13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54500, enero-diciembre 2024 (Publicado Ene. 19, 2024)
Jones, C. G., & Hartley, S. E. (1999). A protein competition
model of phenolic allocation. Oikos, 86(1), 27–44.
https://doi.org/10.2307/3546567
Kittibunchakul, S., Hudthagosol, C., Sanporkha, P.,
Sapwarobol, S., Suttisansanee, U., & Sahasakul, Y.
(2022). Effects of maturity and thermal treatment on
phenolic profiles and in vitro health-related proper-
ties of sacha inchi leaves. Plants, 11(11), 1–14. https://
doi.org/10.3390/plants11111515
Koricheva, J., & Barton, K. E. (2012). Temporal changes
in plant secondary metabolite production. In G. R.
Iason, M. Dicke, & S. E. Hartley (Eds.), The Ecology
of Plant Secondary Metabolites: From Genes to Global
Processes (pp. 34–55). Cambridge University Press.
https://doi.org/10.1017/cbo9780511675751.004
Koricheva, J., Larsson, S., Haukioja, E., Keinänen, M., &
Keinanen, M. (1998). Regulation of woody plant
secondary metabolism by resource availability:
hypothesis testing by means of meta-analysis. Oikos,
83(2), 212–226. https://doi.org/10.2307/3546833
Lim, T. Y., Lim, Y. Y., & Yule, C. M. (2017). Distribu-
tion and characterisation of phenolic compounds
in Macaranga pruinosa and associated soils in a
tropical peat swamp forest. Journal of Tropical Forest
Science, 29(4), 509–518. https://doi.org/10.26525/
jtfs2017.29.4.509518
Liu, B. L., Fan, Z. B., Liu, Z. Q., Qiu, X. H., & Jiang, Y. H.
(2018). Comparison of phytochemical and antioxi-
dant activities in micropropagated and seed-derived
Salvia miltiorrhiza plants. HortScience, 53(7), 1038–
1044. https://doi.org/10.21273/HORTSCI13072-18
Morales, G. A. (2004). Potential of Gmelina arborea for solid
wood products. New Forests, 28(2–3), 331–337. https://
doi.org/10.1023/B:NEFO.0000040956.68838.97
ONF. (2022). Usos y aportes de la madera en Costa Rica.
Estadísticas 2021 & Precios 2022. Alma Creativa.
Pérez-Ochoa, M. L., Vera-Guzmán, A. M., Mondragón-
Chaparro, D. M., Sandoval-Torres, S., Carrillo-Rodrí-
guez, J. C., & Chávez-Servia, J. L. (2022). Effects of
growth conditions on phenolic composition and
antioxidant activity in the medicinal plant Ageratina
petiolaris (Asteraceae). Diversity, 14(8), 595. https://
doi.org/10.3390/d14080595
R Core Team. (2019). R: A language and environment
for statistical computing (Software). R Foundation
for Statistical Computing. Vienna, Austria. https://
www.R-project.org/
Read, P. E., & Bavougian, C. M. (2013). In vitro rejuvenation
of woody species. In M. Lambardi, E. A. Ozudogru, &
S. M. Jain (Eds.), Protocols for Micropropagation of
Selected Economically-Important Horticultural Plants,
Methods in Molecular Biology (pp. 305–316). Springer.
https://doi.org/10.1007/978-1-62703-074-8
Rencoret, J., Gutiérrez, A., Nieto, L., Jiménez-Barbero, J.,
Faulds, C. B., Kim, H., Ralph, J., Martínez, Á. T., & del
Río, J. C. (2011). Lignin composition and structure in
young versus adult Eucalyptus globulus plants. Plant
Physiology, 155(2), 667–682. https://doi.org/10.1104/
pp.110.167254
Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi,
M., & Zheng, B. (2019). Response of phenylpropanoid
pathway and the role of polyphenols in plants under
abiotic stress. Molecules, 24(13), 1–22. https://doi.
org/10.3390/molecules24132452
Stafford, H. A. (1960). Differences between lignin-like poly-
mers formed by peroxidation of eugenol and ferulic
acid in leaf sections of Phleum. Plant Physiology,
35(1), 108–114. https://doi.org/10.1104/pp.35.1.108
Valledor, L., Hasbún, R., Meijón, M., Rodríguez, J. L.,
Santamaría, E., Viejo, M., Berdasco, M., Feito, I.,
Fraga, M. F., Cañal, M. J., & Rodríguez, R. (2007).
Involvement of DNA methylation in tree develop-
ment and micropropagation. Plant Cell, Tissue and
Organ Culture, 91(2), 75–86. https://doi.org/10.1007/
s11240-007-9262-z
Valledor, L., Meijón, M., Hasbún, R., Jesús Cañal, M., &
Rodríguez, R. (2010). Variations in DNA methylation,
acetylated histone H4, and methylated histone H3
during Pinus radiata needle maturation in relation
to the loss of in vitro organogenic capability. Jour-
nal of Plant Physiology, 167(5), 351–357. https://doi.
org/10.1016/j.jplph.2009.09.018
Verpoorte, R., & Alfermann, A. W. (2000). Metabolic
engineering of plant secondary metabolism. Kluwer
Academic Publishers. https://doi.org/https://doi.
org/10.1007/978-94-015-9423-3
Verpoorte, R., Contin, A., & Memelink, J. (2002). Biotech-
nology for the production of plant secondary metabo-
lites. Phytochemistry Reviews, 1(1), 13–25. https://doi.
org/10.1023/A:1015871916833
Wam, H. K., Stolter, C., & Nybakken, L. (2017). Com-
positional changes in foliage phenolics with plant
age, a natural experiment in boreal forests. Jour-
nal of Chemical Ecology, 43(9), 920–928. https://doi.
org/10.1007/s10886-017-0881-5
Warrier, R. R., Priya, S. M., & Kalaiselvi, R. (2021). Gme-
lina arborea – an indigenous timber species of India
with high medicinal value: A review on its pharma-
cology, pharmacognosy and phytochemistry. Jour-
nal of Ethnopharmacology, 267, 113593. https://doi.
org/10.1016/j.jep.2020.113593