector has been recorded, studies
are conducted to understand its population
dynamics, feeding and reproductive behavior,
life cycles, and preferred habitats. Similarly,
given the recent knowledge of its invasion in
the Americas, studies aimed at understanding
its population dynamics and potential spread to
new locations are recommended.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
See supplementary material
a27v72n1-MS1
ACKNOWLEDGMENTS
The authors would like to express their
gratitude to the Vice-rectory of Research at
Universidad del Quindío for funding the trans-
lation of the manuscript. Additionally, special
thanks are extended to Chrystian Camilo Sosa
Arango, MSc., for their invaluable support in
constructing the models.
REFERENCES
Abdelkrim, O., Said, Z., & Souad, L. (2022). Global poten-
tial distribution of three underappreciated arboviru-
ses vectors (Aedes japonicus, Aedes vexans and Aedes
vittatus) under current and future climate conditions.
Transboundary and Emerging Diseases, 69(4), e1160–
e1171. https://doi.org/10.1111/tbed.14404
Abdelkrim, O., Samia, B., Said, Z., & Souad, L. (2021).
Modeling and mapping the habitat suitability and
the potential distribution of Arboviruses vectors in
Morocco. Parasite, 28(37). https://doi.org/10.1051/
parasite/2021030
Adeleke, M. A., Adebimpe, W. O., Hassan, A. W. O., Ola-
dejo, S. O., Olaoye, I., Olatunde, G. O., & Adewole, T.
(2013). Larval habitats of mosquito fauna in Osogbo
metropolis, Southwestern Nigeria. Asian Pacific Jour-
nal of Tropical Biomedicine, 3(9), 673–677. https://doi.
org/10.1016/S2221-1691(13)60137-9
18 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
Afolabi, O. J., Akinneye, J. O., & Igiekhume, A. M. A.
(2019). Identification, abundance, and diversity
of mosquitoes in Akure South Local Government
Area, Ondo State, Nigeria. The Journal of Basic
and Applied Zoology, 80(39). https://doi.org/10.1186/
s41936-019-0112-4
Al Ashry, H. A., Kenawy, M. A., & Shobrak, M. (2014).
Fauna of mosquito larvae (Diptera: Culicida) in
Asir Provence, Kingdom of Saudi Arabia. Journal of
the Egyptian Society of Parasitology, 44(1), 173–186.
https://doi.org/10.12816/0006457
Alarcón-Elbal, P. M., Rodríguez-Sosa, M. A., Newman,
B. C., & Sutton, W. B. (2020). The first record of
Aedes vittatus (Diptera : Culicidae) in the Dominican
Republic: Public health implications of a potential
invasive mosquito species in the Americas. Journal
of Medical Entomology, 57(6), 2016–2021. https://doi.
org/10.1093/jme/tjaa128
Alencar, J., Mello, C. F. de, Marcondes, C. B., Anthony, É.,
Toma, H. K., Bastos, A. Q., Olsson, S., Silva, F., &
Machado, S. L. (2021). Natural infection and vertical
transmission of zika virus in sylvatic mosquitoes
Aedes albopictus and Haemagogus leucocelaenus from
Rio de Janeiro, Brazil. Tropical Medicine and Infections
Disease, 6(99), 1–10.
Ali, K. M., Asha, A. V., & Aneesh, E. M. (2014). Bioecology
and vectorial capacity of Aedes mosquitoes (Diptera:
Culicidae) in Irinjalakuda Municipality, Kerala, India
in relation to disease transmission. International Jour-
nal of Current Research and Academic Review, 2(4),
43–49.
Ali, N., Marjan, Khan, K., & Kausar, A. (2013). Study on
mosquitoes of Swat Ranizai sub division of Malakand.
Pakistan Journal of Zoology, 45(2), 503–510.
Alikhan, M., Ghamdi, K. Al, & Mahyoub, J. A. (2014).
Aedes mosquito species in western Saudi Arabia.
Journal of Insect Science, 14(69), 1–7. https://doi.
org/10.1673/031.014.69
Angel, B., & Joshi, V. (2008). Distribution and seasonality
of vertically transmitted dengue viruses in Aedes
mosquitoes in arid and semi-arid areas of Rajasthan,
India. Journal of Vector Borne Diseases, 45(1), 56–59.
Anges, Y., Gado, D., Ahadji-Dabla, K. M., Ramziyath, A.,
Carine, T., Achaz, A., Roland, T., & Lamine, B. M.
(2018). Evaluation du comportement trophique de
Aedes aegypti dans la ville de cotonou au sud du
Bénin. European Scientific Journal, 14(33), 70. https://
doi.org/10.19044/esj.2018.v14n33p70
Baldacchino, F., Caputo, B., Chandre, F., Drago, A., della
Torre, A., Montarsi, F., & Rizzoli, A. (2015). Con-
trol methods against invasive Aedes mosquitoes in
Europe: A review. Pest Management Science, 71(11),
1471–1485. https://doi.org/10.1002/ps.4044
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A.,
Maher, S. P., Peterson, A. T., Soberón, J., & Villalobos,
F. (2011). The crucial role of the accessible area in
ecological niche modeling and species distribution
modeling. Ecological Modelling, 222(11), 1810–1819.
https://doi.org/10.1016/j.ecolmodel.2011.02.011
Bellini, R., Medici, A., Puggioli, A., Balestrino, F., & Carrie-
ri, M. (2013). Pilot field trials with Aedes albopictus
irradiated sterile males in Italian urban areas. Journal
of Medical Entomology, 50(2), 317–325. https://doi.
org/10.1603/ME12048
Ben Ayed, W., Amraoui, F., M’Ghirbi, Y., Schaffner, F.,
Rhaim, A., Failloux, A. B., & Bouattour, A. (2019). A
survey of Aedes (Diptera: Culicidae) mosquitoes in
Tunisia and the potential role of Aedes detritus and
Aedes caspius in the transmission of zika virus. Jour-
nal of Medical Entomology, 56(5), 1377–1383. https://
doi.org/10.1093/jme/tjz067
Benden, P. (2022). Global Shipping Lanes [Data set]. Zeno-
do. https://doi.org/10.5281/zenodo.6361763
Bigot, J. M. (1861). Trois diptères nouveaux de la Corse.
Annales de La Société Entomologique de France,
1(1861), 227–229.
Bivand, R., Rowlingson, B., Sumner, M., & Hijmans, R.
(2021). Package “rgdal”. bindings for the geospatial
data abstraction library. http://rgdal.r-forge.r-project.
org
Brown, J. E., Scholte, E. J., Dik, M., den Hartog, W., Beeu-
wkes, J., & Powell, J. R. (2011). Aedes aegypti mosqui-
toes imported into the Netherlands, 2010. Emerging
Infectious Diseases, 17(12), 2335–2337.
Bueno-Marí, R. (2010). Bioecologia, diversidad e interés
epidemiológico de los culícidos mediterráneos (Diptera:
Culicidae) (Tesis Doctoral). Universidad de Valencia,
España.
Bueno-Marí, R., & Jiménez-Peydró, R. (2010). Revisión
y datos nuevos de Aedes vittatus (Bigot, 1861) para
España (Diptera: Culicidae). Dugesiana, 17(2),
143–144.
Callot, J. (1962). Aedes vittatus in a new locality in Fran-
ce. Annales de Parasitologie Humaine et Comparee,
37(1–2).
Captain-Esoah, M., Baidoo, P. K., Frempong, K. K., Adabie-
Gomez, D., Chabi, J., Obuobi, D., Amlalo, G. K.,
Veriegh, F. B., Donkor, M., Asoala, V., Behene, E.,
Boakye, D. A., & Dadzie, S. K. (2020). Biting beha-
vior and molecular identification of Aedes aegyp-
ti (Diptera: Culicidae) subspecies in some selected
recent yellow fever outbreak communities in Nor-
thern Ghana. Journal of Medical Entomology, 57(4),
1239–1245. https://doi.org/10.1093/jme/tjaa024
Caputo, B., Moretti, R., Manica, M., Serini, P., Lampazzi,
E., Bonanni, M., Fabbri, G., Pichler, V., della Torre,
19
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
A., & Calvitti, M. (2019). A bacterium against the
tiger: preliminary evidence of fertility reduction after
release of Aedes albopictus males with manipulated
Wolbachia infection in an Italian urban area. Pest
Management Science, 76(4), 1324–1332. https://doi.
org/10.1002/ps.5643
Carvalho, B. M., Rangel, E. F., & Vale, M. M. (2017). Eva-
luation of the impacts of climate change on disease
vectors through ecological niche modelling. Bulletin
of Entomological Research, 107(4), 419–430. https://
doi.org/10.1017/S0007485316001097
Carvalho, D. O., McKemey, A. R., Garziera, L., Lacroix, R.,
Donnelly, C. A., Alphey, L., Malavasi, A., & Capu-
rro, M. L. (2015). Suppression of a field population
of Aedes aegypti in Brazil by sustained release of
transgenic male mosquitoes. PLoS Neglected Tropical
Diseases, 9(7), 1–15. https://doi.org/10.1371/journal.
pntd.0003864
Carvalho, V. L., & Long, M. T. (2021). Perspectives on new
vaccines against arboviruses using insect-specific
viruses as platforms. Vaccines, 9(3), 1–9. https://doi.
org/10.3390/vaccines9030263
Chandel, K., Mendki, M. J., Parikh, R. Y., Kulkarni, G.,
Tikar, S. N., Sukumaran, D., Prakash, S., Parashar, B.
D., Shouche, Y. S., & Veer, V. (2013). Midgut micro-
bial community of Culex quinquefasciatus mosquito
populations from India. PLoS ONE, 8(11). https://doi.
org/10.1371/journal.pone.0080453
Chandrasiri, P. K. G. K., Fernando, H. S. D., & De Silva,
B. G. D. N. K. (2019). Pre-imaginal development of
Aedes aegypti in drains containing polluted water
in urban cities in Sri Lanka. International Journal of
Tropical Insect Science, 40(2), 467–471. https://doi.
org/10.1007/s42690-019-00079-6
Chepkorir, E., Venter, M., Lutomiah, J., Mulwa, F., Arum,
S., Tchouassi, D. P., & Sang, R. (2018). The occurren-
ce, diversity and blood feeding patterns of potential
vectors of dengue and yellow fever in Kacheliba, West
Pokot County, Kenya. Acta Tropica, 186(2018), 50–57.
https://doi.org/10.1016/j.actatropica.2018.07.008
Ciota, A. T., Matacchiero, A. C., Kilpatrick, A. M., & Kra-
mer, L. D. (2014). The effect of temperature on life
history traits of Culex mosquitoes. Journal of Medical
Entomology, 51(1), 55–62. https://doi.org/10.1603/
ME13003
Coluzzi, M. (1961). Sulla presenza in Italia di Aedes (Finla-
ya) echinus e di Aedes (Stegomyia) vittatus (Diptera,
Culicidae). Bollettino della Società Entomologica Ita-
liana, 91, 77–79.
Cui, J., Li, S., Zhao, P., & Zou, F. (2013). Flight capaci-
ty of adult Culex pipiens pallens (Diptera: Culici-
dae) in relation to gender and day-age. Journal of
Medical Entomology, 50(5), 1055–1058. https://doi.
org/10.1603/ME12078
da Cruz-Ferreira, D. A., Degener, C. M., De Almeida
Marques-Toledo, C., Bendati, M. M., Fetzer, L. O.,
Teixeira, C. P., & Eiras, Á. E. (2017). Meteorological
variables and mosquito monitoring are good pre-
dictors for infestation trends of Aedes aegypti, the
vector of dengue, chikungunya and Zika. Parasi-
tes and Vectors, 10(1), 1–11. https://doi.org/10.1186/
s13071-017-2025-8
Day, J. F. (2016). Mosquito oviposition behavior and vec-
tor control. Insects, 7(4), 65. https://doi.org/10.3390/
insects7040065
Denlinger, D. L., & Armbruster, P. A. (2014). Mosquito
diapause. Annual Review of Entomology, 59(1), 73–93.
https://doi.org/10.1146/annurev-ento-011613-162023
Diagne, C. T., Faye, O., Guerbois, M., Knight, R., Diallo, D.,
Faye, O., Ba, Y., Dia, I., Weaver, S. C., Sall, A. A., &
Diallo, M. (2014). Vector competence of Aedes aegypti
and Aedes vittatus (Diptera: Culicidae) from Senegal
and Cape Verde archipelago for West African lineages
of chikungunya virus. American Journal of Tropical
Medicine and Hygiene, 91(3), 635–641. https://doi.
org/10.4269/ajtmh.13-0627
Diallo, D., Diagne, C. T., Hanley, K. A., Sall, A. A.,
Buenemann, M., Ba, Y., Dia, I., Weaver, S. C., &
Diallo, M. (2012a). Larval ecology of mosquitoes
in sylvatic arbovirus foci in southeastern Sene-
gal. Parasites and Vectors, 5(1), 1–17. https://doi.
org/10.1186/1756-3305-5-286
Diallo, D., Sall, A. A., Buenemann, M., Chen, R., Faye,
O., Diagne, C. T., Faye, O., Ba, Y., Dia, I., Watts, D.,
Weaver, S. C., Hanley, K. A., & Diallo, M. (2012b).
Landscape ecology of sylvatic chikungunya virus
and mosquito vectors in southeastern senegal. PLoS
Neglected Tropical Diseases, 6(6), 1–14. https://doi.
org/10.1371/journal.pntd.0001649
Diallo, D., Sall, A. A., Diagne, C. T., Faye, O., Faye, O., Ba,
Y., Hanley, K. A., Buenemann, M., Weaver, S. C., &
Diallo, M. (2014). Zika virus emergence in mosqui-
toes in Southeastern Senegal, 2011. PLoS ONE, 9(10),
4–11. https://doi.org/10.1371/journal.pone.0109442
Diallo, M., Thonnon, J., Traore-Lamizana, M., & Fontenille,
D. (1999). Vectors of Chikungunya virus in Senegal:
Current data and transmission cycles. American Jour-
nal of Tropical Medicine and Hygiene, 60(2), 281–286.
https://doi.org/10.4269/ajtmh.1999.60.281
Díaz-Martínez, I., Diéguez-Fernández, L., Santana-Águila,
B., Atiénzar de la Paz, E. M., Ruiz-Domínguez, D.,
& Alarcón-Elbal, P. M. (2021). Nueva introducción
de Aedes vittatus (Diptera: Culicidae) en la región
Oriental de Cuba: Caracterización ecológica y rele-
vancia médica. InterAmerican Journal of Medicine
and Health, 4(2021), 10–15. https://doi.org/10.31005/
iajmh.v4i.175
Díez-Fernández, A., Martínez-De La Puente, J., Ruiz, S.,
Gutiérrez-López, R., Soriguer, R., & Figuerola, J.
20 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
(2018). Aedes vittatus in Spain: Current distribution,
barcoding characterization and potential role as a
vector of human diseases. Parasites and Vectors, 11(1),
1–6. https://doi.org/10.1186/s13071-018-2879-4
Diniz, D. F. A., De Albuquerque, C. M. R., Oliva, L. O.,
De Melo-Santos, M. A. V., & Ayres, C. F. J. (2017).
Diapause and quiescence: Dormancy mechanisms
that contribute to the geographical expansion of
mosquitoes and their evolutionary success. Parasi-
tes and Vectors, 10(1), 1–13. https://doi.org/10.1186/
s13071-017-2235-0
Echeverry-Cárdenas, E., López-Castañeda, C., Carvajal-
Castro, J. D., & Aguirre-Obando, O. A. (2021). Poten-
tial geographic distribution of the Tiger Mosquito
Aedes albopictus (Skuse, 1894) (Diptera: Culicidae)
in current and future conditions for Colombia. PLOS
Neglected Tropical Diseases, 15(5), e0008212. https://
doi.org/10.1101/2020.03.13.990440
Eritja, R., Palmer, J. R. B., Roiz, D., Sanpera-Calbet, I., &
Bartumeus, F. (2017). Direct evidence of adult Aedes
albopictus dispersal by car. Scientific Reports, 7(1),
1–15. https://doi.org/10.1038/s41598-017-12652-5
Eritja, R., Rubido Bará, M., Delacour Estrella, S., Bengoa,
M., & Ruiz Arrondo, I. (2018). Ciencia ciudadana y
biodiversidad: primera cita de Aedes (Fredwardsius)
vittatus (Bigot, 1861) (Diptera: Culicidae) en Galicia,
mediante el proyecto Mosquito Alert. Anales de Bio-
logía, 40(2018), 41–45.
Esena, R. K., Amoyaw, F. P., & Doku-Amponsah, K.
(2013). Aedes (Stegomyia) mosquitoes in the Ashanti
region of Ghana: Implications for yellow fever paucity.
Journal of Biology, Agriculture and Healthcare, 3(6),
131–143.
Eshag, O. S., Bashir, N. H., & Dukeen, M. Y. (2019). Pre-
valence, habitat and productivity profiles of Aedes
mosquitoes (Diptera: Culicidae) in Sennar state,
Sudan. International Journal of Mosquito Research,
6(6), 102–108.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens,
B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of
the Coupled Model Intercomparison Project Phase
6 (CMIP6) experimental design and organization.
Geoscientific Model Development, 9(5), 1937–1958.
https://doi.org/10.5194/gmd-9-1937-2016
Ezeakacha, N. F., & Yee, D. A. (2019). The role of tem-
perature in affecting carry-over effects and larval
competition in the globally invasive mosquito Aedes
albopictus. Parasites and Vectors, 12(1), 1–11. https://
doi.org/10.1186/s13071-019-3391-1
Ferede, G., Tiruneh, M., Abate, E., Kassa, W. J., Wondime-
neh, Y., Damtie, D., & Tessema, B. (2018). Distribu-
tion and larval breeding habitats of Aedes mosquito
species in residential areas of northwest Ethiopia. Epi-
demiology and Health, 40(2018), e2018015. https://
doi.org/10.4178/epih.e2018015
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km
spatial resolution climate surfaces for global land
areas. International Journal of Climatology, 37(12),
4302–4315. https://doi.org/10.1002/joc.5086
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou,
S. C., Collins, W., Cox, P., Driouech, F., Emori, S.,
Eyring, V., Forest, C., Gleckler, P., Guilyardi, E.,
Jakob, C., Kattsov, V., Reason, C., & Rummukainen,
M. (2013). Evaluation of climate models. In Intergo-
vernmental Panel on Climate Change (IPCC) (Eds.),
Climate Change 2013: the physical science basis Contri-
bution of working group I to the fifth assessment report
of the intergovernmental panel on climate change (pp.
741–866). Cambridge University Press.
Flynn, C. M., & Mauritsen, T. (2020). On the climate sensi-
tivity and historical warming evolution in recent cou-
pled model ensembles. Atmospheric Chemistry and
Physics, 20(13), 7829–7842. https://doi.org/10.5194/
acp-20-7829-2020
Fonseca, D. M., Kaplan, L. R., Heiry, R. A., & Strickman,
D. (2015). Density-dependent oviposition by female
Aedes albopictus (Diptera: Culicidae) spreads eggs
among containers during the summer but accumu-
lates them in the fall. Journal of Medical Entomology,
52(4), 705–712. https://doi.org/10.1093/jme/tjv060
Freyvogel, T. A., & McClelland, G. A. H. (1969). Differences
in hydrolase isozymes of Italian and Rhodesian strains
of Aedes vittatus (Bigot) (Diptera: Culicidae) and their
hybrids. Proceedings of the Royal Entomological Socie-
ty of London. Series A, General Entomology, 44(4–6),
80–83. https://doi.org/10.1111/j.1365-3032.1969.
tb00831.x
Gaud, J. (1947). Contribution à l’étude des Culicides au
Maroc, quatre espèces nouvelles pour la faune locale.
Bulletin de la Société des Sciences Naturelles du Maroc,
25–27(1947), 204–206.
Gil-Collado, J. (1930). Datos actuales sobre la distribución
geográfica de los Culicidos españoles. Eos: Revista
Española de Entomología, 6(4), 329–347.
Girard, M., Nelson, C. B., Picot, V., & Gubler, D. J. (2020).
Arboviruses: A global public health threat. Vaccine,
38(2020), 3989–3994.
Guagliardo, S. A., Barboza, J. L., Morrison, A. C., Astete, H.,
Vazquez-Prokopec, G., & Kitron, U. (2014). Patterns
of geographic expansion of Aedes aegypti in the Peru-
vian Amazon. PLoS Neglected Tropical Diseases, 8(8),
e3033. https://doi.org/10.1371/journal.pntd.0003033
Guarido, M. M., Riddin, M. A., Johnson, T., Braack, L. E. O.,
Schrama, M., Gorsich, E. E., Brooke, B. D., Almeida,
A. P. G., & Venter, M. (2021). Aedes species (Diptera:
Culicidae) ecological and host feeding patterns in the
north-eastern parts of South Africa, 2014–2018. Para-
sites and Vectors, 14(1), 1–14. https://doi.org/10.1186/
s13071-021-04845-9
21
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
Guisan, A., Edwards, T. C., & Hastie, T. (2002). Generalized
linear and generalized additive models in studies of
species distributions: setting the scene. Ecological
Modelling, 157(2-3), 89–100. https://doi.org/10.1016/
s0304-3800(02)00204-1
Global Biodiversity Information Facility (GBIF). (2021).
Occurrence download. https://doi.org/10.15468/
dl.hn3efj
Hamon, J., & Remmert, H. (1952). Capture dans les pyré-
nées-orientales d’Aedes (stegomyia) vittatus bigot et
d’Aedes (ochlerotatus) pullatus coquillet. Vie et Milieu,
3(4), 441–443.
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gam-
mon, J. W., & Zelinka, M. (2022). Climate simulations:
recognize the ‘hot model’ problem. Nature, 605(7908),
26–29. https://doi.org/10.1038/d41586-022-01192-2
Hijmans, R., Etten, J., Sumner, M., Cheng, J., Baston, D.,
Bevan, A., Bivand, R., Busetto, L., Canty, M., Fasoli,
B., Forrest, D., Golicher, D., Gray, J., Greenberg, J. A.,
Hiemstra, P., Karney, C., Mattiuzzi, M., Mosher, S., &
Wueest, R. (2020a). Package raster”. Geographic Data
Analysis and Modeling. https://rspatial.org/raster
Hijmans, R., Phillips, S., Leathwick, J., & Elith, J. (2020b).
Package dismo”. Species Distribution Modeling.
https://rspatial.org/raster/sdm/
Huang, Y. M. (1977). Notes on the taxonomic status of
Aedes vittatus (Diptera: Culicidae). Contributions of
the American Entomological Institute, 14(1), 113–124.
Idowu, O. A., Adeleke, M. A., & Aina, T. M. (2012). Eva-
luation of indoor breeding activities of mosquitos
during the dry season in Abeokuta, Southwestern
Nigeria. Journal of Environmental Health Research,
12(01), 25–28.
Ilahi, I., & Suleman, M. (2013). Species composition and
relative abundance of mosquitoes in Swat, Pakistan.
International Journal of Innovation and Applied Stu-
dies, 2(4), 454–463.
Irving-Bell, R. J., Okoli, E. I., Diyelong, D. Y., Lyimo, E. O.,
& Onyia, O. C. (1987). Septic tank mosquitoes: com-
petition between species in central Nigeria. Medical
and Veterinary Entomology, 1(3), 243–250. https://doi.
org/10.1111/j.1365-2915.1987.tb00350.x
Jiménez-García, D., & Peterson, A. T. (2019). Clima-
te change impact on endangered cloud forest tree
species in Mexico. Revista Mexicana de Biodiver-
sidad, 90(2019), e902781. https://doi.org/10.22201/
IB.20078706E.2019.90.2781
Joannides, J., Dzodzomenyo, M., Azerigyik, F., Agbosu,
E. E., Takashi, H., Iwanaga, S., Buchwald, A., &
Rochford, R. (2021). Species composition and risk
of transmission of Aedes-borne arboviruses around
some Yellow hotspot areas in Northern Ghana. PLoS
ONE, 16(6), e0234675. https://doi.org/10.1371/jour-
nal.pone.0234675
Johnson, T., Braack, L., Guarido, M., Venter, M., & Gouveia
Almeida, A. P. (2020). Mosquito community compo-
sition and abundance at contrasting sites in northern
South Africa, 2014–2017. Journal of Vector Ecology,
45(1), 104–117. https://doi.org/10.1111/jvec.12378
Kamal, M., Kenawy, M. A., Rady, M. H., Khaled, A. S., &
Samy, A. M. (2018). Mapping the global potential
distributions of two arboviral vectors Aedes aegypti
and Aedes albopictus under changing climate. PLoS
ONE, 13(12), 1–21. https://doi.org/10.1371/journal.
pone.0210122
Khan, J., Tarin Khan, B., Naeem, M., Ismail, M., Ali Khan,
S., Shah, M., & Abbasi, A. (2015). A survey of adult
and larval mosquito fauna in Tehsil Daggar and Gagra
of District Buner, Khyber Pakhtunkhwa, Pakistan.
International Journal of Mosquito Research IJMR,
170(23), 170–174.
Kotsakiozi, P., Gloria-Soria, A., Caccone, A., Evans, B.,
Schama, R., Martins, A. J., & Powell, J. R. (2017). Trac-
king the return of Aedes aegypti to Brazil, the major
vector of the dengue, chikungunya and Zika viruses.
PLoS Neglected Tropical Diseases, 11(7), 1–20. https://
doi.org/10.1371/journal.pntd.0005653
Kraemer, M. U. G., Reiner, R. C., Brady, O. J., Messina, J. P.,
Gilbert, M., Pigott, D. M., Yi, D., Johnson, K., Earl, L.,
Marczak, L. B., Shirude, S., Davis Weaver, N., Bisan-
zio, D., Perkins, T. A., Lai, S., Lu, X., Jones, P., Coelho,
G. E., Carvalho, R. G., … Golding, N. (2019). Past and
future spread of the arbovirus vectors Aedes aegyp-
ti and Aedes albopictus. Nature Microbiology, 4(5),
854–863. https://doi.org/10.1038/s41564-019-0376-y
Kraemer, M. U. G., Sinka, M. E., Duda, K. A., Mylne, A. Q.
N., Shearer, F. M., Barker, C. M., Moore, C. G., Car-
valho, R. G., Coelho, G. E., Van Bortel, W., Hendrickx,
G., Schaffner, F., Elyazar, I. R., Teng, H. J., Brady, O.
J., Messina, J. P., Pigott, D. M., Scott, T. W., Smith,
D. L., … Hay, S. I. (2015). The global distribution
of the arbovirus vectors Aedes aegypti and Ae. albo-
pictus. ELife, 30(4), e08347. https://doi.org/10.7554/
eLife.08347
Kumari, R., Kumar, K., & Chauhan, L. S. (2011). First
dengue virus detection in Aedes albopictus from
Delhi, India: Its breeding ecology and role in den-
gue transmission. Tropical Medicine and Inter-
national Health, 16(8), 949–954. https://doi.
org/10.1111/j.1365-3156.2011.02789.x
Leigh, J. W., & Bryant, D. (2015). POPART: Full-fea-
ture software for haplotype network construction.
Methods in Ecology and Evolution, 6(9), 1110–1116.
https://doi.org/10.1111/2041-210X.12410
Leyton, L. M., Aguirre-Obando, O. A., Duque, J. E., & Gar-
cía-Merchán, V. H. (2020). Effect of altitude on wing
metric variation of Aedes aegypti (Diptera: Culicidae)
22 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
in a region of the Colombian Central Andes. PLoS
ONE, 15(8), e0228975. https://doi.org/10.1371/jour-
nal.pone.0228975
Liu, B., Gao, X., Zheng, K., Ma, J., Jiao, Z., Xiao, J., & Wang,
H. (2020). The potential distribution and dynamics
of important vectors Culex pipiens pallens and Culex
pipiens quinquefasciatus in China under climate chan-
ge scenarios: an ecological niche modelling approach.
Pest Management Science, 76(9), 3096–3107. https://
doi.org/10.1002/ps.5861
Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005).
Selecting thresholds of occurrence in the prediction
of species distributions. Ecography, 28(3), 385–393.
https://doi.org/10.1111/j.0906-7590.2005.03957.x
Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008).
AUC: A misleading measure of the performance
of predictive distribution models. Global Ecolo-
gy and Biogeography, 17(2), 145–151. https://doi.
org/10.1111/j.1466-8238.2007.00358.x
Lounibos, L. P. (2002). Invasive insect vectors of human
disease. Annual Review of Entomology, 47(1), 233–266.
Marengo, J. A., Chou, S. C., Torres, R. R., Giarolla, A., Alves,
L., & Lyra, A. (2014). Climate Change in Central and
South America: Recent Trends, Future Projections, and
Impacts on Regional Agriculture. CGIAR Research
Program on Climate Change, Agriculture and Food
Security (CCAFS).
Marinho, R. A., Beserra, E. B., Bezerra-Gusmão, M. A.,
Porto, V. de S., Olinda, R. A., & dos Santos, C. A.
C. (2016). Effects of temperature on the life cycle,
expansion, and dispersion of Aedes aegypti (Diptera:
Culicidae) in three cities in Paraiba, Brazil. Journal of
Vector Ecology, 41(1), 1–10. https://doi.org/10.1111/
jvec.12187
Marques, R., Krüger, R. F., Peterson, A. T., De Melo, L. F.,
Vicenzi, N., & Jiménez-García, D. (2020). Climate
change implications for the distribution of the babe-
siosis and anaplasmosis tick vector, Rhipicephalus
(Boophilus) microplus. Veterinary Research, 51(1),
1–10. https://doi.org/10.1186/s13567-020-00802-z
Martins, V. E. P., Alencar, C. H., Kamimura, M. T., de
Carvalho Araújo, F. M., de Simone, S. G., Dutra, R.
F., & Guedes, M. I. F. (2012). Occurrence of natu-
ral vertical transmission of dengue-2 and dengue-3
viruses in Aedes aegypti and Aedes albopictus in For-
taleza, Ceará, Brazil. PLoS ONE, 7(7), 1–9. https://doi.
org/10.1371/journal.pone.0041386
McClelland, G. A. H., & Green, C. A. (1970). Subtle perio-
dicity of pupation in rapidly developing mosquitos.
Bulletin of the World Health Organization, 42(6),
951–955.
Medley, K. A. (2010). Niche shifts during the global invasion
of the Asian tiger mosquito, Aedes albopictus Skuse
(Culicidae), revealed by reciprocal distribution models.
Global Ecology and Biogeography, 19(1), 122–133.
https://doi.org/10.1111/j.1466-8238.2009.00497.x
Medlock, J. M., Hansford, K. M., Schaffner, F., Versteirt, V.,
Hendrickx, G., Zeller, H., & Bortel, W. Van. (2012). A
review of the invasive mosquitoes in Europe: Ecology,
public health risks, and control options. Vector-Borne
and Zoonotic Diseases, 12(6), 435–447. https://doi.
org/10.1089/vbz.2011.0814
Miller, B. R., Godsey, M. S., Crabtree, M. B., Savage, H. M.,
Al-Mazrao, Y., Al-Jeffri, M. H., Abdoon, A. M. M.,
Al-Seghayer, S. M., Al-Shahrani, A. M., & Ksiazek,
T. G. (2002). Isolation and genetic characterization
of Rift Valley fever virus from Aedes vexans arabien-
sis, Kingdom of Saudi Arabia. Emerging Infectious
Diseases, 8(12), 1492–1494. https://doi.org/10.3201/
eid0812.020194
Mulwa, F., Lutomiah, J., Chepkorir, E., Okello, S., Eyase,
F., Tigoi, C., Kahato, M., & Sang, R. (2018). Vector
competence of Aedes bromeliae and Aedes vitattus
mosquito populations from Kenya for chikungunya
virus. PLoS Neglected Tropical Diseases, 12(10), 1–15.
https://doi.org/10.1371/journal.pntd.0006746
Mukwaya, L. G. (1974). Host preference in Aedes (Ste-
gomyia) mosquitoes in Uganda. II. Studies on indoor
and outdoor biting and resting behaviour with special
reference to Aedes aegypti L. Acta Tropica, 31(2),
165–76.
Naimi, B. (2017). Packageusdm”: Uncertainty Analysis
for Species Distribution Models. https://cran.r-project.
org/web/packages/usdm/usdm.pdf
Nasirian, H., Taghi, S. M., & Moosa-kazemi, S. H. (2014).
New record of Aedes vittatus and Culiseta subochrea
(Diptera: Culicidae) and their distribution from Sha-
degan wetland, South Western Iran. Journal of Ento-
mology and Zoology Studies, 2(5), 271–275.
Nasir-ud-din, M. (1952). Mosquitoes breeding in tree-holes
and bamboo stumps in Dacca (East Pakistan). Pakis-
tan Journal of Health, 2(1952), 110.
Ngoagouni, C., Kamgang, B., Manirakiza, A., Nan-
gouma, A., Paupy, C., Nakoune, E., & Kazanji,
M. (2012). Entomological profile of yellow fever
epidemics in the Central African Republic, 2006-
2010. Parasites and Vectors, 5(1), 1–5. https://doi.
org/10.1186/1756-3305-5-175
O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E.,
Riahi, K., Rothman, D. S., van Ruijven, B. J., van
Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., &
Solecki, W. (2017). The roads ahead: Narratives for
shared socioeconomic pathways describing world
futures in the 21st century. Global Environmental
Change, 42(2017), 169–180. https://doi.org/10.1016/j.
gloenvcha.2015.01.004
O’Neill, S. L. (2018). The use of wolbachia by the world
mosquito program to interrupt transmission of Aedes
23
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
aegypti transmitted viruses. Dengue and Zika: Con-
trol and Antiviral Treatment Strategies 1062(2018),
355–360. https://doi.org/10.1007/978-981-10-8727-1
Obi, O., Adebote, D., Nock, I., & Josiah, J. (2022). Ecology
of Aedes vittatus (Diptera: Culicidae) in rock pools
across agroecosystem in Northern Savanna, Nigeria.
Journal of Vector Borne Diseases, 59(3), 265–274.
https://doi.org/10.4103/0972-9062.342395
Omar, K., Thabet, H. S., TagEldin, R. A., Asadu, C.
C., Chukwuekezie, O. C., Ochu, J. C., Dogunro, F.
A., Nwangwu, U. C., Onwude, O. C., Ezihe, E. K.,
Anioke, C. C., & Arimoto, H. (2021). Ecological niche
modeling for predicting the potential geographical
distribution of Aedes species (Diptera: Culicidae): A
case study of Enugu State, Nigeria. Parasite Epide-
miology and Control, 15(2021), e00225. https://doi.
org/10.1016/j.parepi.2021.e00225
Osorio-Olvera, L., Lira-Noriega, A., Soberón, J., Peterson,
A. T., Falconi, M., Contreras-Díaz, R. G., Martínez-
Meyer, E., Barve, V., & Barve, N. (2020). ntbox: An r
package with graphical user interface for modelling
and evaluating multidimensional ecological niches.
Methods in Ecology and Evolution, 11(10), 1199–1206.
https://doi.org/10.1111/2041-210X.13452
Pagac, B. B., Spring, A. R., Stawicki, J. R., Dinh, T. L., Lura,
T., Kavanaugh, M. D., Pecor, D. B., Justi, S. A., &
Linton, Y. M. (2021). Incursion and establishment
of the Old World arbovirus vector Aedes (Fredward-
sius) vittatus (Bigot, 1861) in the Americas. Acta
Tropica, 213(2021), 105739. https://doi.org/10.1016/j.
actatropica.2020.105739
Patel, C. M. (2016). An updated checklist of mosquito fauna
of Andaman and Nicobar groups of islands with note
on endemic mosquito Fauna. International Journal of
Mosquito Research, 3(2), 31–38.
Pebesma, E., Bivand, R., Rowlingson, B., Gomez-Rubio, V.,
Hijmans, R., Sumner, M., MacQueen, D., Lemon, J.,
O’Brien, J., & O’Rourke, J. (2020). Package “sp”: Classes
and Methods for Spatial Data. https://cran.r-project.
org/web/packages/sp/vignettes/intro_sp.pdf
Pérez-Menzies, M. G., Castillo Quesada, R. M., & Alfonso
Herrera, Y. (2022). Primer registro de Aedes vittatus
en la provincia de Santiago de Cuba. MEDISAN,
26(2), 446–454.
Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethin-
king receiver operating characteristic analysis appli-
cations in ecological niche modeling. Ecological
Modelling, 213(1), 63–72. https://doi.org/10.1016/j.
ecolmodel.2007.11.008
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P.,
Martínez-Meyer, E., Nakamura, M., & Araújo, M. B.
(2011). Ecological niches and geographic distributions.
Princeton University Press. https://doi.org/10.5860/
choice.49-6266
Phillips, S. B., Aneja, V. P., Kang, D., & Arya, S. P. (2006).
Maximum entropy modeling of species geographic
distributions. Ecological Modelling, 190(3–4), 231–
259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips, S. J., Dudík, M., & Schapire, R. E. (2021). Maxent
software for modeling species niches and distributions
(Version 3.4.3). http://biodiversityinformatics.amnh.
org/open_source/maxent/. Accessed on 2021-11-5.
Pradhan, P. (2016). Strengthening MaxEnt modelling
through screening of redundant explanatory Biocli-
matic Variables with Variance Inflation Factor analy-
sis. Researcher, 8(5), 29–34. https://doi.org/10.7537/
marsrsj080516.05
Qutubuddin, M. (1960). The mosquito fauna of Kohat-
Hangu Valley, West Pakistan. Medical Entomologist,
20(4), 355–362.
R CoreTeam. (2017). R: A Language and Environment for
Statistical Computing (Vol. 2). https://www.r-project.
org/
Rajavel, A. R., Natarajan, R., & Vaidyanathan, K. (2005).
Mosquito collections in the Jeypore hill tracts of
Orissa, India, with notes on three new country
records, Culex (Lophoceraomyia) pilifemoralis, Culex
(Lophoceraomyia) wilfredi, and Heizmannia (Heiz-
mannia) chengi. Journal of the American Mosqui-
to Control Association, 21(2), 121–127. https://doi.
org/10.2987/8756-971X(2005)21[121:MCITJH]2.0.
CO;2
Reegan, A. D., Rajiv Gandhi, M., Cruz Asharaja, A., Devi,
C., & Shanthakumar, S. P. (2020). COVID-19 loc-
kdown: impact assessment on Aedes larval indices,
breeding habitats, effects on vector control program-
me and prevention of dengue outbreaks. Heliyon,
6(10), e05181. https://doi.org/10.1016/j.heliyon.2020.
e05181
Reinert, J. F. (2000). Description of Fredwardsius, a new
subgenus of Aedes (Diptera: Culicidae). European
Mosquito Bulletin, 6(2000), 1–7.
Reinhold, J. M., Lazzari, C. R., & Lahondère, C. (2018).
Effects of the environmental temperature on
Aedes aegypti and Aedes albopictus mosquitoes: A
review. Insects, 9(4), 158. https://doi.org/10.3390/
insects9040158
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J.,
O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K.,
Dellink, R., Fricko, O., Lutz, W., Popp, A., Cua-
resma, J. C., Samic, K. C., Leimbach, M., Jiang, L.,
Kram, T., Rao, S., Emmerling, J., … Tavoni, M.
(2017). The shared socioeconomic pathways and
their energy, land use, and greenhouse gas emissions
implications: An overview. Global Environmental
Change, 42(2017), 153–168. https://doi.org/10.1016/j.
gloenvcha.2016.05.009
24 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
Richman, R., Diallo, D., Diallo, M., Sall, A. A., Faye, O.,
Diagne, C. T., Dia, I., Weaver, S. C., Hanley, K. A., &
Buenemann, M. (2018). Ecological niche modeling
of Aedes mosquito vectors of chikungunya virus in
southeastern Senegal. Parasites and Vectors, 11(1),
1–17. https://doi.org/10.1186/s13071-018-2832-6
Roberts, D. M. (2001). Egg hatching of mosquitoes Aedes
caspius and Ae. vittatus simulated by water vibrations.
Medical and Veterinary Entomology, 15(2), 215–218.
https://doi.org/10.1046/j.0269-283X.2001.00303.x
Roberts, D. (2004). Prolonged survival of eggs of the
rock-pool mosquito, Aedes vittatus, in the extreme
heat of the Arabian peninsula. Journal of Arid Envi-
ronments, 57(2), 203–210. https://doi.org/10.1016/
S0140-1963(03)00108-3
Roberts, H. (2020). Aedes vittatus (Bigot, 1861) at Jebel
Hafeet: A new mosquito species in the UAE. Tribulus,
28(2020), 32–36.
Rochlin, I., Ninivaggi, D. V., Hutchinson, M. L., & Farajo-
llahi, A. (2013). Climate change and range expansion
of the asian tiger mosquito (Aedes albopictus) in Nor-
theastern USA: Implications for public health practi-
tioners. PLoS ONE, 8(4), 1–9. https://doi.org/10.1371/
journal.pone.0060874
Rose, N. H., Sylla, M., Badolo, A., Lutomiah, J., Ayala, D.,
Aribodor, O. B., Ibe, N., Akorli, J., Otoo, S., Mutebi, J.
P., Kriete, A. L., Ewing, E. G., Sang, R., Gloria-Soria,
A., Powell, J. R., Baker, R. E., White, B. J., Crawford,
J. E., & McBride, C. S. (2020). Climate and urbaniza-
tion drive mosquito preference for humans. Current
Biology, 30(18), 3570–3579. https://doi.org/10.1016/j.
cub.2020.06.092
Rúa-Uribe, G. L., Suárez-Acosta, C. del R., & Rojo, R. A.
(2012). Implicaciones epidemiológicas de Aedes albo-
pictus (Skuse) en Colombia. Revista Facultad Nacional
de Salud Pública, 30(3), 328–337. http://www.scielo.
org.co/scielo.php?script=sci_arttext&pid=S0120-
386X2012000300009
Schaffner, F., Medlock, J. M., & Van Bortel, W. (2013).
Public health significance of invasive mosquitoes in
Europe. Clinical Microbiology and Infection, 19(8),
685–692. https://doi.org/10.1111/1469-0691.12189
Scholte, E. J., Dijkstra, E., Blok, H., De Vries, A., Takken,
W., Hofhuis, A., Koopmans, M., De Boer, A., &
Reusken, C. B. E. M. (2008). Accidental impor-
tation of the mosquito Aedes albopictus into the
Netherlands: A survey of mosquito distribution and
the presence of dengue virus. Medical and Vete-
rinary Entomology, 22(4), 352–358. https://doi.
org/10.1111/j.1365-2915.2008.00763.x
Service, W. M. (1970). Studies on the biology and taxonomy
of Aedes (Stegomyia) vittatus (Bigot) (Diptera: Culici-
dae) in Northern Nigeria. Transactions of the Royal
Entomological Society of London, 122(4), 101–143.
https://doi.org/0.1111/j.1365-2311.1970.tb00529.x
Service, M. W. (1974). Survey of the relative prevalence of
potential yellow fever vectors in north-west Nigeria.
Bulletin of the World Health Organization, 50(6),
487–494.
Service, M. W., & Place, P. (1997). Mosquito (Diptera :
Culicidae) dispersal-the long and short of it. Journal
of Medical Entomology, 34(6), 579–588.
Singh, H., Singh, O. P., Akhtar, N., Sharma, G., Sindhania,
A., Gupta, N., & Valecha, N. (2019). First report on
the transmission of Zika virus by Aedes (Stegomyia)
aegypti (L.) (Diptera: Culicidae) during the 2018 Zika
outbreak in India. Acta Tropica, 199(2019), 105114.
https://doi.org/10.1016/j.actatropica.2019.105114
Stafford, D. M. (1981). Mosquito records from the Republic
of Niger, with reference to the construction of the new
“Trans-Sahara Highway”. Journal of Tropical Medicine
and Hygiene, 84(3), 95–100.
Sudeep, A. B., & Shil, P. (2017). Aedes vittatus (Bigot)
mosquito: An emerging threat to public health.
Vector Borne Diseases, 54(4), 295–300. https://doi.
org/10.4103/0972-9062.225833
Sudeep, A., Mohandas, S., Bhanarkar, S., Ghodke, Y., &
Sonawane, P. (2020). Vector competence of Aedes
vittatus (Bigot) mosquitoes from India for Japanese
encephalitis, West Nile, Chandipura and Chittoor
viruses. Journal of Vector Borne Diseases, 57(3), 234–
239. https://doi.org/10.4103/0972-9062.311776
Suganthi, P., Govindaraju, M., Thenmozhi, V., & Tyagi, B.
K. (2014). Survey of mosquito vector abundance in
and around tribal residential areas. Journal of Entomo-
logy and Zoology Studies, 2(6), 233–239.
Suleman, M., & Khan, S. (1993). Notes on Aedes mosqui-
toes as diurnal pest of human in Abottabad area.
Pakistan Journal of Zoology, 25(1993), 253–260.
Surendran, S. N., Jayadas, T. T. P., Thiruchenthooran, V.,
Raveendran, S., Tharsan, A., Santhirasegaram, S.,
Sivabalakrishnan, K., Karunakaran, S., Ponnaiah, B.,
Gomes, L., Malavige, G. N., & Ramasamy, R. (2021).
Aedes larval bionomics and implications for dengue
control in the paradigmatic Jaffna peninsula, nor-
thern Sri Lanka. Parasites and Vectors, 14(1), 1–13.
https://doi.org/10.1186/s13071-021-04640-6
Suzuki, T., Osei, J. H., Sasaki, A., Adimazoya, M., Appawu,
M., Boakye, D., Ohta, N., & Dadzie, S. (2016). Risk
of transmission of viral haemorrhagic fevers and the
insecticide susceptibilitystatus of Aedes aegypti (Lin-
naeus) in some sites in Accra, Ghana. Ghana Medical
Journal, 50(3), 136–141. https://doi.org/10.4314/gmj.
v50i3.4
Valencia-Marín, B. S., Gandica, I. D., & Aguirre-Oban-
do, O. A. (2020). The Mayaro virus and its poten-
tial epidemiological consequences in Colombia:
An exploratory biomathematics analysis. Parasites
25
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54166, enero-diciembre 2024 (Publicado May. 21, 2024)
and Vectors, 13(1), 1–17. https://doi.org/10.1186/
s13071-020-04354-1
Vermeil, C. (1953). Aedes t·Watus Bigot 1861, culicide
nouveau pour Ia Tunisie. Le Bulletin de la Société de
Pathologie Exotique, 46(1953), 338.
Weaver, S. C., & Reisen, W. K. (2010). Present and future
arboviral threats. Antiviral Research, 85(2), 328–345.
https://doi.org/10.1016/j.antiviral.2009.10.008
Weeratunga, P., Rodrigo, C., Fernando, S. D., & Raja-
pakse, S. (2017). Control methods for Aedes albo-
pictus and Aedes aegypti. Cochrane Database of
Systematic Reviews, 2017(8), CD01275. https://doi.
org/10.1002/14651858.CD012759
Wilke, A. B. B., Chase, C., Vasquez, C., Carvajal, A., Medi-
na, J., Petrie, W. D., & Beier, J. C. (2019). Urbanization
creates diverse aquatic habitats for immature mos-
quitoes in urban areas. Scientific Reports, 9(1), 1–12.
https://doi.org/10.1038/s41598-019-51787-5
Wilke, A. B. B., Vasquez, C., Carvajal, A., Moreno, M.,
Petrie, W. D., & Beier, J. C. (2022). Mosquito sur-
veillance in maritime entry ports in Miami-Dade
County, Florida to increase preparedness and allow
the early detection of invasive mosquito species. PLoS
ONE, 17(4), e0267224. https://doi.org/10.1371/jour-
nal.pone.0267224
Wilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott,
T. W., Takken, W., Torr, S. J., & Lindsay, S. W.
(2020). The importance of vector control for the con-
trol and elimination of vector-borne diseases. PLoS
Neglected Tropical Diseases, 14(1), 1–31. https://doi.
org/10.1371/journal.pntd.0007831
Zahouli, J. B. Z., Koudou, B. G., Müller, P., Malone, D.,
Tano, Y., & Utzinger, J. (2017a). Effect of land-use
changes on the abundance, distribution, and host-see-
king behavior of Aedes arbovirus vectors in oil palm-
dominated landscapes, southeastern Côte d’Ivoire.
PLoS ONE, 12(12), 1–26. https://doi.org/10.1371/
journal.pone.0189082
Zahouli, J. B. Z., Koudou, B. G., Müller, P., Malone, D.,
Tano, Y., & Utzinger, J. (2017b). Urbanization is a
main driver for the larval ecology of Aedes mosqui-
toes in arbovirus-endemic settings in south-eastern
Côte d’Ivoire. PLoS Neglected Tropical Diseases, 11(7),
1–23. https://doi.org/10.1371/journal.pntd.0005751