1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
Avian diversity in river levee forest:
the effect of microscale heterogeneity
Carolina Antonella Brarda1,2; https://orcid.org/0000-0002-0832-7679
Adriana Silvina Manzano1,2; https://orcid.org/0000-0002-6862-857X
Carlos Ignacio Piña3,4; https://orcid.org/0000-0002-6706-5138
Antonio Esteban Frutos3,4*; https://orcid.org/0000-0001-5500-3637
1. Laboratorio de Herpetología, Centro de Investigación Científica y de Transferencia Tecnológica a la Producción.
Consejo Nacional de Investigaciones Científicas y Técnicas CICYTTP (CONICET-Prov. ER-UADER). España 149
(E3105BWA), Diamante, Entre Ríos, Argentina; carolinabrarda@gmail.com, herpetologia@gmail.com
2. CIBTA. Facultad de Ciencia y Tecnología-CONICET. España 149 (E3105BWA), Diamante, Entre Ríos, Argentina.
3. Laboratorio de Ecología Animal. Universidad Autónoma de Entre Ríos. Facultad de Ciencia y Tecnología.
España 149 (E3105BWA), Diamante, Entre Ríos, Argentina; pina.carlos@uader.edu.ar, antoniofrutos.af@gmail.com
(*Correspondence)
4. Centro de Investigación Científica y de Transferencia Tecnológica a la Producción. Consejo Nacional de Investigaciones
Científicas y Técnicas CICYTTP (CONICET-Prov. ER-UADER). Laboratorio de Ecología Animal, España 149
(E3105BWA), Diamante, Entre Ríos, Argentina.
Received 11-VIII-2023. Corrected 10-IV-2024. Accepted 30-VII-2024.
ABSTRACT
Introduction: Levee forests exhibit a vertical stratification that may contribute to structural complexity allow-
ing a great diversity of birds to thrive on the islands. In deltaic ecosystems there is scarce or no data to prove it.
Objectives: To assess variations in the composition of the bird community within levee forests.
Methods: Two areas of protected wetlands belonging to the Paraná River Delta in Argentina were sampled for
three years. A comparative analysis of richness, abundance, and diversity was performed in different levee forests
using the point count method.
Results: Three distinct types of levee forests -open, intermediate, and closed- were identified based on the struc-
ture of their vegetation, hosting a total of 85 bird species. Variation in avian community structure among forest
types revealed greater diversity in open forests during winter (3.26 ± 0.13, P < 0.01) and spring (3.58 ± 0.05, P
< 0.01), and greater richness in autumn (35.33 ± 3.01, P < 0.01). The closed forests exhibited increased diversity
during autumn (3.16 ± 0.13, P < 0.05) and summer (3.24 ± 0.06, P < 0.05), along with elevated abundance in
autumn (114 ± 13.70, P < 0.05) and richness in spring (39.17 ± 4.71, P = 0.01). Due to the evolutionary history
between sites, significant variation was observed in the most recently created national park, influencing abun-
dance in winter (141 ± 22.06, P < 0.01) and spring (176 ± 12.83, P < 0.01), as well as diversity in winter (3.25 ±
0.10, P < 0.01) and spring (3.50 ± 0.10, P < 0.01).
Conclusions: The microhabitat in the different levee forests allows the birds to organize differently. Focusing on
microspatial dynamics is key to a deep understanding of the biological processes within subtropical islands and
to plan conservation strategies and demonstrate the transition of a recovering riparian forest towards its natural
state, where the pulse of the river and the effect of seasonality do not stop operating.
Key words: microstructure; Ramsar site; bird community ecology; riparian environments; vegetation strata.
https://doi.org/10.15517/rev.biol.trop..v72i1.56175
TERRESTRIAL ECOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
INTRODUCTION
In South America, the Paraná River Delta
is an important island and wetland ecosystem
composed of groups of islands interconnected
and separated by water courses. It is charac-
terized by a high environmental heterogene-
ity driven by current fluvial activity, as well
as historical components (geomorphology of
the early Neogene, different flow intensities,
marine ingressions, and Pleistocene aeolian
processes). All these factors have generated a
diverse and dynamic habitat structure, both at
spatial and temporal scales. This system is in
constant activity, with regular flood pulses of
different magnitude and intensity that generate
a macrosystem of wetlands in the lower Paraná
River (Naiman et al., 2005; Neiff & Malvárez,
2004). These features depend on the water level
at a given time and influence the island geo-
morphology and biology, contributing to the
landscape heterogeneity (Beltzer & Quiroga,
2007; Lorenzón, 2014).
Islands comprising these wetland systems
exhibit distinctive vegetation that colonizes
the territory by seed dispersal in various ways.
Seeds are dispersed by anemochory, endo-
zoochory (internal dispersal by fauna), epizo-
ochory (external dispersal by fauna), by certain
non-standard dispersal vectors due to alterna-
tive morphologies of seed diaspores (Hele-
no & Vargas, 2014) and through hydrochory
(through river courses) (Kubitzk & Ziburski,
1994). All these mechanisms operate together
to generate the vegetation of the wetland sys-
tem, which in turn is different from that of
the continent.
Associated with the particularity of the
vegetation of the wetland system, the bird com-
munities in the floodplain of the Paraná River
behave differently than those in other areas,
such as higher topographic areas, which are
not directly influenced by the river (Ronchi-
Virgolini et al., 2011). Besides the environmen-
tal variability mediated by seasonality, there
are also the temporal dynamics of the seasonal
RESUMEN
Diversidad de aves en bosques de albardón: el efecto de la heterogeneidad a microescala
Introducción: Los bosques de albardón exhiben una estratificación vertical que puede contribuir en la compleji-
dad estructural, permitiendo que una gran diversidad de aves prospere en las islas. En ecosistemas deltaicos hay
escasos datos que lo demuestren.
Objetivos: Evaluar las variaciones en la composición de la comunidad de aves dentro de los bosques de albardón.
Método: Se muestrearon durante tres años, dos áreas protegidas de humedales pertenecientes al Delta del Río
Paraná, Argentina. Se realizó un análisis comparativo de riqueza, abundancia y diversidad de aves en tres diferen-
tes bosques de albardón, utilizando el método de conteo por puntos.
Resultados: Tres distintos tipos de bosque de albardón -abiertos, intermedios y cerrados- fueron identificados
con base en la estructura de su vegetación, hospedando un total de 85 especies de aves. La variación en la estructu-
ra de la comunidad de aves entre tipos de bosque revela mayor diversidad en bosques abiertos durante el invierno
(3.26 ± 0.13, P < 0.01) y la primavera (3.58 ± 0.05, P < 0.01), y mayor riqueza en otoño (35.33 ± 3.01, P < 0.01).
Los bosques cerrados exhibieron mayor diversidad en el otoño (3.16 ± 0.13, P < 0.05) y en verano (3.24 ± 0.06, P <
0.05), junto con elevada abundancia en otoño (114 ± 13.70, P < 0.05) y elevada riqueza en primavera (39.17 ± 4.71,
P=0.01). Debido a la historia evolutiva entre sitios, se observó variación significativa en el parque nacional de más
reciente creación, influyendo en la abundancia del invierno (141 ± 22.06, P < 0.01) y de la primavera (176 ± 12.83,
P < 0.01), así como en la diversidad en el invierno (3.25 ± 0.10, P < 0.01) y en la primavera (3.50 ± 0.10, P < 0.01).
Conclusiones: El microhábitat en los diferentes bosques de albardón permite a las aves organizarse diferen-
cialmente. Enfocarse en la dinámica microespacial es clave para una comprensión profunda de los procesos
biológicos dentro de las islas subtropicales, planificar estrategias de conservación y evidenciar la transición de un
bosque ripario en recuperación hacia su estado natural, donde el pulso del río y el efecto de la estacionalidad no
dejan de operar.
Palabras clave: microestructura; sitio Ramsar; ecología de comunidades de aves; ambientes riparios; estratos de
vegetación.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
pulse (Lima et al., 2021; Ronchi-Virgolini et al.,
2008; Tockner et al., 2000a). In fluvial forests,
vertical stratification of the vegetation provides
structural complexity, which allows the occur-
rence of greater bird richness, abundance and
diversity than in the surrounding areas, as well
as the provision of protection, nesting and
feeding sources (Anjos et al., 2007; Di Giacomo
& Contreras, 2002; Giraudo & Ordano, 2003;
Lima et al., 2021).
Several studies exploring bird communi-
ties in fluvial systems have shown the impact of
spatial heterogeneity of vegetation on avifauna.
These investigations entailed comparisons of
bird assemblages across diverse environmental
units on levees, including wetlands, forests, and
grasslands (Beltzer & Neiff, 1992; Berduc et al.,
2015; Frutos et al., 2020a, Frutos et al., 2020b;
Lorenzón et al., 2016; Lima et al., 2021; Ronchi-
Virgolini et al., 2010; Ronchi-Virgolini et al.,
2011; Ronchi-Virgolini et al., 2013; Rossetti &
Giraudo, 2003). Additionally, studies specifi-
cally delved into the distinctions between bird
communities in upland forests (located outside
flood-prone areas) and levee forests, treat-
ing these as contrasting environmental units
(Ronchi-Virgolini et al., 2011).
Spatial heterogeneity plays a crucial role
in shaping bird communities. Changes in bird
communities, such as population density, spe-
cies richness and dominant species composi-
tion, have been attributed to variations in
forest vegetation conditions, water supply to
floodplains and the density of population in
different areas of the landscape (Gureev et al.,
2019). In addition to hydrological disturbances
on floodplains, latitudinal changes along riv-
ers coupled with local habitat characteristics
contribute to shaping the conditions that influ-
ence bird to habitat affinities (Munes et al.,
2015). The intrinsic characteristics of river
microenvironments change along the water
corridors and are not transferable between
regions (Miller et al., 2004), highlighting the
unique micro-environmental heterogeneity of
each region. Different responses have previ-
ously been proposed in relation to the vari-
ation in bird assemblages for anthropically
intervened riparian environments, depending
on the changes generated in spatial heteroge-
neity (Hernández-Belloso et al., 2018; Martin
& Possingham, 2005; Rannestad et al., 2015;
Velásquez-Valencia, 2018).
Silvopastoral and agroforestry environ-
ments generate patches of dense vegetation with
greater richness and diversity of species, such as
those reported for Amazonian riparian systems
(Velásquez-Valencia, 2018). On the contrary,
livestock pressure would compete with bird
resources in the lower strata, generating a
decrease in bird species (seen in the Australian
riparian system) (Martin & Possingham, 2005).
Some environments that have been recov-
ered have exhibited greater associated heteroge-
neity, thus hosting the greatest diversity of birds,
or have demonstrated greater richness and
relative abundance. Reported examples include
the Kilombero Valley in East Africa (following
recent livestock removal) (Rannestad et al.,
2015) and Spanish lake environments undergo-
ing restoration (Hernández-Belloso et al., 2018).
Considering that levee forests differ in the
structure and composition of the vegetation
(Aceñolaza et al., 2005), we focus on evaluating
the differences in the structure of the levee for-
est and how it would affect the bird communi-
ties of the Paraná basin. In this work, we focus
on differences in bird assemblage between
environments within an environmental unit,
in our case the floodplain levee forest. We
hypothesize that birds use the different levee
types differently and that this variation in the
use is reflected in the bird assemblage structure
within each forest.
MATERIALS AND METHODS
Study area: The study sites included Wet-
lands in the Pre-Delta National Park (PDNP),
Diamante, Entre Ríos, Argentina (32º 03’43”
S & 60º38’39” W) (PDNP, 2022) and in the
Islas de Santa Fe National Park (ISFNP), San
Jerónimo, Santa Fe, Argentina (32°6’10.70”-
32°19’42.18” S & 60°43’52.36”-60°36’7.42” W)
(Fig. 1) (ISFNP, 2022). These wetland areas
correspond to the Delta e Islas del Para
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
ecoregion (Matteucci, 2012; Quintana & Bó,
2010). They conform to the Ramsar site ‘Para
Delta,’ a globally significant wetland located in
Argentina (Giacosa et al., 2019). Located in
a transition segment in the Paraná River, it is
the area where the delta system begins, and is
influenced by the biota present in the previous
section of this river, the segment called middle
Paraná (Lorenzón et al., 2019; Nestler et al.,
2007; Sabattini & Lallana, 2007).
The Pre-Delta National Park (PDNP) cov-
ers 2 458 hectares of island area and has been
under the jurisdiction of the National Parks
Administration since 1992. This is the only
IBA (Important Bird and Biodiversity Con-
servation Area) located in the Upper Delta, in
the area called “Forests, prairies and meander
floodplains” (Coconier & Di Giacomo, 2009).
The Islas de Santa Fe National Park (ISFNP)
was created in November 2010. It covers 4 096
hectares, including eight islands that have been
under the jurisdiction of the National Parks
Administration since 2010 (https://www.argen-
tina.gob.ar/parquesnacionales).
Levee forests are located at the highest zone
of the floodplain. They have characteristics due
to their topographic position, susceptible to
floods (Aceñolaza et al., 2004). These forests
cover about 20 % of the island area (Boro-
dowski, 2006), whereas the central zones of the
islands hold marshes and ponds. In the Paraná
Delta, levees are simple, low diversity and open
canopy forests, composed of high colonizer
trees dominated by Salix humboldtiana and
Tessaria integrifolia, with possible occurrence
of Albizia inundata, Erythrina crista-galli or
Sapium haematospermum. There are mature
and better preserved forests (of equal ages)
with one or two vegetation strata composed of
Nectandra falcifolia and Inga uraguensis, Vach-
ellia caven, and Croton urucurana. There may
also be Morus spp. and Ligustrum lucidum as
invasive introduced species as a result of orni-
thochorous dispersal (Ronchi-Virgolini et al.,
2010). These forests are complemented by an
herb stratum, composed of short gramineous
species and grasslands of different species, and
a shrub stratum characterized by several vines,
Fig. 1. Map of the study area. The lower polygon represents the limit of the Islas de Santa Fe National Park (ISFNP) and the
upper polygon represents the limit of the Pre-Delta National Park (PDNP). Points represent the vegetation sampling points
and bird count points (OF= open forests, IF= intermediate forests, CF= closed forests).
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
sapling and medium-sized trees of Myrsine
laetevirens and Zanthoxylum fagara (Aceñolaza
et al., 2004; Aceñolaza et al., 2005; Beltzer &
Neiff, 1992).
Climate and biogeography: The climate
is temperate/warm humid (Kottek et al., 2006).
The annual average temperature is about 19 ºC
and annual rainfall is ~900 mm, with warmer
and rainier summer periods than in winter.
Biogeographically, the subtropical biota reaches
the temperate zone of the Paraná Delta through
the Paraná River, which acts as a biological cor-
ridor of great latitudinal extension (Cabrera,
1994; Malvárez, 1999). Thus, the area holds
floristic components of the Amazonian domain
(with elements from the Paranaense province)
and the Chaco domain (with elements from the
Chaco, Pampean and Espinal provinces), both
domains belonging to the Neotropical Region
(Cabrera, 1994); fauna with components of the
Mesopotamian District (Subtropical Domain,
Guyana-Brazilian subregion) with influence
of the Pampean District (Ringuelet, 1961),
and overlap of three ornithogeographic zones:
the Paranaense province (Forests district) and
the Mesopotamian and Pampean provinces
(Nores, 1987).
Experimental design for vegetation: The
forest types were defined by visually determin-
ing the tree cover percentage (on a horizontal
plane), in sampling units, following Matteucci
& Colma (1982). The area of the vegetation
sample points coincided with the area of the
bird count points. All the studied forests were
considered levee forests because they are pres-
ent in the highest zone, on the island edges,
within the floodplain, without discriminating
between young or mature forests, with greater
or lower susceptibility to hydrometric fluctua-
tions (Neiff, 2005; Placci, 1994).
A total of 18 vegetation and bird com-
munities sampling points were selected; they
were determined according to the vegetation
traits (physiognomic-structural categories). Six
replicates homogeneously distributed in both
national parks were established for each forest
category (three replicates in each forest type
for each park) (Fig. 1). Forest characteriza-
tions based on tree cover ranges were up to
30 % for open forests, between 30 % and 60 %
for intermediate forests, and more than 60 %
for closed forests (Symonds & Johnson, 2008)
(Fig. 2). Percent cover of shrub and herb strata
was also recorded, as well as height (cm) of
herb stratum.
Experimental design for birds: Bird sam-
pling was conducted twice in each season, in
the same points used for vegetation, at 45-day
intervals for three years (2014, 2015 and 2016)
and under favorable climatic conditions for
bird observation. Birds were counted using
the point counting method. To ensure sample
independence, distance between points was
greater than 250 m. All the birds in the forest
environment seen and heard at each point for
ten minutes were recorded (Blake, 1992; Ron-
chi-Virgolini et al., 2011). The total sampling
Fig. 2. Physiognomy of the different levee forests. A. Open forest. B. Intermediate forest. C. Closed forest.
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
effort at each point was four hours throughout
the entire sampling period. This means that in
each type of forest, in each park, the total sam-
pling effort during the three years was 12 hours
(given the three counting points for each forest
type located in each of the two parks). All the
birds that made use of the habitat were record-
ed, except for those that were seen only flying
over the area. The estimated radius of the count
point was 75 m. Counts began at sunrise and
continued for four hours, the period of greatest
stability for bird detection (Huff et al., 2000;
Ralph et al., 1996). On each visit, sampling
order was shifted among points to reduce the
effects associated with bird activity and time of
the day (Verner & Milne, 1989). All the species
were identified in situ (Narosky & Yzurieta,
2010) and then classified systematically accord-
ing to SAAC (Remsen et al., 2022).
Sample processing: The bird community
was analyzed for each season from the 18
samples homogeneously distributed between
the different forest types in both national parks,
using a balanced and complete sampling design
(Quinn & Kough, 2002). The total observa-
tion time for each type of forest was 24 hours
during the entire study period, contemplating
all points between the two parks, with 6 hours
allocated to each season. To obtain more rep-
resentative estimations of the bird community,
seasonal estimates made across three years were
grouped in a single point; thus, each sample
resulted in the sum of six (6) individual esti-
mates made for each point.
Where P is the sampling point, i is each
estimation of bird counts made from a seasonal
sampling, and N is the number of terms of the
sum or the total estimations throughout the
sampling. Bird richness and abundance, species
composition and diversity were determined to
describe the community structure of each forest
type. Diversity was calculated using the Shan-
non and Weaver diversity index (H´).
Statistical analysis: Composition and rela-
tive abundances of tree species were analyzed
using an analysis of similarities (ANOSIM)
(Clarke & Warwick, 2001) and a non-metric
multidimensional scaling (NMDS) (McCune
& Mefford, 1999), with the Vegan package
(Oksanen, 2011), using the Bray Curtis dis-
similarity index on a matrix of relative abun-
dances. Differences in tree, shrub and herb
cover among seasons and between sites, and
physiognomic differences inherent to forests
(forest types) were analyzed using the Kruskall-
Wallis non-parametric test (α = 0.05).
The relationship between bird commu-
nity structure (richness, abundance and diver-
sity) and forest type and sites were evaluated
using generalized linear models for each season
(Supplementary Material SM1). The models
were fitted with the error distribution assumed
according to the nature of the data, considering
under and/or overdispersion (Gaussian, Pois-
son and Negative Binomial). Assumptions were
evaluated for each model with their residuals
(homoscedasticity and normality of Gaussian
distribution and under and/or overdispersion
in Poisson or Negative Binomial distributions).
Models were selected using the Akaike
Information Criteria, as recommended for
small samples (AICc) (Burnham et al., 2011;
Matthew & Moussalli, 2011). When the best
model was not achieved, the multiple model
inference (MMI) of those with a Δi < 2 (Mat-
thew & Moussalli, 2011) was used to obtain the
relative importance of each predictor variable.
The software packages R Studio version 3.6.1
(R Core Team, 2019) and R-medic (Mangeaud
& Elías-Panigo, 2018) were used. Response
variables whose explanatory variables were sta-
tistically significant are reported in Table 2 and
Table 3. The figures were done with package
Ggplot2 and the editing was done with Corel
Draw 2021.5 Licence Adriana Manzano.
RESULTS
Vegetation structure: The analysis of tree
composition and relative abundance using
the similarity analysis (ANOSIM) and the
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
multidimensional ordination (NMDS) allowed
us to differentiate three groups of forests and
to associate Tessaria integrifolia and Salix hum-
boldtiana with open forests, Albizia inundata,
Myrsine laetevirens, Sapium haematospermum,
Enterolobium contortisiliquum, Inga uraguensis
and Vachellia caven with intermediate forests,
and Erythrina crista galli, Nectandra falcifolia,
Croton urucurana and Ligustrus lucidum with
closed forests (ANOSIM R = 0.59, P = 0.001;
Fig. 3).
Regarding vegetation cover, no seasonal
variation was recorded in tree or shrub cover.
The herb stratum showed variation in spring,
with its cover being the highest of all seasons
(H = 36.77, P < 0.001). The height of this stra-
tum was lowest in winter and highest in spring
(H = 29.74, P < 0.001), with no differences
between autumn and summer. No differences
in cover were detected in any stratum, showing
homogeneity in the values of both sites (Fig. 4
and Fig. 5). Regarding the inherent levee forest
structure, three physiognomies were detected
in the levee forests: open forests (OF), interme-
diate forests (IF), and closed forests (CF), which
were determined by the tree cover (H = 42.52,
P < 0.001) and height of the herb stratum (H
= 18.69, P < 0.001). In the OF, the lowest tree
cover percentage and the highest herb height
were recorded. In the IF, both variables had
intermediate values, and in CF, the highest per-
centage of tree cover, and the lowest percentage
of herb cover were recorded (Fig. 6.A and Fig.
6.D; Table 1). While tree cover and herb height
determined three forest physiognomies, in IF
shrub cover was the highest, with no differenc-
es between OF and CF (H= 34.71, P < 0.001).
The OF herb stratum cover was the highest,
with no differences between the IF and the CF
(H = 6.97, P < 0.05) (Table 1) (Fig. 6B, Fig. 6C).
The results of the Kruskall-Wallis tests are
shown.
Fig. 3. Non-metric multidimensional scaling (NMDS) of relative abundance of tree species in 18 count points. In black empty
symbols, points of the Pre-Delta National Park site; in black filled symbols, points of the Islas de Santa Fe National Park.
Open, intermediate, and closed forests are represented by squares, circles and triangles, respectively. Red crosses symbols
stand for the relative positions of the different tree species. Tes.int.: Tessaria integrifolia; Sal.hum.: Salix humboldtiana;
Alb. inu.: Albizia inundata; Myr. lae.: Myrsine laetevirens; Sap. hae.: Sapium haematospermum; Ent. con.: Enterolobium
contortisiliquum; Ing. ura.: Inga uraguensis; Vac. cav.: Vachellia caven; Ery. cri.: Erythrina crista galli; Nec. fal.: Nectandra
falcifolia; Cro. uru.: Croton urucurana; Lig. luc.: Ligustum lucidum.
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
Fig. 4. Seasonal changes in the cover of the different vegetation strata. A. Percentage of tree cover. B. Percentage of shrub
cover. C. Percentage of herb cover. D. Height of herb stratum.
Fig. 5. Differences in cover of vegetation strata between national parks. A. Percentage of tree over. B. Percentage of shrub
cover. C. Percentage of herb cover. D. Height of herb stratum.
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
Bird community: The number of contacts
with birds recorded amounted to 9 908, cor-
responding to 85 bird species belonging to 29
families and 13 orders (Table 3). In autumn,
37.61 % of variation in species richness was
explained by physiognomic variables of levee
forests (AICc = 104.50, w = 0.60), with OF hav-
ing higher values than CF (P < 0.01). In spring,
richness had the lowest value in PDNP and
varied among forest types, with CF showing the
lowest value and differing from OF and IF (P <
0.05). In summer, richness had the lowest value
Fig. 6. Intrinsic physiognomic differences among levee forests are determined by percentage of tree, shrub and herb cover,
and height of herb stratum. Open forests (OF), intermediate jDifferentiation of shrub cover percentage. C. Differentiation of
herb cover. D. Differentiation of herb stratum height (cm).
Table 1
Differences among vegetation strata with respect to seasons, sites and forest types.
Dependent variable Explanatory variable Statistical (H) P
Tree cover Season 0.44 0.930
Shrub cover Season 0.01 0.990
Herbaceous cover Season 36.77 < 0.001*
Herbaceous height Season 29.74 < 0.001*
Tree cover Site 1.67 0.199
Shrub cover Site 3.61 0.060
Herbaceous cover Site 3.42 0.060
Herbaceous height Site 0.62 0.430
Tree cover Forest type 42.52 < 0.001*
Shrub cover Forest type 34.71 < 0.001*
Herbaceous cover Forest type 6.97 0.030 *
Herbaceous height Forest type 18.69 < 0.001*
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
Table 2
Seasonal variation in bird richness, abundance and diversity, related to levee forest structure.
Dependent Variable AICc delta Weight Coeficient Coef.Standard
deviation Confidence interval p-value Null
deviance
Residual
deviance Devianza Mean ± sd
Explanatory variable 2.50 % 97.50 %
Winter Richness MMI -0.344 0.235 PDNP site -0.842 0.153 0.175 - - - -
Autumn Richness 104.50 2 0.57 35.333 1.452 Open forests* 32.49 38.18 < 0.01 304.00 189.67 37.61 35.33 ± 3.01
-6.167 2.053 Closed forests* -10.19 -2.14 < 0.01 29.17 ± 3.60
Spring Richness MMI -0.518 0.192 Closed forests* -0.93 -0.11 0.01 39.17 ± 4.71
-0.641 0.178 PDNP site* -1.02 -0.26 < 0.01 38.78 ± 3.89
Summer Richness MMI -3.633
-5.674
1.506
1.506
Intermediate forests*
Closed forest*
-1.05
-1.11
-0.01
-0.06
< 0.05
< 0.05 35.17 ± 3.31
34.67 ± 3.20
Winter Abundance 160.30 ~2 0.59 -0.142 0.042 PDNP site* -0.26 -0.02 < 0.05 23.53 18.00 23.49 122 ± 12.38
4.947 0.060 ISFNP site* 4.87 5.03 < 0.01 141 ± 22.06
Autumn Abundance MMI -0.005 0.002 Closed forests* -0.01 0.00 < 0.05 114 ± 13.70
Spring Abundance 145.10 > 2 0.77 5.171 0.025 ISFNP site* 5.12 5.22 < 0.01 34.26 15.60 54.46 176 ± 12.83
-0.160 0.037 PDNP site* -0.23 -0.09 < 0.01 150 ± 12.37
Summer Abundance MMI -0.003 0.001 Intermediate forests* -0.01 0.00 < 0.05 126 ± 17.85
-0.004 0.001 PDNP site* -0.01 0.00 < 0.01 122 ± 15.80
Winter Diversity -26.60 ~2 0.67 3.328 0.041 Open forests* 3.25 3.41 < 0.01 0.24 0.10 56.76 3.26 ± 0.13
-0.157 0.050 Closed forests* -0.26 -0.06 < 0.01 3.11 ± 0.07
3.328 0.041 ISFNP site* 3.25 3.41 < 0.01 3.25 ± 0.10
-0.118 0.041 PDNP site* -0.20 -0.04 < 0.05 3.13 ± 0.11
Autumn Diversity MMI -0.962 0.375 Closed forests* -1.73 -0.19 < 0.05 3.16 ± 0.13
0.895 0.285 Closed forests in PDNP
site* 0.27 1.52 < 0.01 3.18 ± 0.06
Spring Diversity -28.10 > 2 0.77 3.590 0.039 Open forest* 3.51 3.67 < 0.01 0.26 0.10 63.08 3.58 ± 0.05
-0.122 0.048 Intermediate forests* -0.22 -0.03 < 0.05 3.40 ± 0.10
-0.144 0.048 Closed forests* -0.24 -0.05 < 0.01 3.37 ± 0.14
3.590 0.039 ISFNP site* 3.51 3.67 < 0.01 3.50 ± 0.10
-0.143 0.039 PDNP site* -0.22 -0.07 < 0.01 3.36 ± 0.11
Summer Diversity MMI -0.629 0.244 Closed forests* -1.15 -0.11 < 0.05 3.24 ± 0.06
Seasonal variation in the community attributes related to forests structure. MMI: Multiple Model Inference. PDNP: Pre-Delta National Park. ISFNP: Islas de Santa Fe National Park.
AICc value (small samples), delta and weight of the best model, coefficient value and standard deviation, confidence interval and P of the explanatory variables (*significance).
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
in PDNP and varied among forest types with
differences between IF and CF. IF had higher
richness than CF (P < 0.01). In winter, richness
was similar among forest types (Table 2, Table
3, Fig. 8).
Bird abundance varied among forest types
in autumn and summer. In autumn, CF was the
least abundant, whereas in summer, IF was the
least abundant (P < 0.05). In spring, as in win-
ter, there was higher abundance in the ISFNP;
the best model explained 54.46 % (AICc =
145.10, w = 0.80), and 23.49 % (AICc = 160.30,
w = 0.60), respectively (Table 2, Table 3, Fig. 7,
Fig. 8).
Bird diversity varied among forest types
in all the seasons. In winter, 56.76 % of bird
Table 3
Systematic classification of bird species in each site, their richness and number of contacts of each one.
Species
Status ISFNP PDNP
Conservation Richnnes Number of
Contacts Richnnes Number of
Contacts
OF IF CF OF IF CF OF IF CF OF IF CF
Hydropsalis torquata* LC - - X - - 1 - - - X - - 1
Butorides striata LC - - - X - - 1 X X X 1 1 1
Columbina picui LC - X - - 2 - - X X - 2 4 -
Columbina talpacoti LC X - - 1 - - X X X 5 1 2
Leptotila verreauxi LC - X X X 62 85 95 X X X 105 142 155
Patagioenas maculosa LC X--1--------
Patagioenas picazuro LC X X X 39 53 61 X X X 60 75 74
Zenaida auriculata LC X X X 33 44 24 X X X 28 17 9
Chloroceryle amazona LC X - X 1 - 1 - X - - 2 -
Chloroceryle americana LC X - X 2 - 2 X X - 1 3 -
Megaceryle torquata LC - X - X 1 - 1 - X - - 3 -
Coccycua cinérea* LC X X - 3 1 - X - - 1 - -
Coccyzus melacoryphus* LC - X X X 4 1 4 X X X 2 2 3
Guira guira LC X X X 4 2 10 - X X 1 4 2
Tapera naevia* LC - X - - 1 - - X - - 2 - -
Rostrhamus sociabilis LC - X - - 1 - - - X X - 1 1
Rupornis magnirostris LC X X X 17 13 14 X X X 7 4 13
Caracara plancus LC X X X 8 5 5 X X X 19 6 9
Aramus guarauna LC - - - X - - 1 - - - - - -
Aramides ypecaha LC - X X - 3 2 - - - - - -
Campylorhamphus trochilirostris LC X X X 1 6 1 X X X 6 4 5
Lepidocolaptes angustirostris LC X X X 89 43 54 X X X 68 52 69
Microspingus melanoleucus LC - X X X 44 15 7 X X X 11 7 5
Saltator aurantiirostris LC Unk X X X 66 80 76 X X X 74 71 69
Saltator coerulescens LC X X X 124 162 134 X X X 126 114 125
Saltator similis LC - X - - 1 - - - - - - -
Paroaria capitata LC - X X X 45 26 45 X X X 22 5 8
Paroaria coronata LC - X X X 27 24 23 X X X 25 13 17
Poospiza nigrorufa LC - - X X - 2 2 X - X 3 - 2
Sicalis flaveola LC - X X X 6 9 2 X X X 4 8 4
Zonotrichia capensis LC - X X X 30 35 47 X X X 16 9 22
Spinus magellanicus LC - X X X 16 1 2 X X - 12 4 -
Asthenes pyrrholeuca** LC X X X 6 10 4 - - - - - -
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
Species
Status ISFNP PDNP
Conservation Richnnes Number of
Contacts Richnnes Number of
Contacts
OF IF CF OF IF CF OF IF CF OF IF CF
Certhiaxis cinnamomeus LC X X - 2 2 - X - - 1 - -
Phacellodomus ruber LC X X X 139 111 156 X X X 148 127 134
Phacellodomus striaticollis LC - X X - 1 1 - - - - - - -
Synallaxis frontalis LC X X X 36 56 39 X X X 34 57 43
Limnoctites sulphuriferus LC X X X 1 2 4 - - - - - -
Furnarius rufus LC X X X 56 70 66 X X X 53 48 62
Progne tapera* LC X X X 38 14 18 X X X 35 24 19
Tachycineta leucorrhoa LC X X X 55 31 17 X X X 27 13 16
Agelasticus cyanopus LC - X X X 3 8 5 X X - 2 2 -
Cacicus solitarius LC - X X X 4 17 5 X X X 14 9 23
Icterus pyrrhopterus LC - X X X 28 10 18 X X X 18 13 13
Agelaioides badius LC - X X X 52 54 39 X X X 26 39 23
Molothrus bonariensis LC X X X 7 4 5 X X X 9 7 1
Molothrus rufoaxillaris LC - X X X 13 16 8 X X X 10 12 8
Geothlypis aequinoctialis LC - X X X 1 1 2 X - X 2 - 1
Setophaga pitiayumi LC X X X 7 2 1 - X X - 2 1
Myiothlypis leucoblephara LC - - - - - - X X X 9 12 38
Polioptila dumicola LC X X X 63 105 90 X X X 45 38 49
Taraba major LC X X X 72 68 59 X X X 69 65 54
Thamnophilus caerulescens LC - X X - 9 8 X X X 3 6 12
Thlypopsis sordida LC - X X X 7 13 3 X X - 4 2 -
Thraupis sayaca LC - X X X 14 6 5 X X X 37 30 29
Turdus amaurochalinus LC - X X X 42 23 22 X X X 38 39 31
Turdus rufiventris LC - X X X 66 106 80 X X X 76 58 76
Troglodytes aedon LC X X X 30 10 9 X X X 20 14 7
Elaenia parvirostris LC - X X X 5 3 2 - X - - 1 -
Elaenia spectabilis LC X X X 1 10 6 X X X 3 5 4
Myiophobus fasciatus* LC X X X 7 4 6 X X X 3 6 3
Pitangus sulphuratus LC X X X 64 53 55 X X X 47 39 31
Serpophaga griseicapilla LC - X X - 1 1 - X - - 3 - -
Serpophaga subcristata LC - X X X 30 20 7 X X X 9 9 15
Hemitriccus margaritaceiventer LC - X X X 11 21 12 X X X 2 2 11
Myiarchus swainsoni* LC - X X X 15 12 9 X X X 13 11 9
Camptostoma obsoletum LC - X X X 13 5 5 X X X 7 7 3
Myiodynastes maculatus* LC - X - X 7 - 1 X X X 15 5 3
Suiriri suiriri LC X X X 33 17 7 X X X 31 12 11
Tyrannus melancholicus* LC X X X 9 12 14 X X X 10 10 14
Tyrannus savana* LC - X X X 6 6 4 X X - 3 4 -
Machetornis rixosa LC - X X X 1 2 2 X - - 1 - -
Pachyramphus polychopterus* LC - X X X 33 33 29 X X X 22 19 22
Pachyramphus viridis LC - X -X 2 - - - X X - 3 1
Vireo olivaceus* LC X X X 54 46 44 X X X 21 21 22
Cyclarhis gujanensis LC X X X 50 47 37 X X X 32 48 44
Colaptes melanochloros LC - X X X 46 20 11 X X X 30 21 21
Melanerpes cactorum LC X X X 8 4 2 X X X 8 4 2
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
diversity variation was explained by an additive
model including forests and sites (AICc = -26.6,
w = 0.67), with differences between OF and CF
types (P < 0.01), with OF being more diverse
than CF. Regarding sites, ISFNP was more
diverse than PDNP (P < 0.05). In autumn, the
greatest diversity occurred in CF of PDNP (P =
0.004). In spring, the additive model of forests
and sites explained 63.08 % of the variation
(AICc = -28.10, w = 0.78), with diversity being
highest in OF, intermediate in IF, and lowest
in CF (P < 0.05). According to the differences
between sites, the ISFNP was the most diverse
(P < 0.05). In summer, CF were the least diverse
(P < 0.01) (Table 2, Table 3, Fig. 7, Fig. 8).
DISCUSSION
Differences in vegetation structures (tree
cover, shrub cover, herbaceous cover, and
Species
Status ISFNP PDNP
Conservation Richnnes Number of
Contacts Richnnes Number of
Contacts
OF IF CF OF IF CF OF IF CF OF IF CF
Melanerpes candidus LC X X - 4 1 - - X - - 2 -
Picumnus cirratus LC X X X 30 18 21 X X X 14 16 21
Dryobates mixtus LC - X X X 35 19 20 X X X 29 21 32
Myiopsitta monachus LC X X X 6 21 21 X X X 14 43 35
Bubo virginianus LC - - X - - 5 - X - - 2 - -
Chlorostilbon lucidus LC Unk X X X 3 4 4 X X X 1 6 1
Hylocharis chrysura LC X X X 19 25 15 X X X 11 16 10
76 72 71 1 864 1 770 1611 69 69 69 1 612 1 500 1 551
Fig. 7. Most abundant species in the levee forest physiognomies. The relative abundance (Pi) value for each species is shown
on the bars.
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
height) were found to be related to forest
types mainly. The maximum shrub cover was
recorded in Intermediate Forests (IF) and herb
cover in Open Forests (OF) might be due to
the greater light availability at the lower veg-
etation levels, reaching the lower forest strata
due to the open canopy structure. OF might
be considered edge environments favored by
abiotic factors, especially light, which gen-
erates microclimatic variations that increase
plant diversity (Granados-Sánchez et al., 2006;
Nieves-Vele & Orellana-Peralta, 2018); in turn,
these conditions are considered optimal for
bird diversity (Baker et al., 2002; Rannestad
et al., 2015). It is known that the develop-
ment of the different vertical vegetation strata
is enhanced when a disturbance of the forest
canopy increases light availability (Anderson
et al., 1978), with solar radiation being a factor
determining the natural regeneration of forest
vegetation (Viana & Jardim, 2013). In closed
canopy forests, most of the light is absorbed by
the tree canopy, reducing the development of
the understory vegetation.
Our records of birds for the Delta wetland
area were like those previously reported (eBird,
2020; Frutos et al., 2020a; Frutos et al., 2020b;
Magnano et al., 2019; Ronchi-Virgolini et al.,
2011; Rossetti & Giraudo, 2003). Overall, our
results show that closed forests (CF) had the
lowest richness, abundance and diversity values
in their bird communities, whereas the high-
est values of richness, abundance and diversity
were detected in OF. In a highly heterogeneous
environment, niche availability is high; there-
fore, species richness is high while evenness
Fig. 8. Bird differences of richness, abundance and diversity among forest types in each season, in each park. A. Winter
richness in PDNP. B. Winter richness in ISFNP. C. Winter abundance in PDNP. D. Winter abundance in ISFNP. E. Winter
diversity in PDNP. F. Winter diversity in ISFNP. G. Autumn richness in PDNP. H. Autumn richness in ISFNP. I. Autumn
abundance in PDNP. J. Autumn abundance in ISFNP. K. Autumn diversity in PDNP. L. Autumn diversity in ISFNP. M. Spring
richness in PDNP. N. Spring richness in ISFNP. O. Spring abundance in PDNP. P. Spring abundance in ISFNP. Q. Spring
diversity in PDNP. R. Spring diversity in ISFNP. S. Summer richness in PDNP. T. Summer richness in ISFNP. U. Summer
abundance in PDNP. V. Summer abundance in ISFNP. W. Summer diversity in PDNP. X. Summer diversity in ISFNP.
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
is low, reducing diversity (Rosenzweig, 1995;
Symonds & Johnson, 2008). Other authors
argue that a greater niche availability drives
greater evenness (Cotgreave & Harvey, 1994).
However, community structure depends on
landscape structure and spatial scale (Drobner
et al., 1998; Horlent et al., 2003). Based on the
results of our analyses of forest types and birds,
we could suggest that a more heterogenous
ambient could host more diversity, regardless
of the bird community evenness. The richness
record observed in the OF zone exemplifies
this phenomenon, where the environmental
heterogeneity manifests through variations in
the vegetation strata. Similar results have been
reported for the extensive floodplain of El
Kilombero in Tanzania, a prominent wetland
in East Africa (Rannestad et al., 2015). Further
investigations emphasize the pivotal role played
by edge habitats (Baker et al., 2002; Miller et
al., 2004) in structuring avian communities.
Considering that the levees of the OF zone
host the most diverse avian communities and
are near water, it is plausible to suggest that
they function as well as exhibit characteristics
emblematic of edge environments.
PD National Park has held protected status
for several decades, while ISF National Park
attained protection approximately a decade ago,
resulting in the recent cessation of livestock
farming activities (Frutos et al., 2018). Given
the disturbing effects of recent livestock farm-
ing, it was expected that ISFNP would present
some difference with respect to PDNP in terms
of the lower vegetation strata, as suggested
by Olff & Ritchie (1998) and Frutos (2018)
as an effect associated with the intermedi-
ate disturbance hypothesis. Our findings show
no differences in vegetation strata among the
study sites, despite their different management
histories. Nevertheless, the avian variation pat-
tern proved to be non-uniform, which could
be attributable to the influence of the charac-
teristics of the area and seasonal fluctuations
in vegetation. The recent cessation of livestock
activities in ISFNP may have contributed to the
proliferation of shrubs, resulting in subtly ele-
vated coverage values at this location. Despite
the increase in the prevalence of shrubs, typi-
cally correlated with higher avian diversity
(Godoi et al., 2017; Martin, 1993), this trend
was not conspicuously apparent. Considering
potential seasonal disparities linked to abiotic/
climatic factors in the coverage of lower strata
(Zerda & Tiedemann, 2010), we could attribute
the differences in the presence or absence of
certain species in the parks. Examples include
Phacellodomus striaticollis (insectivore of the
shrub stratum), Asthenes pyrrholeuca (migra-
tory insectivore of the shrub stratum), Saltator
similis (fruit-insectivore of the low canopy), and
Patagioenas maculosa (terrestrial granivore), all
of which were notably absent in PNPD. This
absence could be correlated with reduced habi-
tat diversity in the understory and soil strata.
This phenomenon could be correlated with an
increased herbaceous vegetation density in the
early stages of plant succession, a result of the
absence of herbivory, particularly by livestock.
In contrast, this form of herbivorous activity
was prevalent in ISFNP in the past but has been
systematically excluded from the site since its
official designation as a national park, slight-
ly over a decade ago. This exclusion creates
more open space in the lower vegetation stra-
ta, potentially enhancing resource availability
and eliciting corresponding avian responses to
intermediate disturbance states in the environ-
ments (Frutos et al., 2018). In this context, the
absence of Myiothlypis leucoblephara (insecti-
vore inhabiting shrubbery and soil strata) in
ISFNP can also be ascribed to a scenario favor-
ing the occupation of other dominant species
in the soil stratum, resulting in displacements
of less dominant species within the assem-
blage. Additional species such as Limnoctites
sulphuriferus, Aramus guarauna, and Aramides
ypecaha (species associated with salt marshes)
were absent in PDNP (yet present in ISFNP),
potentially linked to the lower prevalence of salt
marshes near the sampling points in this park.
These absences are not of particular concern,
as these species do not hold emblematic status
for the region. According to the International
Union for Conservation of Nature [IUCN]
(2023), none of the species is classified as
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
threatened, vulnerable, or endangered globally;
instead, all are categorized as least concern.
This aligns with the regional survey conducted
by specialists from Aves Argentinas (2015).
However, we found differences in the
arrangement of birds associated with parks,
in terms of richness, abundance and diversity,
with seasonal influence. This result suggests
that despite past anthropogenic activities in the
study sites, spatial heterogeneity of the forests
in the floodplains is still high, possibly due to
the dynamics contributed by the pulses. Thus,
taking into account that the significance of
the analysis that compared vegetation strata
between sites was very close to the acceptance
limit, it could be considered that the natural
history of parks associated with livestock in
natural riparian environments in some cases
favor bird diversity (Frutos et al., 2020a; Fru-
tos et al., 2020b; García et al., 2008; Martin &
Mcintyre, 2007), however, it is not a necessary
requirement to maintain a heterogeneous and
beneficial structure for the dynamics of birds
in riverine environments. Vegetation in the
islands reveals ecological processes with several
successional stages, caused by regimes of sea-
sonal hydrological disturbances (Aceñolaza et
al., 2005; Malvárez, 1999). Therefore, river wet-
lands are highly heterogeneous and maintain a
high array of small habitats and microhabitats
(Miller et al., 2004; Tavares et al., 2015).
The distinct resource offerings determined
by the floristic composition in each type of
forests and in each park were not analyzed
to observe seasonal changes in that aspect.
However, the analysis of vegetation cover in
each forests type revealed variations through-
out the seasons, particularly in the herbaceous
layer (in terms of both coverage and height
of the plants). Regarding the seasonal varia-
tion detected in the bird community, we can
highlight that OF were not consistently able
to distinguish themselves with a higher rich-
ness value in all seasons. Nevertheless, during
the summer, lower abundance values were
evident in the interior forests. Conversely, in
autumn, there was a notable increase, particu-
larly in PNPD. In CF, we found the lowest bird
abundance value in autumn, and in general,
the lowest value of diversity across seasons.
There may be a relationship among the type of
resources offered by the CF, a decrease of those
resources in cool seasons and preferences for
these resources by the species present there. To
explain this relationship, a species composition
analysis might be necessary to detect species
preferences for different physiognomies (Hor-
lent et al., 2003). We speculate, based on our
results, about the existence of a dynamism that
is not easy to identify in the arrangement of
the community. This dynamism appears to be
generated by the combination of seasonal and
microspatial factors.
According to the classical niche theory, dif-
ferent species are associated with different habi-
tat types; therefore, a few small and overlapping
habitats may hold a high number of species
(Allouche et al., 2012; Laanisto et al., 2013;
MacArthur & MacArthur, 1961). Environmen-
tal heterogeneity is the degree of variation
of the landscape components (physiognomy,
structure, size, relative spatial arrangement)
both at the spatial (different successional stag-
es) and temporal levels (relationship between
flooded areas and emergent areas in flood-
plains). It acts as a stabilizing mechanism that
smooths the shift from stable to alternative
states (van Nes & Scheffer, 2005) and deter-
mines the degree of habitat suitability for wild
species, conditioning their richness, abundance
and permanence in the area (Bó & Malvárez,
1999; Bó et al., 2010, Robinson et al., 2002).
Therefore, environmental heterogeneity is a
more important predictor of spatial variation
of bird richness than the area covered by each
habitat type (Lorenzón et al., 2016).
Beta diversity and species turnover from
one area to another have a substantial influ-
ence on general species richness in a region
(Ronchi-Virgolini et al., 2011; Vellend, 2001).
The variation of the assemblage between sites,
independently of the variation contributed by
the physiognomies of the forests, could be
related to the floristic composition. This varia-
tion would provide specific perches, shelters,
or feeding sites for the birds and influence the
17
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
decision to choose one site over another. But
the seasonal differences in bird assemblage
between sites also might be influenced by the
migratory effect. Seasonal variations in the
bird assemblages, caused by migrations, have
been widely studied (Capllonch et al., 2008;
Capllonch, 2018; Carvalho et al., 2013; Lima et
al, 2021). The studied wetlands are in the flu-
vial biological corridor of the Paraná River. The
relative position of the national parks studied in
the great corridor and their proximity to migra-
tory routes might be additional variables that
influence the preference for one site or another
and, therefore, in the arrangement of bird com-
munities between sites.
In bird assemblages of highly heteroge-
neous riparian environments, seasonal changes
are very evident (Lima et al, 2021; Lorenzón et
al., 2019; Ronchi-Virgolini et al., 2013), which
may explain the high seasonal variation of our
results, regardless of microspatial variation.
However, it should be noted that the migratory
condition would not allow us to predict habitat
selection (Horlent et al., 2003); therefore, the
effect of migration on forests preference would
rather be random.
The variation detected within levee for-
ests shows that a deeper analysis is needed
for differences in composition among verti-
cal strata of the understory (De Stefano et al.,
2012). Thus, the differential niche offer that
optimizes resources for birds could be more
clearly evidenced, considering that the turn-
over rate in plant composition is high in these
environments. Therefore, deeper analyses of
the differences in the bird assemblage using a
functional classification criterion, i.e., guild,
may reveal subtle aspects that are poorly detect-
able from a general perspective (Farías et al.,
2007; Milesi et al., 2002; Ronchi-Virgolini et
al., 2011; Root, 1967). Guild-based analyses
would contribute more specific information
to properly guide conservation efforts in these
wetland environments, where variation at dif-
ferent scales is clear.
We conclude that there are at least three
categories of levee forests on floodplains deter-
mined by differences in their vegetation cover,
and that birds respond differentially to these
conditions. These findings show the impor-
tance of habitat heterogeneity in river-asso-
ciated island environments and highlight the
importance of the microhabitat scale in the
levees of floodplains. This allows us to focus
on the underlying dynamics at this scale and
understand the changes that occur in line with
the evolutionary histories of the sites, and the
recovery of environments, while also consid-
ering the changes associated with seasonal
cycles. It is evident to us that, within these wet-
land landscapes, emphasis should not solely
be placed on the mosaic at a macro scale. It is
crucial to concentrate on microspatial dynam-
ics to gain a more profound understanding of
the concealed biological processes within the
islands of these tropical and subtropical envi-
ronments, where heterogeneity is apparent.
We believe that considering the micro-scale
environmental heterogeneity of levee forests in
riparian environments is an important strategy
for planning wetland conservation manage-
ment. This study, in addition to evidencing and
highlighting the existence of differential micro-
habitats within the levee forests, reflects upon
the vegetation dynamics, bird behavior and the
transition of the riparian forest in its recovering
towards a more natural state, where the pulse
of the river and the effect of seasonality do not
stop operating.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
ACKNOWLEDGMENTS
We thank Malena Maroli, Arnaldo Mange-
aud, Pablo Aceñolaza, Estela Rodríguez,
Griselda Urich, and Virginia Piani for valuable
debates and contributions to the elaboration of
18 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
this manuscript. We are grateful to Leonardo
Scarpa for field work. The project was funded
through a Stimulus Scholarship for Scientific
Vocations granted by the National Interuniver-
sity Board, and PICT Piña 2014; PIDAC Piña
2015 and PUE 056-CONICET.
REFERENCES
Aceñolaza, P. G., Povedano, H. E., Manzano, A. S., Muñoz,
J. de D., Areta, J., & Ronchi-Virgolini, A. L. (2004).
Biodiversidad del Parque Nacional Pre-Delta. En F. G.
Aceñolaza (Ed.), Temas de la biodiversidad del litoral
fluvial argentino (Miscelánea, pp. 169–184). Instituto
Superior de Correlación Geológica.
Aceñolaza, P. G., Sione, W. F., Kalesnik, F., & Serafin, M. S.
(2005). Determinación de unidades homogéneas de
vegetación en el Parque Nacional Pre-Delta (Argen-
tina). In F. G. Aceñolaza (Ed.), Temas de la biodi-
versidad del litoral fluvial argentino II (pp. 81–90).
Instituto Superior de Correlación Geológica.
Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro,
M., & Kadmon, R. (2012). Area-heterogeneity tra-
deoff and the diversity of ecological communities.
Proceedings of the National Academy of Sciences,
109(43), 17495–17500.
Anderson, N. H., Sedell, J. R., Roberts, L. M., & Triska, F. J.
(1978). The role of aquatic invertebrates in processing
of wood debris in coniferous forest streams. American
Midland Naturalist, 100(1), 64–82.
Anjos, L. D., Volpato, G. H., Lopes, E. V., Serafini, P. P.,
Poletto, F., & Aleixo, A. (2007). The importance of
riparian forest for the maintenance of bird species
richness in an Atlantic Forest remnant, southern Bra-
zil. Revista Brasileira de Zoología, 24(4), 1078–1086.
https://doi.org/10.1590/S0101-81752007000400027
Aves Argentinas. (2015). Categorización de las aves de la
Argentina según su estado de conservación. Ministerio
de Ambiente y Desarrollo Sustentable de la Nación.
https://avesargentinas.org.ar/sites/default/files/Cate-
gorizacion-de-aves-de-la-Argentina.pdf
Baker, J., French, K., & Whelan, R. J. (2002). The edge effect
and ecotonal species: bird communities across a natu-
ral edge in southeastern Australia. Ecology, 83(11),
3048–3059. https://doi.org/10.2307/3071841
Beltzer, A. H., & Neiff, J. (1992). Distribución de las aves en
el valle del río Paraná. Relación con el régimen pul-
sátil y la vegetación. Ambiente Subtropical, 2(1992),
77–102.
Beltzer, A. H., & Quiroga, M. A. (2007). Birds. In M. H.
Iriondo, J. C. Paggi, M. J. Parma (Eds.), The middle
Paraná River. limnology of a subtropical wetland (pp.
363–377). Springer.
Berduc, A., Lorenzón, R. E., & Beltzer, A. H. (2015).
Patrones de diversidad de aves a lo largo de un
gradiente latitudinal de bosques ribereños del río
Paraná medio, Argentina. Revista Mexicana de Biodi-
versidad, 86(2015), 419–430. https://doi.org/10.1016/j.
rmb.2015.04.003
Blake, J. G. (1992). Temporal variation in point counts of
bird in a lowland wet forest in Costa Rica. Condor,
94(1), 265–275. https://doi.org/10.2307/1368816
Bó, R. F., & Malvárez, A. I. (1999). Las inundaciones y la
biodiversidad en humedales: Un análisis del efecto
de eventos extremos sobre la fauna silvestre. En A. I.
Malvárez (Ed.), Tópicos sobre humedales subtropicales
y templados de Sudamérica (pp. 140–161). Oficina
Regional de Ciencia y Tecnología de la UNESCO para
América Latina y el Caribe.
Bó, R. F., Quintana, R.D., Courtalón, P., Astrada, E., Bolko-
vic, M. L., Lo Coco, G., Magnano, A. (2010). Efectos
de los Cambios en el régimen hidrológico por las
actividades humanas sobre la vegetación y la fauna
silvestre del Delta del Río Paraná In D.E. Blanco &
F. M. Méndez (Eds.) Endicamientos y terraplenes en
el Delta del Paraná. Situación, efectos ambientales y
marco jurídico (pp. 106). Secretaría de Ambiente y
Desarrollo Sustentable de la Nación.
Borodowski, E. (2006). Álamos y sauces en el Delta del
Paraná: Situación del sector y silvicultura. Jornadas
Argentinas de Salicáceas, Argentina.
Burnham, K. P., Anderson, D. R., & Huyvaert, K. P.
(2011). AIC model selection and multimodel inferen-
ce in behavioral ecology: Some background, obser-
vations, and comparisons. Behavorial Ecology and
Sociobiology, 65(2011), 23–35. http://doi.org/10.1007/
s00265-010-1029-6
Cabrera, A. L. (1994). Regiones fitogeográficas argentinas.
En W. F. Kugler (Ed.), Enciclopedia Argentina de agri-
cultura y jardinería (pp. 1–85). ACME.
Capllonch, P. (2018). Un panorama de las migraciones de
aves en Argentina. Hornero, 33(1), 1–18.
Capllonch, P., Ortiz, D., & Soria, K. (2008). Importancia del
litoral fluvial argentino como corredor migratorio de
aves. En F.G. Aceñolaza (Ed.), Temas de Biodiversidad
del Litoral III (pp. 107–120). INSUGEO.
Carvalho, D., Horta, P., Raposeira, H., Santos, M., Luís,
A., & Cabral, J. A. (2013). How do hydrological
and climatic conditions influence the diversity and
behavioural trends of water birds in small Medite-
rranean reservoirs? A community-level modelling
approach. Ecological Modelling, 257, 80–87. https://
doi.org/10.1016/j.ecolmodel.2013.02.012
Clarke, K. R., & Warwick, R. M. (2001). Change in marine
communities: An approach to statistical analysis and
interpretation (2nd Ed.). PRIMER-E Plymouth.
19
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
Coconier, E. G., & Di Giacomo, A. S. (2009). Áreas impor-
tantes para la conservación de las aves, América,
Argentina. En C. Devenish, D. F. Díaz-Fernández, R.
P. Clay, I. Davidson, & I. Yépez-Zabala (Eds.), Impor-
tant bird areas Americas-priority sites for biodiversi-
ty conservation (pp. 59–70). BirdLife Conservation
Series.
Cotgreave, P., & Harvey, P. H. (1994). Evenness of abundan-
ce in bird communities. Journal of Animal Ecology,
63(2), 365–374. https://doi.org/10.2307/5554
De Stefano, K., Merler, J. A., Magnano, A. L., Nanni, A.
S., Kandus, P., & Quintana, R. D. (2012). Relation
between environmental heterogeneity and bird distri-
bution and richness in two units of landscapes of the
Delta of the Paraná, Argentina. Ornitologia Neotropi-
cal, 23(2), 169–184.
Di Giacomo, A., & Contreras, J. (2002). Consideraciones
acerca de la diversidad de las aves en relación con el
eje fluvial Paraguay-Paraná en Sudamérica. Historia
Natural, 1(5), 23–29.
Drobner, U., Bibby, J., Smith, B., & Wilson, J. B. (1998). The
relation between community biomass and evenness:
What does community theory predict, and can these
predictions be tested? Oikos, 82(2), 295–302. https://
doi.org/10.2307/3546969
eBird. (March, 2020). An online database of bird distribution
and abundance. Cornell Lab of Ornithology, Ithaca,
New York. http://www.ebird.org.
Farías, A. A., Marone, L., & Jaksic, F. M. (2007). Gremios.
En F. M. Jaksic, & L. Marone (Eds.), Ecología de
comunidades (pp. 145–336). Ediciones Universidad
Católica de Chile.
Frutos, A. E., Ronchi-Virgolini, A. L., Giraudo, A. R., &
Piña, C. I. (2020a). How does cattle raising affect bird
communities in the delta of the Paraná River? Journal
for Nature Conservation, 57(2020), 125872. https://
doi.org/10.1016/j.jnc.2020.125872
Frutos, A. E., Leiva, P. M. L., & Piña, C. I. (2020b). Bird
community changes associated with cattle raising
management in the delta forests of the Paraná River.
Basic and Applied Ecology, 49(2020), 13–21. https://
doi.org/10.1016/j.baae.2020.09.011
Frutos, A. E. (2018). Efecto de la ganadería sobre ensambles
de aves en bosques fluviales de la región del Delta del
o Paraná (Tesis doctoral). Universidad Nacional del
Litoral, Argentina. http://hdl.handle.net/11185/1156
García, C., Renison, D., Cingolani, A. M., & Fernández-Juricic,
E. (2008). Avifaunal changes as a consequence of large
scale livestock exclusion in the mountains of Central
Argentina. Journal of Applied Ecology, 45(1), 351–360.
https://doi.org/10.1111/j.1365-2664.2007.01388.x
Giacosa, B., Andelman, M., Balderrama, D., Matarasso,
M. (2019). Plan de manejo del sitio Ramsar Delta e
Islas del Para. Fundación Humedales, Wetlands
International.
Giraudo, A., & Ordano, M. A. (2003). Patrones de diver-
sidad de las aves del Iberá: variación de la riqueza,
abundancia y diversidad entre localidades, regiones y
hábitats. En B.B. Álavarez (Ed.), Fauna del Iberá (pp.
235–256). Universidad Nacional del Nordeste.
Godoi, M. N., Laps, R. R., Ribeiro, D. B., Aoki, C., & de
Souza, F. L. (2017). Bird species richness, composition
and abundance in pastures are affected by vegetation
structure and distance from natural habitats: A single
tree in pastures matters. Emu-Austral Ornithology,
118(2), 201–211. https://doi.org/10.1080/01584197.2
017.1398591
Granados-Sánchez, D., Hernández-García, M. A., López-
Ríos, G. F. (2006). Ecología de las Zonas Ribere-
ñas. Revista Chapingo. Serie Ciencias Forestales y del
Ambiente, 12(1), 55–69.
Gureev, S. P., Nekhoroshev, O. G., & Mitchell, P. J. (2019).
Spatial heterogeneity of bird communities in the
natural landscapes of the Southern Taiga of the
Ob–Yenisei Interfluve and the Chulym River Valley
(Tomsk Region). IOP Conference Series: Earth and
Environmental Science, 400, 012014. https://doi.
org/10.1088/1755-1315/400/1/012014
Heleno, R., & Vargas, P. (2015). How do islands become
green? Global Ecology and Biogeography, 24, 518-526.
https://doi.org/10.1111/geb.12273
Hernández-Belloso, C. M., García-Prieto, J. C., Martín, R.,
de Tapia, R., García-Roig, M., Silla, F., Núñez-Nuñez,
C., & Proal-Nájera, J. B. (2018). Efectos de la calidad
del agua y la heterogeneidad del hábitat en las comuni-
dades de aves de graveras restauradas y activas [Comu-
nicación técnica escrita]. XIV Congreso Nacional del
Medio Ambiente, Madrid, España.
Horlent, N., Jrez, M. C., & Arturi, M. (2003). Incidencia
de la estructura del paisaje sobre la composición de
especies de aves de los talares del noreste de la provin-
cia de Buenos Aires. Ecología Austral, 13(2), 173–182.
Huff, M. H., Bettinger, K. A., Ferguson, H. L., Brown, M. J.,
& Altman, B. (2000). A habitat based point-count pro-
tocol for terrestrial birds, emphasizing Washington and
Oregon. General Technical Report Pacific Northwest
Research Station, Forest Service, U.S. Department of
Agriculture.
Islands of Santa Fe National Park (ISFNP). (Septiembre,
2022). Parque Nacional Islas de Santa Fe. https://www.
argentina.gob.ar/parquesnacionales/islasdesantafe
International Union for Conservation of Nature (IUCN).
(2023). The Red List of Threatened Species. https://
www.iucnredlist.org/
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006).
World map of the Köppen-Geiger climate classification
20 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
updated. Meteorologische Zeitschrift, 15(3), 259–263.
https://doi.org/10.1127/0941-2948/2006/0130
Kubitz & Ziburski Kubitzki, K. & Ziburski, A. (1994). Seed
dispersal in flood plain forests of Amazonia. Biotropi-
ca, 26(1), 30-46. http://www.jstor.org/stable/2389108
Laanisto, L., Tamme, R., Hiiesalu, I., Szava-Kovats, R.,
Gazol, A., & Pärtel, M. (2013). Microfragmentation
concept explains non positive environmental hete-
rogeneity-diversity relationships. Oecología, 171(1),
217–226. https://doi.org/10.1007/s00442-012-2398-5
Lima, B. M., Ragusa-Netto, J., Donatelli, R. J., & Posso, S. R.
(2021). Composition and spatio-temporal dynamics of
aquatic bird community in humid areas of Alto Para-
na Atlantic Forest. Brazilian Journal of Biology, 84(25),
e251438. https://doi.org/10.1590/1519-6984.251438
Lorenzón, R. E. (2014). Respuestas biológicas de ensambles
de aves no-paseriformes a la variación espacio-tem-
poral de ambientes acuáticos a escalas local y regional
en la planicie de inundación del Paraná Medio (Tesis
Doctoral). Universidad Nacional del Litoral.
Lorenzón, R. E., Beltzer, A. H., Olguin, P. F., & Ronchi-
Virgolini, A. L. (2016). Habitat heterogeneity drives
bird species richness, nestedness and habitat selection
by individual species in fluvial wetlands of the Paraná
River, Argentina. Austral Ecology, 41(7), 829–841.
https://doi.org/10.1111/aec.12375
Lorenzón, R. E., Beltzer, A. H., Olguin, P. F., León, E. J.,
Sovrano, L. V., Antoniazzi, C. E., & Ronchi‐Virgolini,
A. L. (2019). Temporal variation of bird assemblages
in dynamic fluvial wetlands: seasonality and influen-
ce of water level and habitat availability. Revista
de Biología Tropical, 67(6), 1131–1145. https://doi.
org/10.15517/RBT.V67I6.36734
MacArthur, R. H., & MacArthur, J. W. (1961). On bird
species diversity. Ecology, 42(3), 594–598. https://doi.
org/10.2307/1932254
Magnano, A. L., Fracassi, N. G., Nanni, A. S., & Quintana,
R. D. (2019). Changes in bird assemblages in an affo-
restation landscape in the Lower Delta of the Paraná
River, Argentina. Emu-Austral Ornithology, 2019, 1–9.
https://doi.org/10.1080/01584197.2019.1581032
Malvárez, A. I. (1999). El Delta del Río Paraná como
mosaico de humedales. En A. I. Malvárez (Ed.),
Tópicos sobre humedales subtropicales y templados de
Sudamérica (pp. 35–53). Oficina Regional de Ciencia
y Tecnología de la UNESCO para América Latina y el
Caribe (ORCYT).
Mangeaud, A., & Elías-Panigo, D. H. (2018). R-Medic:
Un programa de análisis estadísticos sencillo e
intuitivo. Revista Methodo, 3(1), 18-22. https://doi.
org/10.22529/me.2018.3(1)05
Martin, T. E. (1993). Nest predation among vegetation
layers and habitat types: Revising the dogmas. The
American Naturalist, 141(6), 897–913. https://doi.
org/10.1086/285515
Martin, T. G., & McIntyre, S. (2007). Impacts of livestock gra-
zing and tree clearing on birds of woodland and ripa-
rian habitats. Conservation Biology, 21(2), 504–514.
https://doi.org/10.1111/j.1523-1739.2006.00624.x
Martin, T. G., & Possingham, H. P. (2005). Predicting the
impact of livestock grazing on birds using foraging
height data. Journal of Apllied Ecology, 42(2), 400–408.
https://doi.org/10.1111/j.1365-2664.2005.01012.x
Matteucci, D. S., & Colma, A. (1982). Metodología para
el estudio de la vegetación. Secretaría General de la
Organización de los Estados Americanos.
Matteucci, D. S. (2012). Ecorregión delta e islas de los ríos
Paraná y Uruguay. En J. Morello, S. D. Matteucci,
& A. F. Rodríguez (Eds.), Ecorregiones y complejos
ecosistémicos argentinos (pp. 447–488). Orientación
Gráfica Editora.
Matthew, R. E. S., & Moussalli, A. (2011). A brief guide to
model selection, multimodel inference and model
averaging in behavioural ecology using Akaikes
information criterion. Behavioral Ecology and Socio-
biology, 65(2011), 13–21. https://doi.org/10.1007/
s00265-010-1037-6
McCune, B., & Mefford, M. J. (1999). PC-ORD. Multiva-
riate analysis of ecological data, version 4.28. MjM
Software Design, Gleneden Beach, OR.
Milesi, F. A., Marone, L., Lopez de Casenave, J., Cueto, V. R.,
& Mezquida, E. T. (2002). Gremios de manejo como
indicadores de las condiciones del ambiente: un estu-
dio de caso con aves y perturbaciones del hábitat en
el Monte central, Argentina. Ecología Austral, 12(2),
149–161.
Miller, J. R., Dixon, M. D., & Turner, M. G. (2004). Respon-
se of avian communities in large-river floodplains to
environmental variation at multiple scales. Ecological
Applications, 14(5), 1394–1410. https://www.jstor.org/
stable/4493659
Munes, E. C., Dixon, M. D., Swanson, D. L., Merkord, C. L.,
& Benson, A. R. (2015). Large, infrequent disturbance
on a regulated river: response of floodplain forest
birds to the 2011 Missouri River flood. Ecosphere,
6(11), 212.
Naiman, R. J., Décamps, H., & McClain, M. (2005). Riparia:
Ecology, Conservation and Management of Streamside
Communities. Elsevier.
Narosky, T., & Yzurieta, D. (2010). Guía para la identifi-
cación de las aves de Argentina y Uruguay. Vázquez
Mazzini Editores.
Neiff, J. J., & Malvárez, A. I. (2004). Grandes humedales
fluviales. In I. Malvárez & R. F. Bó (Eds.), Documentos
21
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
del curso taller bases ecológicas para la clasificación e
inventario de humedales en Argentina (pp. 77–85).
Neiff, J. J. (2005). Bosques fluviales de la cuenca del Paraná.
En J. F. Goya, J. L. Frangi, & M. F. Arturi (Eds.), Eco-
logía y manejo de los bosques de Argentina (pp. 1–26).
Editorial de la Universidad Nacional de La Plata.
Nestler, J. M., Baigún, C. R., Oldani, N., & Weber, L. J.
(2007). Contrasting the middle Paraná and Missis-
sippi Rivers to develop a template for restoring large
floodplain river ecosystems. International Journal of
River Basin Management, 5(2), 305–319. https://doi.
org/10.1080/15715124.2007.9635329
Nieves-Vele, K. A., & Orellana-Peralta, D. G. (2018).
Regeneración natural de especies leñosas en claros del
Área de Bosque y Vegetación Protectora Aguarongo
(ABVPA): influencia de factores abióticos e implicacio-
nes para la restauración. Universidad del Azuay.
Nores, M. (1987). Zonas ornitogeográficas de Argentina.
En T. E. Narosky, & D. Yzurieta (Eds.), Guía para la
identificación de las aves de Argentina y Uruguay (pp.
295–305). Asociación Ornitológica del Plata.
Oksanen, J. (2011). Multivariate analysis of ecological com-
munities. R: vegan tutorial. http://cran.rproject.org
Olff, H., & Ritchie, M. E. (1998). Effects of herbivores
on grassland plant diversity. Trends in Ecology &
Evolution, 13(7), 261–265. https://doi.org/10.1016/
S0169-5347(98)01364-0
Pre-Delta National Park (PDNP). (September, 2022). Par-
que Nacional Pre-Delta, Provincia de Entre Ríos.
https://www.argentina.gob.ar/parquesnacionales/
predelta
Placci, L. G. (1994). Estructura y funcionamiento fenológico
en relación a un gradiente hídrico en bosques del Este
de Formosa (Tesis doctoral). Universidad Nacional
de La Plata.
Quinn, G., & Keough, M. (2002). Experimental design and
data analysis for biologists. Cambridge University
Press.
Quintana, R. D., & Bó, R. F. (2010). Caracterización general
de la región del Delta del Paraná. En D. E. Blanco,
& F. M. Méndez (Eds.), Endicamientos y terraplenes
en el Delta del Paraná: situación, efectos ambientales
y marco jurídico (pp. 5–14). Wetlands International.
R Core Team. (2019). R: A language and environment for
statistical computing. R Foundation for Statistical
Computing. Vienna, Austria. https://www.R-project.
org/
Ralph, C., Geupel, G., Pyle, P., Martin, T., De Sante, D., &
Mila, B. (1996). Manual de métodos de campo para
el monitoreo de aves terrestres. Pacific Southwest
Research Station, Forest Service, U.S. Department of
Agriculture.
Rannestad, O. T., Tsegaye, D., Munishi, P. K. T., & Moe,
S. R. (2015). Bird abundance, diversity, and habitat
preferences in the riparian zone of a disturbed wet-
land ecosystem: The Kilombero Valley, Tanzania.
Wetlands, 35(3), 521–532. https://doi.org/10.1007/
s13157-015-0640-8
Remsen, J. V. Jr., Areta, J. I., Bonaccorso, E., Claramunt, S.,
Jaramillo, A., Lane, D. F., Pacheco, J. F., Robbins, M.
B., Stiles, F. G., & Zimmer, K. J. (2022). A classifica-
tion of the bird species of South America. American
Ornithological Society.
Ringuelet, R. A. (1961). Rasgos de la zoogeografía de la
Argentina. Physis, 22(63), 151–170.
Robinson, C. T., Tockner, K., & Ward, J. V. (2002).
The fauna of dynamic riverine landscapes. Fres-
hwater Biology, 47(4), 661–677. https://doi.
org/10.1046/j.1365-2427.2002.00921.x.
Ronchi-Virgolini, A. L., Beltzer, A. H., & Manzano,
A. (2008). Bird Communities in wetlands along
the Lower Paraná River, Entre Ríos, Argentina.
Avian Biology Research, 1(4), 153–163. https://doi.
org/10.3184/175815508X404282
Ronchi-Virgolini, A. L., Lorenzón, R. E., Blake, J. G., & Belt-
zer, A. H. (2013). Temporal variation of bird assem-
blages in a wetland: influence of spatial heterogeneity.
Avian Biology Research, 6(3), 198–206.
Ronchi-Virgolini, A. L., Blake, J. G., Lorenzón, R. E., &
Beltzer, A. H. (2011). Bird assemblages in two types
of forests in the floodplain of the lower Paraná River
(Argentina). Ornitología Neotropical, 22(3), 387–404.
Ronchi-Virgolini, A. L., Lorenzón, R. E., Beltzer, A. H., &
Alonso, J. M. (2010). Ensambles de aves del Parque
Nacional Pre-Delta (Entre Ríos, Argentina): análisis
de la importancia ornitológica de distintas unida-
des ambientales. Hornero, 25(1), 27–40. https://doi.
org/10.56178/eh.v25i1.709
Root, R. B. (1967). The niche explotation pattern of the
blue-gray gnatcatcher. Ecological monographs, 37(4),
317–350. https://doi.org/10.2307/1942327
Rosenzweig, M. L. (1995). Species diversity in space and time.
Cambridge University Press. https://doi.org/10.1017/
CBO9780511623387
Rossetti, M. A., & Giraudo, A. R. (2003). Comunidades de
aves de bosques fluviales habitados y no habitados por
el hombre en el río Paraná medio, Argentina. Horne-
ro, 18(2), 89–96. http://hdl.handle.net/20.500.12110/
hornero_v018_n02_p089
Sabattini, R. A., & Lallana, V. H. (2007). Aquatic macro-
phytes. In M. H. Iriondo, J. C. Paggi, & M. J. Parma
(Eds.), The middle Paraná River (pp. 205–226).
Springer.
22 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56175, enero-diciembre 2024 (Publicado Set. 10, 2024)
Symonds, M. R. E., & Johnson, C. N. (2008). Species richness
and evenness in Australian birds. American Natura-
list, 171(4), 480–490. https://doi.org/10.1086/528960
Tavares, D. C., Guadagnin, D. L., de Moura, J. F., Sici-
liano, S., & Merico, A. (2015). Environmental and
anthropogenic factors structuring waterbird habitats
of tropical coastal lagoons: Implications for manage-
ment. Biological Conservation, 186, 12–21. https://doi.
org/10.1016/J.BIOCON.2015.02.027
Tockner, K., Malard, F., & Ward, J. V. (2000a). An extension
of the flood pulse concept. Hydrological Processes,
14(16-17), 2861–2883. https://doi.org/10.1002/1099-
1085(200011/12)14:16/17<2861::AID-
HYP124>3.0.CO;2-F
van Nes, E. H. & Scheffer, M. (2005). Implications of spatial
heterogeneity for catastrophic regime shifts in ecosys-
tems. Ecology, 86(7), 1797–1807.
Velásquez-Valencia, A. (2018). Influencia de la configu-
ración y composición de los paisajes agroforestal y
silvopastoril en la estructura de la comunidad de aves
del piedemonte amazónico (Tesis doctoral). Univer-
sidad de Colombia. https://repositorio.unal.edu.co/
handle/unal/64065
Vellend, M. (2001). Do commonly used indices of diversity
measure species turnover? Journal of Vegetation Scien-
ce, 12(4), 545–552. https://doi.org/10.2307/3237006
Verner, J., & Milne, K. A. (1989). Coping with sources of
variability when monitoring population trends. Anna-
les Zoologici Fennici, 26, 191–199.
Viana, A. C. M., & Jardim, F. C. (2013). Natural regenera-
tion dynamics of Couratari guianensis in a tropical
forest selectively logges in Moju, state of Para, Brazil.
Amazonian Journal of Agricultural and Environment
Sciences, 56(2), 112–119.
Zerda, H. R., & Tiedemann, J. L. (2010). Dinámica temporal
del NDVI del bosque y pastizal natural en el Chaco
Seco de la Provincia de Santiago del Estero, Argenti-
na. Ambiencia, 6(1), 1–11.