13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e54870, enero-diciembre 2024 (Publicado Abr. 16, 2024)
channel gene in Aedes aegypti in Venezuela. Pest
Management Science, 71(6), 863–869.
Aponte, A., Penilla, R. P., Rodríguez, A. D., & Ocampo,
C. B. (2019). Mechanisms of pyrethroid resistance
in Aedes (Stegomyia) aegypti from Colombia. Acta
Tropica, 191, 146–154.
Atencia, M. C., Pérez, M. de J., Jaramillo, M. C., Caldera,
S. M., Cochero, S., & Bejarano, E. E. (2016). Primer
reporte de la mutación F1534C, asociada con resis-
tencia cruzada a DDT y piretroides, en Aedes aegypti
de Colombia. Biomédica, 36(3), 432–437.
Bliman, P. A., Aronna, M. S., Coelho, F. C., & da Silva, M.
A. (2018). Ensuring successful introduction of Wolba-
chia in natural populations of Aedes aegypti by means
of feedback control. Journal of Mathematical Biology,
76(5), 1269–1300.
Brito, L. P., Linss, J. G., Lima-Camara, T. N., Belinato, T.
A., Peixoto, A. A., Lima, J. B. P., Valle, D., & Martins,
A. J. (2013). Assessing the effects of Aedes aegypti
kdr mutations on pyrethroid resistance and its fitness
cost. PLoS ONE, 8(4), e60878.
Brown, J. E., Mcbride, C. S., Johnson, P., Ritchie, S., Paupy,
C., Bossin, H., Lutomiah, J., Fernandez-Salas, I.,
Ponlawat, A., Cornel, A. J., Black, W. C., Gorrocho-
tegui-Escalante, N., Urdaneta-Marquez, L., Sylla, M.,
Slotman, M., Murray, K. O., Walker, C., & Powell, J. R.
(2011). Worldwide patterns of genetic differentiation
imply multiple “domestications” of Aedes aegypti,
a major vector of human diseases. Proceedings of
the Royal Society B: Biological Sciences, 278(1717),
2446–2454.
Chen, M., Du, Y., Nomura, Y., Zhorov, B. S., & Dong, K.
(2020). Chronology of sodium channel mutations
associated with pyrethroid resistance in Aedes aegypti.
Archives of Insect Biochemistry and Physiology, 104(2),
e21686.
Dusfour, I., Vontas, J., David, J. P., Weetman, D., Fonseca,
D. M., Corbel, V., Raghavendra, K., Coulibaly, M. B.,
Martins, A.J., Kasai, S., & Chandre, F. (2019). Mana-
gement of insecticide resistance in the major Aedes
vectors of arboviruses: Advances and challenges. PLoS
Neglected Tropical Diseases, 13(10), e0007615.
Eritja, R., Palmer, J., Roiz, D., Sanpera-Calbet, I., & Bar-
tumeus, F. (2017). Direct evidence of adult Aedes
albopictus dispersal by car. Scientific Reports, 1, 14399.
Fick, S., & Hijmans, J. (2017). Worldclim 2: New 1-km spa-
tial resolution climate surfaces for global land areas.
International Journal of Climatology, 37, 4302–15.
Fonseca, I., & Quiñones, M. (2005). Resistencia a insec-
ticidas en mosquitos (Diptera: Culicidae): mecanis-
mos, detección y vigilancia en salud pública. Revista
Colombiana de Entomología, 31(2), 107–115.
Granada, Y., Mejía-Jaramillo, A. M., Strode, C., & Triana-
Chavez, O. (2018). A point mutation V419l in the
sodium channel gene from natural populations of
Aedes aegypti is involved in resistance to λ-cyhalothrin
in Colombia. Insects, 9(1), 23.
Guagliardo, S. A., Morrison, A. C., Barboza, J. L., Requena,
E., Astete, H., Vazquez-Prokopec, G., & Kitron, U.
(2015). River boats contribute to the regional spread
of the dengue vector Aedes aegypti in the Peruvian
Amazon. PLoS Neglected Tropical Diseases, 9(4), 1–16.
Huber, J., Childs, M., Caldwell, J., & Mordecai, E. (2018).
Seasonal temperature variation influences climate sui-
tability for dengue, chikungunya, and zika transmis-
sion. PLoS Neglected Tropical Diseases, 12, e0006451.
IDEAM (Instituto de Hidrología, Meteorología y Estudios
Ambientales). (2014). Promedios climatológicos 1981-
2010. http://www.ideam.gov.co/web/tiempo-y-clima/
clima.
IGAC (Instituto Geográfico Agustín Codazzi), IDEAM
(Instituto de Hidrología, Meteorología y Estudios
Ambientales), Instituto de Investigación de Recursos
Biológicos Alexander von Humboldt, IIAP (Instituto
de Investigaciones Ambientales del Pacífico), INVE-
MAR (Instituto de Investigaciones Marinas y Costeras
José Benito Vives De Andréis) & Instituto Amazónico
de Investigaciones Científicas Sinchi. (2007). Ecosis-
temas continentales, costeros y marinos de Colombia.
Imprenta Nacional de Colombia.
IRAC (Insecticide Resistance Action Committee). (2020).
Clasificación del modo de acción de los insectici-
das. España. https://irac-online.org/documents/
folleto-modo-de-accion-insecticidas-y-acaricidas/
Itokawa, K., Hu, J., Sukehiro, N., Tsuda, Y., Komagata, O.,
Kasai, S., Tomita, T., Minakawa, N., & Sawabe, K.
(2020). Genetic analysis of Aedes aegypti captured
at two international airports serving to the Greater
Tokyo Area during 2012-2015. PLoS ONE, 15(4),
e0232192.
Kraemer, M. U. G., Sinka, M. E., Duda, K. A., Mylne, A.,
Shearer, F. M., Brady, O. J., Messina, J. P., Barker, C.
M., Moore, C. G., Carvalho, R. G., Coelho, G. E., Van
Bortel, W., Hendrickx, G., Schaffner, F., Wint, G. R.,
Elyazar, I. R. F., Teng. H. J., & Hay, S. I. (2015). The
global compendium of Aedes aegypti and Ae. albopic-
tus occurrence. Scientific Data, 2, 150035.
Laskowski, D. A. (2002). Physical and chemical properties
of pyrethroids. Reviews of Environmental Contamina-
tion and Toxicology, 174, 49–170.
Linss, J. G. B., Brito, L. P., Garcia, G. A., Araki, A. S., Bruno,
R. V., Lima, J. B. P., Valle, D., & Martins, A. J. (2014).
Distribution and dissemination of the Val1016Ile and
Phe1534Cys kdr mutations in Aedes aegypti Brazilian
natural populations. Parasites and Vectors, 7(1), 1–11.