1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56582, enero-diciembre 2024 (Publicado Abr. 16, 2024)
Sustainability of dual exploitation (fry and adults) of the fish
Semaprochilodus laticeps (Characiformes: Prochilodontidae) in Colombia
Joan Steven Bocanegra-Mora1; https://orcid.org/0000-0002-8821-0605
Rosa Elena Ajiaco-Martínez1*; https://orcid.org/0000-0001-6407-7806
Hernando Ramírez-Gil1; https://orcid.org/0000-0002-0166-3047
Carlos Guillermo Barreto2; https://orcid.org/0000-0003-4158-8800
1 Grupo de Investigación Evaluación, Manejo y Conservación de Recursos Hidrobiológicos y Pesqueros, Universidad de
los Llanos, Campus Barcelona, Villavicencio, Meta, Colombia; joan.bocanegra@unillanos.edu.co, reajiaco@gmail.com
(*Correspondence), hernando.ramirez@unillanos.edu.co
2 Autoridad Nacional de Acuicultura y Pesca, Bogotá, D. C., Colombia; cbarretoreyes@gmail.com
Received 12-IX-2023. Corrected 03-III-2024. Accepted 08-IV-2024.
ABSTRACT
Introduction: Semaprochilodus laticeps is a freshwater fish species native to the Orinoco Basin that is exploited in
Colombia at two different stages of its life cycle: fry (for the ornamental trade) and adults (for the consumer mar-
ket). This double exploitation of juveniles and adults raises concerns about the population stability of the species.
Objective: To evaluate the sustainability of the exploitation of the species in these two life stages.
Methods: 1 277 specimens of S. laticeps were sampled between June and December 2017. Population parameters
were estimated from length-frequency data using ELEFAN 1 routine of the FISAT II package. Length at first
maturity (Lm) and length at maximum yield (Lopt) were determined using the Froese and Binohlan equations.
Virtual population analysis was performed based on Jones length cohort analysis.
Results: Population parameters were as follows: K = 0.75, L∞ = 53.1 cm LE, Z = 2.92 yr-1, M = 1.24 yr-1 and
F = 1.68. Lm was estimated to be 29.6 cm SL and Lopt at 33.4 cm SL. Of note, 96.3 % of the fish caught in the
consumer fishery exceeded Lm and 80 % exceeded Lopt. The results of the virtual population analysis suggested
that a very low proportion (0.85 %) of the population was caught as fry, possibly due to natural mortality.
Conclusions: Based on the results, as no indicators of overexploitation were identified, it is recommended to
continue with the dual use of S. laticeps. It is recommended to maintain the existing conservation measures,
such as the closed season during the reproductive period, to ensure sustainable fishery exploitation. The results
obtained can serve as a reference to analyze the situation of other species currently fished for both the ornamental
(fry) and food (adult) markets.
Key words: fisheries management; food fish; freshwater fish; ornamental fish trade; sustainable fishing
exploitation.
RESUMEN
Sustainability of dual exploitation (fry and adults) of the fish Semaprochilodus laticeps
(Characiformes: Prochilodontidae) in Colombia
Introducción: Semaprochilodus laticeps es una especie de pez de agua dulce originaria de la cuenca del Orinoco,
explotada en Colombia en dos etapas distintas de su ciclo de vida: alevín (para el comercio ornamental) y adulto
(para el mercado de consumo). Esta doble explotación de alevines y adultos genera preocupación sobre la esta-
bilidad poblacional de la especie.
https://doi.org/10.15517/rev.biol.trop..v72i1.56582
CONSERVATION
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56582, enero-diciembre 2024 (Publicado Abr. 16, 2024)
INTRODUCTION
The sapuara, or sapoara (Semaprochilodus
laticeps), is a member of the Prochilodontidae
family and inhabits both lentic and lotic bodies
in the Orinoco basin. Adult specimens of this
species are caught for sustenance by riparian
communities (Ajiaco-Martínez et al., 2012; De
La Hoz-M et al., 2015; Novoa, 2002; Novoa &
Ramos, 1982; Ramirez-Gil & Ajiaco-Martínez,
2001). Additionally, for over two decades, their
fry have been collected and traded as ornamen-
tal fish (Ajiaco-Martínez et al., 2012; Duarte et
al., 2016; Ortega-Lara et al., 2015).
As of now, data on catches, whether for
food or ornamental fish, is fragmented. Cap-
tures for food use have been reported in ports
of the Colombian Orinoco River Basin, with
annual landings ranging from 7.8 to 34.2 tons
between 2006 and 2017 (Autoridad Nacional
de Acuicultura y pesca-AUNAP, 2017; Pineda-
Arguello et al., 2011). As an ornamental fish,
the annual commercialization in Puerto Car-
reño has varied from 22 015 specimens dur-
ing the period 1998-1999 to 395 593 in 2017
(Ramírez-Gil et al., 2001; this study). Puerto
Carreño is the port with the highest volumes
of traded species for both consumption and
ornamental purposes.
Colombian regulations have prohibit the
capture of specimens smaller than the mini-
mum size, which has been set at 35 cm standard
length (SL) for sapuara since 1981 (Instituto
Nacional de los Recursos Naturales Renovables
y del Ambiente, 1981). Resolution 0190 of 1995
(Instituto Nacional de Pesca y Acuicultura,
1995) permits the use of S. laticeps as an orna-
mental species, including fry that do not comply
with the minimum legal size. Also, the AUNAP
in 2015 listed S. laticeps as an ornamental spe-
cies in Colombia in Resolution 1924 (Autori-
dad Nacional de Acuicultura y Pesca-AUNAP,
2015). This allowance is motived by the eco-
nomic benefits it offers to local communities
in Vichada, a department with a multidimen-
sional poverty index of 75.6 % (Departamento
Administrativo Nacional de Estadística-DANE,
2021), the highest in Colombia. However, the
decision-makers lack definitive arguments to
assess whether the extracting fry (ornamental
fishing) and adults (consumer fishing) is sus-
tainable for the species population.
Despite being identified as one of the 20
dual-purpose species by Ajiaco-Martínez et al.
2012, there is limited and sporadic information
available. There is a lack of tools available to
assess the impact of exploitation on different
life stages (fry and adult) as well as to evaluate
Objetivo: Evaluar la sostenibilidad de la explotación de la especie en estas dos etapas de vida.
Método: Entre junio y diciembre de 2017 se muestrearon 1 277 ejemplares de S. laticeps. Los parámetros pobla-
cionales se estimaron utilizando datos de frecuencia de tallas con la rutina ELEFAN 1 del paquete FISAT II. La
longitud de primera madurez (Lm) y la de máximo rendimiento (Lopt) se determinaron mediante ecuaciones de
Froese y Binohlan. El análisis de la población virtual se realizó basándose en el análisis de cohorte de longitud
de Jones.
Resultados: Los parámetros poblacionales fueron los siguientes: K = 0.75, L∞ = 53.1 cm LE, Z = 2.92 año-1,
M = 1.24 año-1 y F = 1.68. Lm se estimó en 29.6 cm SL y Lopt en 33.4 cm SL. En particular, el 96.3 % del pescado
capturado en la pesquería de consumo superó Lm y el 80 % superó Lopt. El análisis de la población virtual sugirió
que una fracción muy baja (0.85 %) de la población fue capturada como alevines, posiblemente atribuible a la
mortalidad natural.
Conclusiones: Con base en los hallazgos, al no identificarse indicadores de sobreexplotación, se recomienda
continuar con el doble uso de S. laticeps. Se recomienda mantener las medidas de protección existentes, así como
una veda durante el período reproductivo, para garantizar una explotación pesquera sostenible. Los resultados
obtenidos pueden servir como referencia para analizar la situación de otras especies actualmente capturadas para
el mercado tanto ornamental como de consumo.
Palabras clave: gestión pesquera; peces de consumo; peces de agua dulce; comercio de peces ornamentales;
explotación pesquera sostenible.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56582, enero-diciembre 2024 (Publicado Abr. 16, 2024)
the adequacy of current management measures
for species protection are also lacking.
This study aims to evaluate both types of
fisheries for S. laticeps to quantify the impact of
fishing activity, improve understanding of the
species, and equip regulatory institutions with
decision-making tools for sustainable man-
agement. The central inquiry is whether the
exploitation of sapuara for both ornamental
fish (fry) and food fish (adult) markets is sus-
tainable This study utilizes data from the Puer-
to Carreño fisheries as a reference point, with
the aim to producing replicable results that can
be applied to the study of S. laticeps in various
regions within the Orinoco Basin. The main
goal is to enhance the preservation efforts for
the species and also promote socio-economic
stability in the communities of the area.
MATERIALS AND METHODS
Study area: Puerto Carreño is located at
6°11’20” N & 67°29’9” W, at an elevation of 51
m.a.s.l. It is bordered by the Meta, Bita, and
Orinoco rivers. Fishing operations for orna-
mental fish are carried out in the flood zone of
the Meta River, and for consumption fishing in
the three rivers. The region experiences four
distinct hydrological phases: low waters prevail
from January to March, the waters rise from
April to June, high waters occur from July to
August, and falling waters from September to
December. Sampling occurred during three
of these periods. The species is available for
ornamental fishing only during rising and high
waters, and for consumption fishing during ris-
ing waters at high.
Data collection: Between June and Octo-
ber 2017, digital calipers with a precision of 0.1
mm were used to measure the standard length
(SL) of S. laticeps specimens, while digital
scales with a precision of 0.1 g were used for
weight measurements.
The specimens were obtained through
artisanal fishing. Ornamental specimens were
measured at fish collection facilities visited
daily, with random selection and measurement
of the maximum number possible each day.
Individuals destined for consumption were
measured daily at fish purchasing sites, with
data compiled on all landed specimens of the
species landed at each location.
Statistical analyses: The gathered data
were organized in an Excel spreadsheet. The
length-weight relationship was determined
using the methodology of Sparre and Venema
(1997), following the function: W = aLb, where
W is weight, L is standard length, and “a” and
b” are the equation parameters. The confi-
dence limits of “b” were calculated according
to Pauly (1984). The individual growth rate was
derived from Von Bertalanffy’s general growth,
Equation 1:
L = L_∞ [1-(e-k(t-t0))] (1)
Where L is the length, L¥ is the maximum
length, K is the curvature parameter, t is the
age in years and t0 is the moment in which the
specimen was a size 0.
The FISAT II routine was employed, apply-
ing the Power-Wetherall graph to estimate L
and Z/K parameters. The identification of the
smallest length or cut length for recruitment
was determined using the Pseudocapture curve.
The preliminary estimation of the meta-
bolic rate of growth was conducted following
the model of Gulland and Holt (Sparre & Ven-
ema, 1997) using the ELEFAN 1 routine.
The growth performance index (ϕ) was
estimated according to Pauly and Munro
(1984), Equation 2:
’= Log (K) +2 Log (L) (2)
The t0 was estimated using the empirical
relationship of Pauly (1983), Equation 3:
Log (-t0) = -0.3922 -0.2752 Log L -1.038 Log K (3)
The instantaneous mortality rate (Z) was
estimated using Equation 4, the linearized
catch curve converted to lengths (Sparre &
Venema, 1997):
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56582, enero-diciembre 2024 (Publicado Abr. 16, 2024)
(4)
Where C (L1, L2) is the catch in the number
of specimens in a given size interval, Δt is the
time it takes for the fish to grow from L1 to
L2, calculated from the growth parameters and
lengths, C is the intercept, and Z is the slope Δt.
The determination of natural mortality
(M) was made according to Equation 5, the
empirical equation of Pauly (Cadima, 2003;
Pauly, 1984; Sparre & Venema, 1997):
M = 0.8*e -0.0152-0.279Ln L_∞+0.6543Ln K+0.463Ln T (5)
In this equation, L, K, and T represent the
parameters estimated by the growth equation
and the average temperature of the ecosystem
in the estimation period (27 °C). It was adjusted
to 80 % following the recommendation of Pauly
(1984) for L and K.
Fishing mortality (F) was estimated from
total mortality and natural mortality, following
the Equation 6:
F = Z-M (6)
With total and fishing mortality and the
growth parameters known, a virtual popula-
tion analysis was performed based on the Jones
length cohort analysis. For each size group, the
following were estimated:
The natural mortality factor H, expressed
by Equation 7:
(7)
The number of fish caught was estimated
with Equation 8:
(8)
Where: ∆t =
C is the constant of the
linearized capture curve equation (Sparre &
Venema, 1997) t1 = t0 - 1 ⁄ K * Ln(1 - L1 L)
The number of surviving fish was calcu-
lated using Equation 9:
N(L1)=[N(L2) * H(L1, L2 ) + C(L1, L2)] * H(L1, L2)
(9)
To estimate the exploitation rate, Equation
10 was used:
(10)
The length at first maturity (Lm) and the
length at maximum yield (Lopt) were estimated
according to the equations of Froese and Binoh-
lan (2003) (Equation 11 and Equation 12):
Log (Lm) = 0.8979 * Log (L) - 0.0782 (11)
Log (Lopt) = 1.0421 * Log (L) - 0.2742 (12)
Longevity (tmax) was calculated with the
Equation 13 proposed by Froese and Binohlan
(2003).
tmax = 3/K (13)
The age of first maturation Tm was esti-
mated from the Equation 14:
Log (Tmax) = 0.5496 + 0.957 * Log (14)
The relationship between total length
and fecundity proposed by Novoa and Ramos
(1982) was used to estimate the total fecundity
of the Sapuara population, Equation 15.
F = 0.00407Lt 4.884 (15)
RESULTS
A total of 1 277 specimens, with lengths
ranging from 1 to 50 cm, were recorded.
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56582, enero-diciembre 2024 (Publicado Abr. 16, 2024)
Specimens intended for ornamental purposes
were captured within the 1 to 10 cm size range,
with greater occurrence at 1-4 cm (70 %). Con-
versely, those measuring between 25 and 40 cm
were caught for consumption, and a higher fre-
quency was observed in the 34 to 37 cm (36 %)
and 37 to 40 cm (33 %) ranges (Table 1).
The Equation 16 represents the length -
weight relationship as:
W = 0.029L2.993 (16)
The slope (b) is 2.993 (α > 0.05), indicating
isometric growth (R2 = 0.974).
Monthly modal frequencies analysis of
S. laticeps shows two modal frequencies from
June to September, and only one modal group
recorded in October. The modal frequency
linked to ornamental fishing is only present
in July.
The estimated cut length (L') was 3.91 cm,
with an asymptotic length (L∞) at 53.13 cm
SL. Total mortality (Z) was 2.9195 year-1 with
a confidence level of 2.27 and 3.57. Metabolic
growth rate (K) was 0.75, and relative mortality
(Z/K) was 4.912.
The growth curve of S. laticeps conforms to
the Equation 17:
L = 53.13 (1-e (-0.75 (t-0.18)) (17)
The growth performance index ’ was esti-
mated to be 3.33.
The natural mortality (M) rate at an aver-
age temperature of 27 °C is 1.24 year-1, with a
fishing mortality (F) rate of 1.68 year-1, and the
exploitation rate (E) of 0.58.
Table 2 presents the virtual population
data, including the number of catchable indi-
viduals, natural mortality factor, the quan-
tity of surviving fish, and the exploitation rate.
The cohort becomes extinct in the size range
between 49 to 52.
In the virtual population analysis (Table 3),
the catch for ornamental purposes sampled
12.2 % of the potential catch in the size range
1 to 4, and less than 5 % in the other two size
groups relating to the ornamental fishery, in
Table 1
Distribution of the population of Semaprochilodus laticeps sampled, by length intervals in Puerto Carreño, Vichada.
Standard length (cm) Months Total
6 7 8 9 10
1-4 0 630 0 0 0 630*
4-7 0 194 0 0 0 194*
7-10 0 69 0 0 0 69*
10-13 0 1 0 0 0 1*
13-16 0 0 0 0 0 0
16-19 0 0 0 0 0 0
19-22 0 0 0 0 0 0
22-25 0 0 0 0 0 0
25-28 3 1 1 0 5 10**
28-31 0 5 5 0 5 15**
31-34 1 22 27 1 7 58**
34-37 4 44 85 8 2 143**
37-40 9 30 70 13 3 125**
40-43 5 9 8 0 0 22**
43-46 2 1 2 2 0 7**
46-49 1 0 0 0 1 2**
49-52 0 0 0 1 0 1**
TOTAL 25 1 006 198 25 2. 3 1 277
In bold individuals used for ornamental use. *Ornamental fisheries. ** Food fisheries.
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56582, enero-diciembre 2024 (Publicado Abr. 16, 2024)
Table 2
Jones cohort analysis for Semaprochilodus laticeps.
L1L2C (L1, L2)t (L1)Dt H (L1, L2)N (L1)F / Z F Z
1 4 5 168 0.03 0.08 1.05 43 489 0.58 1.68 2.92
4 7 4 330 0.10 0.08 1.05 34 509 0.58 1.68 2.92
7 10 3 587 0.19 0.09 1.06 26 985 0.58 1.68 2.92
10 13 2 932 0.28 0.10 1.06 20 753 0.58 1.68 2.92
13 16 2 361 0.37 0.10 1.07 15 659 0.58 1.68 2.92
16 19 1 868 0.48 0.11 1.07 11 557 0.58 1.68 2.92
19 22 1 447 0.59 0.12 1.08 8 312 0.58 1.68 2.92
22 25 1 094 0.71 0.14 1.09 5 798 0.58 1.68 2.92
25 28 803 0.85 0.15 1.10 3 897 0.58 1.68 2.92
28 31 567 1.00 0.17 1.11 2 503 0.58 1.68 2.92
31 34 382 1.17 0.19 1.13 1 518 0.58 1.68 2.92
34 37 242 1.36 0.23 1.15 854 0.58 1.68 2.92
37 40 140 1.59 0.27 1.19 434 0.58 1.68 2.92
40 43 71 1.86 0.35 1.24 191 0.58 1.68 2.92
43 46 29 2.21 0.47 1.34 67 0.57 1.67 2.91
46 49 8 2.68 0.73 1.57 15 0.57 1.62 2.86
49 52 1 3.41 1.73 1.1 0.50 1.24 2.48
C (L1, L2): Capture possible; H (L1, L2): Natural mortality factor; N (L1): Number of surviving fish; F/Z: Exploitation rate.
Table 3
Virtual population of Semaprochilodus laticeps in Puerto Carreño, Vichada.
LiLi + 1
Number of individuals
% OSC / C (L1, L2)% OSC / N (L1)C Ornamental sampled
catch (OSC) Difference N (L1)
(L1, L2)
1 4 5 168 630 4 538 43 489 12.2 1.4
4 7 4 330 194 4 136 34 509 4.5 0.6
7 10 3 587 69 3 518 26 985 1.9 0.3
10 13 2 932 20 753
13 16 2 361 15 659
16 19 1 868 11 557
19 22 1 447 8 312
22 25 1 094 5 798
25 28 803 3 897
28 31 567 2 503
31 34 382 1 518
34 37 242 854
37 40 140 434
40 43 71 191
43 46 29 67
46 49 8 15
49 52 1 1
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56582, enero-diciembre 2024 (Publicado Abr. 16, 2024)
comparison to the potential catch (C (L1, L2)).
When comparing the caught ornamental fish
to the estimated population (N(L1)) within the
size range, it is evident that the observed catch
accounts for only 1.4 % of the estimated popu-
lation for fish ranging from 1 to 4 cm in size.
In the other two size groups, it accounted for
less than 1 %. For this population, the number
of specimens caught for the ornamental mar-
ket comprises only 6.8 % of the total possible
catches and 0.85 % of the estimated population.
The fecundity of the spawning age class-
es in this total virtual population reaches
410 336 413 eggs (Table 4). When comparing
this value with the actual commercialization in
the study year of 395 593 specimens, the latter
represents 0.096 % of the total spawned.
The estimated length at first maturity (Lm)
was 29.6 cm SL with confidence limits ranging
from 22.1 to 39.6 cm SL. Likewise, the estimated
length at maximum yield (Lopt) was 33.4 cm SL
with confidence limits between 24.3 and 46.0
cm SL. It was observed that 96.3 % of moni-
tored specimens caught in the consumer fishery
(Table 1) had sizes greater than Lm, while 80 %
had sizes greater than Lopt. The study estimated
that 52.7 % of specimens measured between
30.1 and 36.7 cm SL ((± 10 % Lopt), while 51 %
were mega-spawners with a size greater than
36.7 cm SL). The longevity value was calculated
to be 4 years, and the age of first maturity was
estimated at 1.13 years.
DISCUSSION
This study introduces the first virtual
population analysis of S. laticeps in the Colom-
bian Orinoco River Basin, focusing specifically
on the Puerto Carreño sector. The results reveal
that the species has potential for both dual
exploitations, its fry stage for ornamental pur-
poses and adult stage for consumption.
The observed characteristics of the S. lati-
ceps population evaluated, align with a species
exhibiting rapid growth, high natural mortality,
and low life expectancy, consistent with the
traits reported by Pérez-Lozano and Barbarino
(2013) for Prochilodus mariae, a species in the
same family, in the Apure River within the
Venezuelan Orinoco River Basin. According to
the categorization scale established by Winemi-
ller and Taphorn (1989), S. laticeps is identified
as an r2 strategist due to its generation dura-
tion exceeding 12 months, a single breeding
season per year, high fertility, and absence of
parental care.
The growth performance index calculated
for S. laticeps (3.3) exceeds the estimates for
Semaprochilodus taeniurus and Semaprochilo-
dus insignis, as derived from the L and K data
of Guerreiro et al. (2018). This difference may
be attributed to the fact that Guerreiro and
colleagues based their estimation on speci-
mens with sizes larger than 14 cm. In contrast,
our study includes fishes with sizes ranging
from 1 cm LS. The inclusion of fry in our
Table 4
Fecundity estimates of the virtual population of Semaprochilodus laticeps in Puerto Carreño, Vichada
Ls Lt Number of individuals Fecundity Media Fecundity
Population Females
31 36 1 518 759 162 396 123 263 380
34 40 854 427 271 679 116 041 130
37 43 434 217 386 771 83 984 214
40 46 191 95 537 655 51 273 138
43 50 67 33 807 912 26 869 780
46 53 15 8 1 073 885 8 138 721
49 57 1 1 1 532 100 766 050
Total Fecundity 410 336 413
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56582, enero-diciembre 2024 (Publicado Abr. 16, 2024)
analysis may contribute to an overall higher
estimate of the growth index. The Tmax found
(4 years) falls within the range estimated from
the K values for the afore mentioned species
Froese (2004).
Parameters such as K, Tmax, Tm, and
estimated fecundity position S. laticeps as a
highly and moderately productive, resilient
species according to scale proposed by Musick
(1999). This aligns with van Treeck et al.
(2020) assertion that species with characte-
ristics such a small size, short life expectancy,
rapid growth, early maturation and high mor-
tality rates, like S. laticeps are less susceptible to
anthropogenic disturbances.
Consistent with Froese (2004), the current
exploitation of S. laticeps in the Puerto Carreño
region does not indicate evidence of overfis-
hing, with 96.3 % of specimens reproducing
before capture and 80 % surpassing Lopt. A
healthy age structure is affirmed by the indica-
tor of 41 % mega-spawners, surpassing Froese
(2004) proposed range of 30 to 40 %. This is cri-
tical, as mega-spawners, comprising the largest
and oldest specimens, contribute to higher egg
quantity and quality, producing more resilient
larvae (Fenberg & Roy, 2008; Perry et al., 2010).
Virtual population analysis results indicate
a minimal fraction (0.85 %) of S. laticeps is cap-
tured for the ornamental fish market, posing
negligible impact compared to the estimated
population and total fecundity of the spawning
age class. This supports the conclusion that
ornamental exploitation does not compromise
natural population renewal, but rather takes
advantage of the species during its highest
mortality stage, in line with the assertion of
Caddy (2015) that early life stages experience
the highest natural mortality.
In contrast to conventional size-based
regulatory frameworks in Colombian fishe-
ries, influenced by Ulltang (1975) and Gulland
(1985), which have been criticized for promo-
ting the selective harvesting of larger specimens
and adversely affecting populations (Allendorf
& Hard, 2009; Diekert, 2012; Enberg et al.,
2012; Fenberg & Roy, 2008; Heino et al., 2013;
Venturelli et al., 2012; Zhou et al., 2010) our
comprehensive analysis strongly advocates for
the elimination of minimum size constraints
for S. laticeps. This imperative is driven by the
need to enhance resource utilization efficiency
for fishermen and stakeholders in both con-
sumer and ornamental markets. Nevertheless,
we propose the implementation of protective
measures, including temporal closures during
the reproductive period and the prohibition of
gill nets in locations associated with the paren-
tal population (such as lagoons connected to
rivers), to ensure the sustainable harvesting of
this species.
The results obtained in the Puerto Carreño
sector can serve as a reference to analyze the
situation of the rest of the species currently
captured for the ornamental (fry) and edible
(adult) fish markets.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
ACKNOWLEDGMENTS
We express our gratitude to the Autoridad
Nacional de Acuicultura y Pesca (AUNAP),
which funded this research through coopera-
tion agreement No. 0155 of 2017 with the Fun-
dación Fauna Caribe Colombiana (FFCC). This
publication is in accordance with the Memo-
randum of Understanding No. 05/17 of August
5, 2022, between AUNAP and Universidad de
los Llanos.
REFERENCES
Ajiaco-Martínez, R. E., Ramírez-Gil, H., Sanchéz-Duarte,
P., Lasso, C. A., & Trujillo, F. (2012). IV. Diagnóstico
de la pesca Ornamental en Colombia. Serie recursos
hidrobiológicos y pesqueros continentales de Colombia.
Instituto de Investigación de Recursos Biológicos
Alexander von Humboldt.
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56582, enero-diciembre 2024 (Publicado Abr. 16, 2024)
Allendorf, F. W., & Hard, J. J. (2009). Human-induced
evolution caused by unnatural selection through
harvest of wild animals. Proceedings of the National
Academy of Sciences, 106(1), 129–147. https://doi.
org/10.17226/12692
Autoridad Nacional de Acuicultura y Pesca (AUNAP).
(2015). Resolución N°1924. Por la cual se autorizan
las especies icticas ornamentales aprovechables, se
establecen unas prohibiciones, se derogan las Reso-
luciones No. 3532 del 17 de diciembre de 2007 y No.
0740 del 04 de mayo de 2015. AUNAP. https://www.
aunap.gov.co//documentos/inspeccion/resoluciones/
Res1924De2015.pdf
Autoridad Nacional de Acuicultura y pesca (AUNAP).
(2017). Informes gráficos pesca artesanal. Servicio
Estadístico Pesquero Colombiano.
Caddy, J. F. (2015). Criteria for sustainable fisheries on
juveniles illustrated for Mediterranean hake: Control
the juvenile harvest, and safeguard spawning refugia
to rebuild population fecundity. Scientia Marina,
79(3), 287–299. https://doi.org/doi: http://dx.doi.
org/10.3989/scimar.04230.06ª
Cadima, E. (2003). Manual de evaluación de recursos pes-
queros. Organización de las Naciones Unidas para la
Agricultura y la Alimentación.
De La Hoz-M, J., Manjarrés-Martínez, L., Cuello, F., &
Nieto, L. (2015). Estadísticas de desembarco y esfuerzo
de las pesquerías artesanales e industriales de Colom-
bia en los sitios y puertos pesqueros monitoreados por
el SEPEC durante el año 2015. Servicio Estadístico
Pesquero Colombiano.
Departamento Administrativo Nacional de Esta-
dística (DANE). (2021). Pobreza y Desigual-
dad. Colombia. https://www.dane.gov.co/index.
php/estadisticas-por-tema/pobreza-y-condi-
ciones-de-vida/pobreza-multidimensional/
pobreza-multidimensional-2020
Diekert, F. K. (2012). Growth overfishing: The race to
fish extends to the dimension of size. Environmental
and Resource Economics, 52(4), 549–572. https://doi.
org/10.1007/s10640-012-9542-x
Duarte, L. O., Roa-Noriega, G., Patarroyo-Baez, J., Chole-
Rodríguez, E., & Ortega-Lara, A. (2016). Estadistícas
de la pesca de peces ornamentales continentales de
Colombia en los sitios monitoreados por el SEPEC
durante el año 2016. Servicio Estadístico Pesquero
Colombiano.
Enberg, K., Jørgensen, C., Dunlop, E. S., Varpe, Ø.,
Boukal, D. S., Baulier, L., Eliassen, S., & Heino,
M. (2012). Fishing-induced evolution of growth:
Concepts, mechanisms and the empirical evi-
dence. Marine Ecology, 33(1), 1–25. https://doi.
org/10.1111/j.1439-0485.2011.00460.x
Fenberg, P. B., & Roy, K. (2008). Ecological and evolutionary
consequences of size-selective harvesting: How much
do we know? Molecular Ecology, 17(1), 209–220.
https://doi.org/10.1111/j.1365-294X.2007.03522.x
Froese, R. (2004). Keep it simple: three indicators to dealwith
overfishing. Fish and Fisheries, 5(1), 86–91. https://doi.
org/https://doi.org/10.1111/j.1467-2979.2004.00144.x
Froese, R., & Binohlan, C. (2003). Simple methods to obtain
preliminary growth estimates for fishes. Journal of
Applied Ichthyology, 19(6), 376–379. https://doi.org/
https://doi.org/10.1111/j.1439-0426.2003.00490.x
Guerreiro, A., Amadio, S., Fabré, N., & Batista, V. (2018).
Estimation of growth parameters of five fish species
(Actinopterygii) caught in the central amazon. Acta
Ichthyologica et Piscatoria, 48(3), 303–313.
Gulland, J. (1985). Fisheries management problems: An
international perspective. Proceedings of the Confe-
rence on Fisheries Management: Issues and Options,
2(429), 33.
Heino, M., Baulier, L., Boukal, D. S., Ernande, B., Jonjston,
F., Mollet, F., Pardoe, H., Therkildsen, N., Urusi-
Heikkila, S., Vainikka, A., Arlinghaus, R., Dankel, D.,
Dunlop, E., Eikeset, A., Enberg, K., Engelhard, H.,
rgensen, C., Laugen, A., Matsumura, S., … Diec-
kmann, U. (2013). Can fisheries-induced evolution
shift reference points for fisheries management? ICES
Journal of Marine Science, 70(4), 707–721. https://doi.
org/10.1093/icesjms/fst077
Instituto Nacional de los Recursos Naturales Renovables y
del Ambiente. (1981). Resolución 1087. Por la cual se
reglamentan las tallas mínimas de peces de consumo,
los artes y los metodos pesqueros en la Cuenca del
Rio Orinoco. Colombia. https://www.maciasaboga-
dos.com/archivos/documentos_normatividad/Reso-
lucion1087de1981.429.pdf
Instituto Nacional de Pesca y Acuicultura. (1995). Resolu-
ción 090. Por el cual de establece una veda de recursos
pesqueros en el sector de influencia de Puerto Carreño y
Puerto Inirida en la Orinoquía colombiana y se permite
el aprovechamiento de la sapuara como especie orna-
mental. Colombia. https://www.ecofield.net/Legales/
Colombia/Nacional/res190-95_INPA.htm
Musick, J. A. (1999). Criteria to define extinction risk in
marine fishes. Fisheries, 24(12), 6–14. https://doi.
org/10.1577/1548-8446(1999)024<0006
Novoa, D. (2002). Los recursos pesqueros del eje fluvial Ori-
noco-Apure: Presente y futuro. Instituto Nacional de la
Pesca y Acuicultura-INAPESCA-Ministerio de Agri-
cultura y Tierra-República Bolivariana de Venezuela.
Novoa, D., & Ramos, F. (1982). Aspectos generales sobre la
biología y pesquería de la Zapoara (Semaprochilodus
laticeps). En D. Novoa (Ed.), Los recursos pesqueros
del río Orinoco y su Explotación (pp. 107–128). Cor-
poración Venezolana de Guayana.
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56582, enero-diciembre 2024 (Publicado Abr. 16, 2024)
Ortega-Lara, A., Cruz-Quintana, Y., & Puentes-Granada,
V. (2015). Dinámica de la actividad pesquera de peces
ornamentales continentales en Colombia. Autoridad
Nacional de Acuicultura y Pesca-AunaP Fundación
Funindes.
Pauly, D. (1983). Algunos métodos simples para la evalua-
ción de recursos pesqueros tropicales. Organización
de las Naciones Unidas para la Agricultura y la
Alimentación.
Pauly, D. (1984). Fish population dynamics in tropical
waters a manual for use with programable calculators.
International Center for Living Aquatic Resources
Management.
Pauly, D., & Munro, J. (1984). Once more on growthcom-
parison of fish and invertebrates. Fishbyte, 2(1), 21.
Pérez-Lozano, A., & Barbarino, A. (2013). Parámetros
poblacionales de los principales recursos pesqueros
de la cuenca del río Apure , Venezuela (2000-2003).
Latin American Journal of Aquatic Research, 41(3),
447–458.
Perry, I., Cury, P., Brander, K., Jennings, S., Mollmann, C.,
& Planque, B. (2010). Sensitivity of marine systems
to climate and fishing: Concepts, issues and mana-
gement responses. Journal of Marine Systems, 79(3-
4), 427–435. https://doi.org/https://doi.org/10.1016/j.
jmarsys.2008.12.017
Pineda-Arguello, I., Ajiaco-Martínez, R. E., Ramírez-Gil,
H., Valderrama-Barco, M., & Castro-Lima, F. (2011).
Semaprochilodus laticeps. En C. Lasso, E. Agudelo-
Cordoba, F. Jimenez-Segura, H. Ramirez-Gil, M.
Morales-Betancourt, R. E. Ajiaco-Martínez, F. Gutie-
rrez, J. S. Usma, S. Muñoz, & A. Sanabria (Eds.),
Catálogo de los recursos pesqueros continentales de
Colombia (pp. 327–331). Instituto de Investigación de
Recursos Biológicos Alexander von Humboldt.
Ramirez-Gil, H., & Ajiaco-Martínez, R. E. (2001). La
pesca de especies de interés ornamental en el área de
influencia de Inírida, Guainía. En H. Ramírez-Gil,
& R. E. Ajiaco-Martínez (Eds.), La pesca en la baja
Orinoquia colombiana (pp. 139–154). Instituto Nacio-
nal de Pesca y Acuicultura-INPA.
Ramírez-Gil, H., Carrillo-Villar, L. M., Lacera-Padilla,
E. A., & Ajiaco-Martínez, R. E. (2001). La pesca de
especies de interés ornamental en el área de influen-
cia de Puerto Carreño. En H. Ramírez-Gil & R. E.
Ajiaco-Martínez (Eds.), La pesca en la baja Orinoquia
colombiana: una visión integral (pp. 123–137). Institu-
to Nacional de Pesca y Acuicultura-INPA.
Sparre, P., & Venema, S. (1997). Introducción a la evalua-
ción de recursos pesqueros tropicales. Parte 1. Manual.
Organización de las Naciones Unidas para la Agricul-
tura y la Alimentación.
Ulltang, O. (1975). Some aspects of fishing patterns in rela-
tion to fisheries management. International Concilium
for the Exploration of the Sea, 52(1975), 2–22.
van Treeck, R., Van Wichelen, J., & Wolter, C. (2020).
Fish species sensitivity classification for environ-
mental impact assessment, conservation and
restoration planning. Science of the Total Environ-
ment, 708(2020), 135173. https://doi.org/10.1016/j.
scitotenv.2019.135173
Venturelli, P. A., Shuter, B. J., & Murphy, C. A. (2012).
Evidence for harvest-induced maternal influences on
the reproductive rates of fish populations. Proceedings
of the Royal Society B: Biological Sciences, 276(1658),
919–924. https://doi.org/10.1098/rspb.2008.1507
Winemiller, K., & Taphorn, D. (1989). La evolución de las
estrategias de vida de los peces de los llanos occiden-
tales de Venezuela. Biollania, 6(1989), 77–122.
Zhou, S., Smith, A. D. M., Punt, A. E., Richardson, A.
J., Gibbs, M., Fulton, E. A., Pascoe, S., Bulman, C.,
Bayliss, P., & Sainsbury, K. (2010). Ecosystem-based
fisheries management requires a change to the selec-
tive fishing philosophy. Proceedings of the National
Academy of Sciences of the United States of Ame-
rica, 107(21), 9485–9489. https://doi.org/10.1073/
pnas.0912771107