
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56532, enero-diciembre 2024 (Publicado Jul. 11, 2024)
Development, 29(1), 185–212. https://doi.org/10.1051/
agro:2008021
Fischer, G., Posada, C., & Piedrahíta, W. (2009). Ecofi-
siología de las especies pasifloráceas cultivadas en
Colombia. En D. Miranda, G. Fischer, C. Carranza, S.
Magnitskiy, F. Casierra-Posada, W. Piedrahíta, & L. E.
Flórez (Eds.), Cultivo, poscosecha y comercialización
de las pasifloráceas en Colombia: maracuyá, granadi-
lla, gulupa y curuba (pp. 45–67). Sociedad Colombia-
na de Ciencias Hortícolas. https://www.researchgate.
net/publication/215793346.
Fischer, G., Quintero, O. C., Tellez, C. P., & Melgarejo, L. M.,
(2020). Curuba: Passiflora tripartita var. mollissima y
Passiflora tarminiana. En A. Rodríguez, F. Gelape, M.
Parra, & A. M. Costa (Eds.), Pasifloras especies culti-
vadas en el mundo (pp. 106–121). ProImpress, Cepass.
Fischer, G., & Miranda, D. (2021). Review on the eco-
physiology of important Andean fruits: Passiflora L.
Revista Facultad Nacional de Agronomía Medellín,
74(2), 9471–9481. https://doi.org/10.15446/rfnam.
v74n2.91828
Flechas-Bejarano, N., Melgarejo, L. M., & Magnitskiy, S.
(2019). Fenología floral, crecimiento y calidad de
frutos de curuba (Passiflora tripartita Kunt var. mollis-
sima) en respuesta a diferentes dosis de nutrientes
minerales. En L. M. Melgarejo (Ed.), Gulupa (Passiflo-
ra edulis), curuba (Passiflora tripartita), aguacate (Per-
sea americana) y tomate de árbol (Solanum betaceum)
Innovaciones (pp. 151–167). Universidad Nacional de
Colombia.
Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (2003). Phy-
siology of crop plants. Blackwell Publishing Company.
Gomes, M. de M. de A., Mota, M. J., Torres, A., Carriello,
R. C., & Campostrini, E. (2018). Water relations, pho-
tosynthetic capacity, and growth in passion fruit (Pas-
siflora edulis Sims f. flavicarpa Deg.): Seedlings and
grafted plants. Revista Ceres, 65(2), 135–143. https://
doi.org/10.1590/0034-737X201865020004
Gomes, M. T. G., da Luz, A. C., dos Santos, M. R., do
Carmo, M., Silva, D. M., & Falqueto, A. R. (2012).
Drought tolerance of passion fruit plants assessed by
the OJIP chlorophyll a fluorescence transient. Scientia
Horticulturae, 142, 49–56. https://doi.org/10.1016/j.
scienta.2012.04.026
GraphPad. (2023). GraphPad (Version 10, Software).
https://www.graphpad.com/features
Gutiérrez, M., Miguel-Chávez, R. S., & Terrazas, T. (2009).
Xylem conductivity and anatomical traits in diver-
se lianas and small tree species from a tropical
forest of Southwest Mexico. International Journal
of Botany, 5(4), 279–286. https://doi.org/10.3923/
ijb.2009.279.286
Inoue, S., Dang, Q. L., Man, R., & Tedla, B. (2019). Nor-
thward migration of trembling aspen will increase
growth but reduce resistance to drought-induced
xylem cavitation. Botany, 97(11), 627–638. https://
doi.org/10.1139/cjb-2019-0099
Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Soma-
sundaram, R., & Panneerselvam, R. (2009). Drought
stress in plants: a review on morphological characte-
ristics and pigments composition. International Jour-
nal of Agriculture & Biology, 11(1), 100–105.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids:
pigments of photosynthetic biomembranes. Methods
in Enzymology, 148, 350–382.
Lima, L. K. S., Jesus, O. N. de, Soares, T. L., Oliveira, S.
A. S. de, Haddad, F., & Girardi, E. A. (2019). Water
deficit increases the susceptibility of yellow passion
fruit seedlings to Fusarium wilt in controlled condi-
tions. Scientia Horticulturae, 243, 609–621. https://
doi.org/10.1016/j.scienta.2018.09.017
Liu, H., Song, S., Zhang, H., Li, Y., Niu, L., Zhang, J., &
Wang, W. (2022). Signaling transduction of ABA,
ROS, and Ca2+ in plant stomatal closure in response
to drought. International Journal of Molecular Scien-
ces, 23, 14824. https://doi.org/10.3390/ijms232314824
Lozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L.
M., Álvarez-Flórez, F., & Melgarejo, L. M. (2021).
Physiological, biochemical and transcriptional res-
ponses of Passiflora edulis Sims f. edulis under pro-
gressive drought stress. Scientia Horticulturae, 275,
109655. https://doi.org/10.1016/j.scienta.2020.109655
Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik,
P. C., & Sohrabi, E. (2010). Effect of drought stress
on yield, proline and chlorophyll contents in three
chickpea cultivars. Australian Journal of Crop Science,
4(8), 580–585.
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluo-
rescence - a practical guide. Journal of Experimental
Botany, 51(345), 659–668.
Mayorga, M., Fischer, G., Melgarejo, L. M., & Parra-Coro-
nado, A. (2020). Growth, development and quality of
Passiflora tripartita var. mollissima fruits under two
environmental tropical conditions. Journal of Applied
Botany and Food Quality, 93, 66–75. https://doi.
org/10.5073/JABFQ.2020.093.009
Melgarejo, L. M., Hernández, S., Barrera, J., Solarte, M. E.,
Suárez, D., Pérez, L. V., Rojas, Y. A., Cruz, M., Moreno
L., Crespo, S., & Pérez, W. (2010). Experimentos en
fisiología vegetal. Universidad Nacional de Colombia.
Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluo-
rescence analysis: A guide to good practice and
understanding some new applications. Journal of
Experimental Botany, 64(13). 3983–3998. https://doi.
org/10.1093/jxb/ert208
Parry, C., Blonquist, J. M., & Bugbee, B. (2014). In situ
measurement of leaf chlorophyll concentration: