1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
Aquatic macroinvertebrate community and water quality
in the Tambo River, Arequipa, Perú
Pastor Coayla-Peñaloza1; https://orcid.org/0000-0002-2317-9416
André Alexander Cheneaux-Diaz1; https://orcid.org/0000-0002-7148-0174
Claudia Viviana Moreno.Salazar1; https://orcid.org/0000-0001-5124-5663
Cynthia Elizabeth Cruz-Remache1; https://orcid.org/0000-0001-6178-5129
Cristina Damborenea2, 3*; https://orcid.org/0000-0002-6411-1282
1 Universidad Nacional de San Agustín, Arequipa, Perú; pcoaylap@unsa.edu.pe, acheneaux@unsa.edu.pe,
claudiavivianamore@gmail.com, ccruz.rem@gmail.com.
2 División Zoología de Invertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata,
Argentina; cdambor@fcnym.unlp.edu.ar (*Correspondence).
3 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
Received 27-IX-2023. Corrected 14-III-2024. Accepted 02-V-2024.
ABSTRACT
Introduction: The River Tambo basin is one of the main hydrographic systems of the Peruvian western water-
shed, being a source of development for agriculture, agroindustry, livestock, and domestic use in the Tambo
Valley and Arequipa City.
Objective: To analyze the structure of macroinvertebrates in River Tambo, Perú and assess the water quality
through this community.
Methods: Five sampling events were conducted between December 2018 and November 2019 in 12 stations,
using a Surber net (500 μm). Macroinvertebrates were identified at a family level. To assess community structure,
richness, Simpsons dominance index (D), Pielous evenness (J’), and true diversity of order 1 were determined. A
nMDS based on the Bray-Curtis index was used to evaluate dissimilarity. To check for differences in community
structure, ANOSIM and two-way MANOVA were used. SIMPER was used to establish family contribution to
sample similarity. Relations between physicochemical and biological variables were determined by CCA. ABI
index was applied to assess ecological quality.
Results: 32 families were recognized, being the most abundant: Baetidae, Chironomidae, Leptohyphidae,
Simuliidae, Hydroptilidae, and Elmidae. The middle and low zones of the basin showed the highest and lowest
diversity respectively. There were significant differences (P < 0.05) in the community structure indices among
the 12 stations differed. There was a higher similarity among the 12 stations in December. ABI scores increased
from the low to the middle part of the river, which showed the highest ecological quality.
Conclusion: Macroinvertebrate communities from River Tambo reflect ecosystem conditions. Environments
impacted by human activities show lower diversity and ecological quality, due to the structure, habitat, and water
quality of the river being altered.
Key words: bioindicators; ecological quality; ABI index; desert; high-Andean.
https://doi.org/10.15517/rev.biol.trop..v72i1.56670
ACUATIC ECOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
INTRODUCTION
Rivers are dynamic and multifunctional
systems characterized by the presence of drain-
age networks, with different courses and a high
degree of environmental heterogeneity (Custo-
dio & Chanamé, 2016), which contribute con-
siderably to the economic growth of a country
and can be used for different purposes such as
fishing, irrigation, transport, power generation,
tourism, and recreation (Galarza et al., 2021).
Therefore, anthropic pressures on these systems
alter their water quality, producing high levels
of pollution (Liévano-León & Ospina-Torres,
2013; Meneses-Campo et al., 2019), which
affect public health and ecosystem services.
Perú has not been an exception to this
problem, which has led to alterations in the
natural dynamics of hydrographic basins, and
therefore to losses or modifications in the
aquatic diversity of these systems (Gamarra et
al., 2018). Based on these diversity changes,
different methodologies have been developed
using a wide variety of organisms, from bacteria
to fish (Barbour et al., 1999; Oscoz et al., 2006),
among which macroinvertebrate monitoring
stands out, for the purpose of reflecting the
disturbances occurred in water bodies (López-
Mendoza et al., 2019).
Aquatic macroinvertebrates are in close
relation with the environment they inhabit.
Any change in the environmental conditions is
manifested in the structure and composition of
the aquatic invertebrate community that inhab-
its it (Terneus et al., 2012). They reflect envi-
ronmental changes in relatively short periods,
contributing to environmental and ecological
analyses of the state of the aquatic system, and
are therefore used in environmental assessment
studies (Hauer & Lamberti, 2011).
The hydrographic basins of the Peruvian
Pacific watersheds are characterized by dry
land conditions, which entails water shortage
problems for human consumption. These arid
and semi-arid ecosystems are of great economic
importance for Perú since they are used for
many anthropogenic activities (Arana-Maestre
et al., 2021). In the last 35 years there have
RESUMEN
Comunidad de macroinvertebrados acuáticos y calidad del agua en el río Tambo, Arequipa, Perú
Introducción: La cuenca del rio Tambo es uno de los principales sistemas hidrográficos de la vertiente occidental
del Perú y fuente de desarrollo para la agricultura, agroindustria, ganadería y consumo doméstico en el valle de
Tambo y la ciudad de Arequipa.
Objetivo: Analizar la estructura de macroinvertebrados en el río Tambo, Perú y evaluar la calidad del agua a
través de esta comunidad.
Métodos: Entre diciembre del 2018 y noviembre del 2019 se realizaron cinco muestreos en 12 estaciones,
empleando una red Surber (500 μm). Los macroinvertebrados se identificaron a nivel de familia. Se registró la
riqueza, dominancia de Simpson, equidad de Pielou, y diversidad verdadera de orden 1, para evaluar la estruc-
tura de la comunidad. Para estimar la similitud, se utilizó nMDS (índice de Bray-Curtis). Para verificar si existen
diferencias en la estructura comunitaria, se empleó MANOVA de dos vías y ANOSIM. Para establecer la contri-
bución de las familias a la similitud entre muestras, se utilizó SIMPER. La relación entre variables fisicoquímicas
y biológicas se determinó con ACC. Se aplicó el índice ABI para evaluar la calidad ecológica.
Resultados: se reconocieron 32 familias, siendo las más abundantes: Baetidae, Chironomidae, Leptohyphidae,
Simuliidae, Hydroptilidae y Elmidae. La mayor y menor diversidad se presentó en la parte media y baja de la
cuenca respectivamente. Existieron diferencias significativas (P < 0.05) de los índices de estructura comunitaria
entre las 12 estaciones. Se evidenció mayor similitud entre las 12 estaciones en diciembre. Los puntajes del índice
ABI se incrementan de la parte baja del río a la media, que se presentó la mejor calidad ecológica.
Conclusión: Las comunidades de macroinvertebrados del río Tambo reflejan el estado del ecosistema. Los
ambientes con impacto por actividad humana registran menor diversidad y calidad ecológica, ya que se altera la
estructura, hábitat y calidad de agua del río.
Palabras clave: bioindicadores; calidad ecológica; índice ABI; desierto; alto andino.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
been modifications in minimum runoff in sev-
eral Pacific basins that are attributed to human
activity (Lavado et al., 2012). One of them is
River Tambo, located on the Southwestern
flank of the Andean Mountain range, which
varies between 0-5 800 m above sea level in alti-
tude. It forms at the confluence of the Ichuña
and Paltiture Rivers. It flows through the locali-
ties of Yunga, Lloque, Quinistaquillas, El Fiscal,
Cocachacra, and Deán Valdivia. The lower
basin is exclusively used for agriculture. On
the high zone of the basin is situated the auric
project Chucapaca; in the middle zone, Pampa
Minera Cobre, and in the low zone, the cuprif-
erous project Tía María (Carpio-Fernández &
Peña, 2020; SENAMHI, 2009); and between
Moquegua and Puno, is located the auric mine
Florencia-Tucari. Water pollution from min-
ing waste in the Moquegua department and
the ecological debt generated by hydrological
pollution in River Tambo put the population
and agricultural, livestock, and hydrobiological
resources settled on the lower part of the basin
at risk of contamination (INDECI, 2021).
In view of this situation, the identification
and use of macroinvertebrates as bioindica-
tors that reflect the current ecological state
and water quality of River Tambo is proposed,
and thus generate a useful tool for integrated
management of hydric resources by compe-
tent authorities such as Autoridad Nacional
del Agua (ANA, 2019), municipalities, water
commissions, agricultural councils, etc., to be
able to detect water quality issues early, provid-
ing potentially impacted areas with alternative
solutions. The aim of this research is to analyze
the structure of aquatic macroinvertebrates in
River Tambo, Perú and assess the water quality.
MATERIALS AND METHODS
Study area: The study was carried out on
the main course of River Tambo (Fig. 1). The
main contributors to its hydrographic network
Fig. 1. Sampling stations in the River Tambo basin, Arequipa, Perú.
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
are the rivers Carumas, Coralaque, Ichuña, and
Paltuture. The mean altitude of the basin is
3 302 m.a.s.l., with a 7.46 % mean slope, a 1.72 %
main course slope, and a 329.18 km length.
Sampling: Sampling took place between
December 2018 and November 2019 (five
events) in 12 stations on the main course of the
river (Table 1). Due to poor accessibility, it was
not possible to sample E1 in August. Stations
E1, E2, E3, E11, and E12 showed modifications
from their natural course. A 150 m sampling
zone was delimited on the river margin, within
which sampling spots were selected. Three
samples were taken per station, using a 500 µm
mesh diameter Surber sampler net. Samples
were stored in 500 ml containers and fixed in
4 % formalin.
Identification: In the laboratory, the sam-
ples were rinsed with water through a 500
µm sieve and preserved in 70 % alcohol for
identification (Domínguez & Fernández, 2009;
Roldán-Pérez, 2003). Taxonomic identification
was done to family level following the keys by
Merritt et al. (2008), Domínguez and Fernán-
dez (2009), Prat et al. (2011), and Thorp and
Lovell (2015).
Physicochemical variables: The following
physicochemical variables were measured in
each sampling station directly with a Hanna
HI9829 multiparameter probe: dissolved oxy-
gen, pH, conductivity, and temperature.
Data analysis: The structure of the mac-
roinvertebrate community was assessed using
richness (number of families) (S), abundance
(number of individuals of a family/m2), Simp-
sons dominance index (D), Pielou’s evenness
(J’), and true diversity (D1) (Moreno, 2001).
A multivariate analysis of variance (MANO-
VA) was used to compare community indices
between sampling sites, and Tukey’s test was
used for multiple post hoc comparisons. A
canonical correspondence analysis (CCA) was
performed to assess the relation between mac-
roinvertebrates and physicochemical variables.
An analysis of similarities (ANOSIM) (with
9 999 permutations) was used to test for dif-
ferences in community composition between
sampling zones and the statistical significance
of the groupings. Similarity percentage analysis
(SIMPER) and non-metric multidimensional
scaling (nMDS) based on the Bray-Curtis index
were used to explore variations in macro-
invertebrate taxa composition among the 12
Table 1
Location of sampling stations in the River Tambo basin, Arequipa, Perú.
Station Basin
Zone
Coordinates Altitude
(m.a.s.l.)
Characteristics
(Substrate)
Latitude Longitude
E1 Lower 17°07’51’’ S 71°46’08’’ W 43 Sand
E2 Lower 17°04’03’’ S 71°44’00’’ W 103 Sand
E3 Lower 17°01’30’’ S 71°41’23’’ W 156 Sand
E4 Lower 16°59’23’’ S 71°38’03’’ W 227 Pebbles
E5 Lower 16°5’940’’ S 71°34’39’’ W 282 Pebbles
E6 Lower 17°01’57’’ S 71°31’14’’ W 378 Pebbles
E7 Middle 16°46’09’’ S 70°58’43’’ W 1332 Pebbles
E8 Middle 16°46’40’’ S 70°55’06’’ W 1452 Rock
E9 Middle 16°46’15’’ S 70°51’38’’ W 1587 Rock
E10 Middle 16°45’39’’ S 70°49’32’’ W 1663 Pebbles
E11 Higher 16°28’02’’ S 70°40’10’’ W 2487 Rock
E12 Higher 16°26’29’’ S 70°48’43’’ W 2594 Rock
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
sampling stations. The analyses were carried
out on EXCEL® and PAST version 4.13 (Ham-
mer et al., 2001).
River ecological quality: The ecological
quality of the river was determined using the
ABI index (Andean Biotic Index) (Medina-
Tafur et al., 2010). In this index, families of
aquatic macroinvertebrates are ordered from
least to greatest tolerance to environmental
disturbances in 10 groups, with scores that vary
between 10 and 1. The score 10 corresponds
to the most sensitive families and the score 1
to the most tolerant families. The sum of the
scores for all families provides the total ABI
index score.
RESULTS
Physicochemical parameters: Superficial
water temperature varied between 15.48 ºC
(E12) and 24.04 ºC (E4). Values for pH ranged
from 7.96 (E6) to 8.61 (E5). Electric conductiv-
ity (EC) varied between 2 239.67 and 3 645.11
μS/cm recorded at E7 and E4 respectively.
Dissolved oxygen concentration (DO) varied
between 5.5 mg/L at E1 and 9.7 mg/L at E8.
Finally, total dissolved solids (TDS) ranged
between 970.33 ppm (E10) and 2 632.08 ppm
(E6) (Table 2).
Macroinvertebrates diversity: The three
families with the highest presence and total
abundance were Chironomidae (8 326 ind/m2),
Baetidae (6 209 ind/m2), and Leptohyphidae
(4 684 ind/m2). Other families stood out also
occurring at every station, but with a lower
density, standing out Simuliidae (3 292 ind/
m2), Hydroptilidae (2 103 ind/m2), and Elmi-
dae (1 429 ind/m2) (Table 3).
The highest richness was registered at sta-
tions E9 (December 2018 and November 2019)
and E10 (June and August 2019) with 15 fami-
lies recorded. Stations E1 (May 2019) and E2
(December 2018) showed the lowest richness,
with three and six families respectively. The
highest dominance values were recorded at
station E1 (May and June 2019): 0.93 and 0.84
respectively. Stations from the middle (E7, E8,
E9, and E10) and high (E11 and E12) zones
of the river showed low dominance values.
High evenness values (> 0.5) were recorded at
stations E4, E5, E6, and E12 in every month.
The highest true diversity was recorded at
E3 (December 2018), E6, and E7 (November
2019) with 7.79, 7.68, and 7.98 effective species
respectively. Station E1 (May and June 2019)
showed the lowest true diversity, with 1.20 and
1.54 effective species respectively (Fig. 2).
The two-way MANOVA test showed sig-
nificant differences (P < 0.05) in the values of
Table 2
Mean monthly values for physicochemical parameters in River Tambo, Arequipa Region, Perú.
Station Temp.[°C] pH EC[µS/cm] DO(mg/L) TDS [ppm]
E1 21.65 ± 2.19 8.38 ± 0.20 2 230.71 ± 743.93 7.44 ± 2.76 1 110.71 ± 375.00
E2 21.61 ± 2.98 8.38 ± 0.13 2 797.92 ± 1 498.04 7.43 ± 2.85 1 398.83 ± 748.79
E3 22.83 ± 2.84 8.52 ± 0.10 2 141.96 ± 1 858.80 7.44 ± 3.06 1 345.92 ± 686.58
E4 24.02 ± 3.58 8.40 ± 0.30 2 943.17 ± 1 573.15 8.89 ± 1.36 1 471.67 ± 786.70
E5 22.87 ± 3.03 8.55 ± 0.12 2 238.93 ± 755.24 9.09 ± 0.75 1 115.73 ± 380.24
E6 21.88 ± 3.28 8.07 ± 0.80 2 442.07 ± 1 497.50 9.27 ± 1.05 2 431.73 ± 2 327.94
E7 19.99 ± 2.61 8.56 ± 0.08 2 101.20 ± 766.35 7.18 ± 2.93 1 050.60 ± 383.16
E8 19.76 ± 2.48 8.46 ± 0.08 2 089.47 ± 801.99 6.74 ± 2.68 1 044.53 ± 401.06
E9 19.31 ± 2.16 8.43 ± 0.11 2 035.87 ± 935.76 7.02 ± 2.96 1 018.20 ± 467.68
E10 18.70 ± 2.14 8.37 ± 0.12 1 964.80 ± 832.06 6.62 ± 2.60 862.87 ± 532.31
E11 16.33 ± 6.32 8.61 ± 0.37 2 641.27 ± 1 203.69 7.20 ± 1.26 1 334.33 ± 577.81
E12 16.08 ± 4.26 8.57 ± 0.32 2 609.93 ± 1 433.80 7.62 ± 1.64 1 349.53 ± 648.48
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
community structure indices, regarding sta-
tion, month, and the interaction between them
(Table 4). According to Tukey’s test, in Novem-
ber 2019 there were significant differences (P <
0.05) in dominance, evenness and true diversity
in relation to the other four months; December
2019 and May 2018 recorded a significant dif-
ference (P < 0.05) in richness in comparison
to the other months. Station E1 differed sig-
nificantly (P < 0.05) from the other 11 stations
Table 3
Mean abundance of aquatic macroinvertebrates (ind/m2) during the sampled period in
River Tambo, Arequipa Region, Perú.
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12
Platyhelminthes
Dugesiidae 000110000000
Nematoda 101101010110
Annelida
Glossiphoniidae 000100000000
Lumbriculidae 2 9 12 56 19 10 0 0 1 0 3 0
Mollusca
Physidae 0 0 3 7 0 64 22 4 7 45 0 0
Arthropoda Malacostraca
Palaemonidae 971200000100
Arthropoda Copepoda
Centropagidae 000000400001
Cyclopidae 010100000000
Arthropoda Ostracoda 0 16 58 44 24 20 11 38 64 24 13 7
Arthropoda Acari
Limnesiidae 002130335272
Limnozetidae 0001127000000
Arthropoda Hexapoda
Baetidae 17 44 94 96 343 382 613 1 003 1 425 1 427 304 461
Blephariceridae 0 0 0 0 0 4 49 164 351 412 38 13
Ceratopogonidae 6 29 1 2 7 2 9 8 7 9 26 7
Chironomidae 867 427 1 126 1 499 644 686 354 414 376 705 946 282
Coenagrionidae 011111000100
Dytiscidae 0 0 0 1 1 1 4 3 7 0 1 0
Elmidae 41 96 156 287 378 190 50 41 76 99 8 7
Gomphidae 000000211100
Gripopterygidae 000000000400
Hydrobiosidae 0000000000337
Hydrophilidae 6 28 23 42 68 98 64 64 222 113 0 2
Hydroptilidae 10 24 105 279 546 193 143 240 210 194 135 24
Leptohyphidae 55 30 138 131 607 339 1 085 680 1 383 230 1 5
Libellulidae 000000000200
Limnephilidae 1 1 6 39 100 102 83 55 215 52 19 79
Mesovelidae 2712721530110
Muscidae 2 2 14 12 7 10 53 51 26 40 83 12
Psychodidae 000100051021
Simuliidae 22 25 39 221 119 330 118 352 1 224 751 47 44
Stratiomyidae 000010000000
Tabanidae 010060000040
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
in dominance and true diversity values. Even-
ness was also significantly different (P < 0.05)
between E1 and E2 and between them and the
rest of the stations. Considering richness val-
ues, stations from the middle zone of the river
(E7, E8, E9, and E10) are significantly different
(P < 0.05) from some of the stations of the
lower (E1, E2 and E3) and higher zone of the
river (E11 and E12).
Fig. 3 shows the temporal heterogeneity
of the aquatic macroinvertebrate community
in River Tambo. There were significant differ-
ences (R = 0.16, P < 0.05) between the lower
and middle, and middle and higher zones. At
a temporal level, nMDS showed similar group-
ings between the 12 stations for May and June
2019, while the distance between points widens
in August and November 2019. In December,
the difference among the 12 stations was evi-
dent, and the polygon formed by their distances
was the largest.
The nMDS analysis, at a temporal and
spatial level, showed some grouping in the sta-
tions from the lower, middle, and higher zones
of the river. Spatially, lower zone stations (E1,
E2, E3, E4, E5, and E6) showed heterogene-
ity between them, while in the higher zone
(E11 and E12) there was a lower heterogeneity
(Fig. 4). The similarity test (ANOSIM) shows
Fig. 2. Community structure indices in River Tambo, Arequipa, Perú. A. Richness (N); B. Dominance (D); C. Pielous
evenness (J); D. True diversity (D1).
Tabl e 4
Two-way MANOVA test for community structure indices
in River Tambo, Arequipa Region, Perú.
DF F P
Month Richness 4 9.52 < 0.001
Dominance 4 9.78 < 0.001
Evenness 4 5.57 < 0.001
True Diversity 4 19.02 < 0.001
Station Richness 11 11.02 < 0.001
Dominance 11 7.03 < 0.001
Evenness 11 4.04 < 0.001
True Diversity 11 5.71 < 0.001
Month * Station Richness 43 3.01 < 0.001
Dominance 43 2.28 < 0.001
Evenness 43 2.53 < 0.001
True Diversity 43 2.18 0.001
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
Fig. 3. Non-parametric Multidimensional Scaling analysis (nMDS) by month in River Tambo, Arequipa, Perú. December 2018
(light blue), May 2019 (orange), June 2019 (black), August 2019 (yellow), and November 2019 (blue). Stress value = 0.215.
Fig. 4. Non-parametric Multidimensional Scaling Analysis (nMDS) by sampling station in River Tambo, Arequipa, Perú.
Lower zone (red), middle zone (blue), and higher zone (green). December, X; May, *; June, +; August O; November #. Stress
value = 0.215.
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
that the macroinvertebrate composition does
not differ significantly (R = 0.16, P > 0.05)
between stations from the lower (E1, E2, E3,
E4, E5, and E6), middle (E7, E8, E9, and E10)
and higher (E11 and E12) River Tambo basin,
except between E1 and E6 where there were
significant differences (P < 0.05). Every month
showed significant differences (R = 0.18, P <
0.05), except for August and November.
CCA showed that stations E11 and E12
are related to low temperatures, and stations
E1, E2, E3 and E4 to high temperatures, pH,
and conductivity values. Stations E7, E8, and
E9 associated with low conductivity and high
dissolved oxygen values. Whereas Elmidae was
related to high temperatures and dissolved oxy-
gen; Leptohyphidae, Simuliidae and Baetidae
were related to low conductivity values; Chi-
ronomidae and Baetidae to high and low tem-
peratures respectively; and to a lesser extent,
Hydroptilidae to temperature and Chironomi-
dae to conductivity (Fig. 5).
Regarding family composition between the
three zones of the basin, 85 % of total dissimi-
larity was determined. Generally, Baetidae and
Chironomidae contributed individually more
than 20 % of this dissimilarity, except in the
middle zone, where Leptohyphidae had the
highest individual contribution (> 25 %), and
in the lower zone, where Baetidae had less than
10 % of individual contribution (Table 5).
The lowest scores of the ABI index were
recorded at station E1 (May 2019, the value
was 9) with a poor quality average value (Table
6). The highest index scores were recorded in
November at stations E7, E8, E9, and E10, the
latter having the highest score recorded and
good quality (June 2019, value 76). Stations
E11 and E12 showed a good and moderate
average quality respectively. The results show
Fig. 5. Canonical correspondence analysis (CCA) by sampling stations on River Tambo Arequipa, Perú. Lower zone (red),
middle zone (blue) and higher zone (green). EC, electric conductivity; DO, dissolved oxygen concentration; TDS, total
dissolved solids.
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
an increase in the ABI index upriver from E1
to E10. At station E12, on the high zone of the
river, these indices decrease (up to 18 in June
2019) and remain at a moderate quality most of
the time (between 20 and 55) (Table 6).
DISCUSSION
The results of this study show the great-
est diversity in the upper and middle parts of
the River Tambo. The lower parts have less
diversity and richness of taxa due to physical-
chemical conditions, anthropic intervention,
and type of substrate. The ABI index shows an
increase upriver, from E1 to E10, indicating a
quality improvement upstream.
Physicochemical parameters in River
Tambo showed that dissolved oxygen, tempera-
ture, and conductivity are within category 3
standards for water environmental quality, used
for irrigation and animal watering (MINAM,
2017). According to our observations, dissolved
oxygen is within normal levels at stations E6,
E7, E8, and E9 as stipulated in D. S. N°004-
2017 (MINAM, 2017). All twelve stations in
this study showed high conductivity values.
Tabl e 5
SIMPER analysis per basin and basin zones of River Tambo Arequipa Region, Perú.
Family Contribution %
Basin Lower zone Middle zone Higher zone
Baetidae 26.44 9.14 22.99 27.59
Chironomidae 21.67 39.51 9.90 39.09
Leptohyphidae 15.35 11.13 27.37
Simuliidae 11.19 6.86 15.74 4.34
Hydroptilidae 15.58 8.08 5.80 6.13
Elmidae 5.23 12.53 - -
Blephariceridae - - 6.72 -
Limnephilidae - - - 6.41
Muscidae - - - 4.01
Total 85.46 87.25 88.53 87.57
Tabl e 6
Scores of ABI index for the biotic quality of River Tambo, Arequipa Region, Perú.
Station DEC-2018 MAY-2019 JUN-2019 AUG-2019 NOV-2019 Average QUALITY
E1 19 ll9 ll28 llSI ll37 ll23 llPoor
E2 16 ll25 ll42 ll41 ll40 ll33 llModerate
E3 35 ll36 ll51 ll42 ll43 ll41 llModerate
E4 51 ll27 ll57 ll35 ll36 ll41 llModerate
E5 53 ll41 ll49 ll61 ll43 ll49 llGood
E6 43 ll41 ll51 ll55 ll45 ll47 llGood
E7 47 ll48 ll63 ll58 ll64 ll56 llGood
E8 55 ll58 ll36 ll64 ll66 ll56 llGood
E9 64 ll48 ll44 ll56 ll72 ll57 llGood
E10 52 ll51 ll76 ll64 ll72 ll63 llGood
E11 60 ll35 ll43 ll74 ll48 ll52 llGood
E12 52 ll30 ll28 ll42 ll55 ll41 llModerate
l l Very good ll Good ll Moderate
ll Poor ll Very bad ll NI= No information
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
Sediment ingress because of the lack of river-
side vegetation at all stations could be an expla-
nation for these high values (Reis-Oliveira et al.,
2014; Ternus et al., 2011). According to Rodier
(1998) and Meneses-Campo et al. (2019), the
River Tambo have high mineralization, since
the conductivity is higher than 1 000 µS/cm
and these values rise progressively downriver,
such as on stations E9, E8, E7, and E6 in this
study, located in the middle to low zone of the
river. Another possible cause of these high con-
ductivity values may be the ionic concentration
result of human activities (Castro et al., 1996).
On the other hand, temperature is one of the
factors that determine the physical properties
and the richness and distribution of macro-
invertebrate families (Bustamante-Toro et al.,
2008; Custodio & Chanamé, 2016).
Stations E1 and E2, showed the lowest
richness and diversity in the whole basin, prob-
ably due to the impact caused by the observed
destruction of habitats for community settle-
ment and the predominance of sandy substrates
(Burdet & Watts, 2009). Regarding stations E11
and E12 on the higher zone, where there was
also evidence of course modification, diversity
also showed low values, however, the dominant
substrate here was rocky. Generally, rivers with
sandy substrate harbor few species, with few
individuals per species (Arocena, 1998; Boc-
cardi, 2004; Chalar, 1994; Pintos et al., 1992),
given that its a specialized substrate, unstable
in water currents. By contrast, rocky substrates
tend to be richer than sandy ones, since they
provide more surface for the growth of the bio-
film on which various primary consumers feed
(Meza-Salazar et al., 2012).
At the stations located in the lower zone of
the river, Chironomidae was the most abundant
taxon. According to Butakka et al. (2016), this
family can inhabit a variety of habitats, from
pristine to highly polluted, and from freshwater
to hypersaline environments. Likewise, Pinder
(1995) and Oviedo-Machado and Reinoso-
Flores (2018) state that chironomids can colo-
nize a wide range of macro and microhabitats,
such as rapids, pools, submerged wood, sand,
gravel, pebbles, and roots, as well as utilize
fine sediments to produce tubular refuges.
According to Giraldo et al. (2014), at stations
with anthropic intervention by agriculture and
livestock raising, there is a greater abundance
of Diptera families, matching the observations
made in this study at stations from the lower
zone of the river.
The absence of riverside cover and in
some stations the presence of sandy substrates
could be responsible for the low representa-
tion of Trichoptera and Ephemeroptera in the
basin (Principe et al., 2019). Allan et al. (1997)
mention that sites deteriorated by deforesta-
tion and the change in soil use for productive
activities are related to the rise in sedimenta-
tion, reduction in the ingress of allochthonous
material, and consequently, the loss of habitat
heterogeneity. However, at stations located in
the middle zone there was a high abundance of
Leptohyphidae, Baetidae, Limnephilidae, and
Hydroptilidae. Regarding Leptohyphidae and
Baetidae (Ephemeroptera), Bücker et al. (2010)
and Lorion and Kennedy (2009) found that
they may abound in streams in deforested
areas subject to agricultural and livestock pres-
sure, in addition to their larvae remaining on
rocky substrates, characteristic of this part of
the river. For Trichoptera (Limnephilidae and
Hydroptilidae), Serna et al. (2015) and Springer
(2010) mention that they can construct shelters
on substrates such as stones, rocks, gravel, and
macrophytes, which allow them to survive in a
wider variety of habitats.
The CCA remarked the importance of
dissolved oxygen, temperature, and conductiv-
ity in the distribution of aquatic macroinver-
tebrates in River Tambo. In similar studies it’s
noted that the physicochemical properties pre-
viously mentioned, as well as pH and dissolved
solids may explain the dynamics of neotropi-
cal lotic systems (Carvacho-Aránguiz, 2012;
Mancilla et al., 2009; Morelli & Verdi, 2014),
given that most aquatic organisms are sensi-
tive to these factors (Carvacho-Aránguiz, 2012;
Domínguez & Fernández, 2009; Meza-Salazar
et al., 2012; Quinn & Hickey, 1990; Roldán-
Perez, 1996; Toro et al., 2002;). Some families
are more sensitive to increases in conductivity,
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
like Leptohyphidae, Simuliidae, and Baetidae
(Meneses-Campo et al., 2019), while others are
more resistant, like Elmidae and Chironomidae,
that showed a positive relation to an increase in
temperature. Elmidae is characterized by car-
rying out gas exchange through the plastron,
taking atmospheric oxygen, submerging, and
exchanging the gas with the oxygen dissolved
in the water, which makes them sensitive to
low availability of dissolved oxygen (Arias-Diaz
et al., 2007; Brown, 1987). Chironomidae is
widely distributed and adapts to different envi-
ronmental conditions, besides being present in
polluted waters (Gutiérrez-Garaviz et al., 2014).
Hydroptilidae lacks any relation with the physi-
cochemical parameters considered.
In many neotropical rivers, there is a pro-
gressive succession of sensitive taxa by others
more tolerant to pollution (Medina-Tafur et
al., 2007). According to the results of the ABI
index, the high and middle zones of the River
Tambo showed a good to moderate quality dur-
ing the sampled period, which probably allowed
for the establishment of an aquatic community
similar to what would be found under natural
conditions (Domínguez et al., 2020). In the
case of the lower part of the river, the water
quality is poor according to the index values.
This is probably due to the presence of a higher
concentration of contaminants as a result of the
intense agricultural activity carried out in this
part of the river (ANA, 2019), as well as from
the discharge of residual effluents from human
settlements in the area, which limit the estab-
lishment of little tolerant macroinvertebrates,
and therefore there is a predominance of those
with a high tolerance to organic contamination,
like Chironomidae (Liévano-León & Ospina-
Torres, 2007; Tobias-Loaiza & Guzmán-Soto,
2022), which has been linked to contamination
and eutrophication of freshwater ecosystems
(González del Tanago & García-Jalón, 1984).
The biological and physicochemical
parameters of a body of water determine the
establishment of the macroinvertebrate com-
munity (Vannote et al., 1980). It has been
reported that, when ecological conditions
are good, Plecoptera, Ephemeroptera, and
Trichoptera are present (Norris & Hawkins,
2000). However, some Ephemeroptera such as
Baetidae and Leptohyphidae, and some Trichop-
tera such as Hydroptilidae and Hydropsychidae,
may be more tolerant (Ríos-Touma et al., 2014).
During the present study, in the high and middle
zone of the river, the presence of Blephariceridae,
Gripopterygidae, Gomphidae, and Hydrobio-
sidae was recorded. The establishment of these
families that are sensitive to organic pollution
(with scores higher than 8 in the ABI index)
(Leaño-Sanabria & Pérez-Barriga, 2020; Roldán-
Pérez, 2016) indicates that the ecological condi-
tions are better upriver. On the contrary, a high
abundance of Chironomidae is typical of zones
where ecological conditions are not suitable to
support an aquatic community similar to that
which would be found in natural conditions
(Medina-Tafur et al., 2010). This family showed
higher abundance at stations E1 and E2, located
in the lower zone of the river, close to its mouth
in the Pacific Ocean, where the greatest environ-
mental impact on the river is evident.
This study is the first one on aquatic mac-
roinvertebrate communities in the River Tambo
and in Arequipa region. The structure and
diversity of macroinvertebrates constitute the
base information for future monitoring in this
basin and the water quality indices obtained
are indicative of the health of the ecosystem
and valuable tools to evaluate and manage
this resource.
Ethical statement: the authors declare
that they all agree with this publication and
made significant contributions; that there is
no conflict of interest of any kind; and that we
followed all pertinent ethical and legal proce-
dures and requirements. All financial sources
are fully and clearly stated in the acknowled-
gments section. A signed document has been
filed in the journal archives.
ACKNOWLEDGMENTS
To Universidad Nacional de San Agustín for
financing this research through FUNDS UNSA
- INVESTIGA. Contrato IAI-006-2018-UNSA.
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
REFERENCES
Allan, D., Erickson, D., & Fay, J. (1997). The influence of
catchment land use on stream integrity across mul-
tiple spatial scales. Freshwater Biology, 37, 149–161.
https://doi.org/10.1046/j.1365-2427.1997.d01-546.x
ANA (Autoridad Nacional del Agua). (2019). Estudio
hidrológico de la Unidad Hidrográfica de Tambo.
Dirección de Calidad y Evaluación de los Recur-
sos Hídricos, Perú. https://repositorio.ana.gob.pe/
handle/20.500.12543/4703
Arana-Maestre, J., Carrasco-Badajoz, C., Coayla-Peñaloza,
P., Rayme-Chalco, C., & Sánchez-Peña, M. (2021).
Aquatic macroinvertebrates of arid and semi-arid
ecosystems of Perú. Frontier in Environmental Science,
9, 658940. http://doi.or/10.3389/fenvs.2021.658940
Arias-Diaz, D. M., Reinoso-Florez, G., Guevara-Cardona,
G., & Villa-Navarro, F. A. (2007). Distribución espa-
cial y temporal de los coleópteros acuáticos en la
cuenca del río Coello (Tolima, Colombia). Caldasia,
29(1), 177–194.
Arocena, R. (1998). Statistical analysis of benthic communi-
ties to assess suspected degradation and recuperation
zones in an urban stream (Uruguay). Verhandlungen
der Internationalen Vereinigung fur Theoretische und
Angewandte Limnologie, 26, 1188–1192. https://doi.
org/10.1080/03680770.1995.11900907
Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling,
J. B. (1999). Rapid Bioassessment Protocols for Use
in Streams and Wadeable Rivers, Periphyton Benthic
Macroin, Benthic Macroinvertebrates and Fish. Envi-
ronmental Protection Agency, United States of
America. https://www3.epa.gov/region1/npdes/
merrimackstation/pdfs/ar/AR-1164.pdf
Boccardi, L. (2004). Caracterización de la comunidad de
macroinvertebrados bentónicos de la cañada del Dra-
gón (Montevideo) (Tesis de grado). Universidad de la
República, Uruguay.
Brown, H. P. (1987). Biology of riĝe beetles. Annual Review
of Entomology, 32, 253–273.
Bücker, A., Sondermann, M., Frede, H. G., & Breuer,
L. (2010). The influence of land-use on macroin-
vertebrate communities in montane tropical
streams a case study from Ecuador. Fundamental
and Applied Limnology, 177, 267–282. http://doi.
org/10.1127/1863-9135/2010/0177-0267
Burdet, A. S., & Watts, R. J. (2009). Modifying living space:
an experimental study of the influences of vegeta-
tion on aquatic invertebrate community structure.
Hydrobiologia, 618, 161–173. http://doi.org/10.1007/
s10750-008-9573-z
Bustamante-Toro, C. A., Durango, E., & García-Reinoso, P.
L. (2008). Análisis de la calidad del agua en la cuenca
media del río Quindío con base en índices físicos,
químicos y biológicos. Revista de Investigaciones Uni-
versidad del Quindío, 17, 22–31.
Butakka, C. M. M., Ragonha, F. H., Train, S., Pinha, G.
D., & Takeda, A. M. (2016). Chironomidae feeding
habits in different habitats from a Neotropical floo-
dplain: exploring patterns in aquatic food webs. Bra-
zilian Journal of Biology, 76(1), 117–125. http://doi.
org/10.1590/1519-6984.14614
Carpio-Fernández, J., & Peña, F. L. (2020) Hidrogeología
de la cuenca del río Tambo (1318) regiones Arequipa,
Moquegua y Puno. Boletín Serie H Hidrogeología, 7,
288.
Carvacho Aránguiz, C. A. (2012). Estudio de las comunida-
des de macroinvertebrados bentónicos y desarrollo de
un índice multimétrico para evaluar el estado ecológico
de los ríos de la cuenca del Limari en Chile (Tesis de
maestría). Universidad de Barcelona, España. https://
diposit.ub.edu/dspace/handle/2445/29051
Castro, L., Fraile, J., & Reynolds Vargas, J. (1996). Conduc-
tividad, oxígeno disuelto, PH y temperatura en el rio
Bermudez (Costa Rica) y su relación con el uso del
suelo en la cuenca (ING). Uniciencia, 13(1), 27–34.
Chalar, G. (1994). Composición y abundancia del zooben-
tos del Arroyo Toledo (Uruguay) y su relación con la
calidad del agua. Revista Chilena de Historia Natural,
67, 129–141.
Custodio, M., & Chanamé, F. (2016). Análisis de la biodi-
versidad de macroinvertebrados bentónicos del río
Cunas mediante indicadores ambientales, Junín-Perú.
Scientia Agropecuaria, 7(1), 33–44.
Domínguez, E., & Fernández, H. R. (2009). Macroinverte-
brados bentónicos sudamericanos. Sistemática y Biolo-
gía. Fundación Miguel Lillo.
Domínguez, E., Giorgi, A., & Gómez, N. (2020). La bioin-
dicación en el monitoreo y evaluación de los sistemas
fluviales de la Argentina: Bases para el análisis de la
integridad ecológica. Editorial Eudeba.
Galarza, E., Cabrera, M., Espinosa, R., Espitia, E., Moulatlet,
G., & Capparelli, M. (2021). Assessing the quality of
Amazon aquatic ecosystems with multiple lines of
evidence: the case of the northeast Andean foothills
of Ecuador. Bulletin of Environmental Contamination
and Toxicology, 107, 52–61. https://doi.org/10.1007/
s00128-020-03089-0
Gamarra, O., Barrena, M. A., Barboza, E., Rascón, J.,
Corroto, F., & Taramona, L. A. (2018). Fuentes de
contaminación estacionales en la cuenca del río
Utcubamba, región Amazonas, Perú. Arnaldoa, 25(1),
179–194. https://doi.org/http://doi.org/10.22497/
arnaldoa.251.25111.
Giraldo, L. P., Chará, J., Zúñiga, M. del C., Chará-Serna, A.
M., & Pedraza, G. (2014). Impacto del uso del suelo
agropecuario sobre macroinvertebrados acuáticos en
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
pequeñas quebradas de la cuenca del río La Vieja
(Valle del Cauca, Colombia). Revista de Biología Tro-
pical, 62(2), 203–219.
González del Tanago, M., & García-Jalón, D. (1984). Desa-
rrollo de un índice biológico para estimar la calidad
de las aguas de la cuenca del Duero. Limnetica, 1,
263–272.
Gutiérrez-Garaviz, J., Zamora-González, H., & Andrade-
Sossa, C. E. (2014). Efecto de la actividad antrópica
sobre la composición y diversidad de macroinverte-
brados acuáticos en el río Cofre (sistema lótico andi-
no colombiano). Revista Biodiversidad Neotropical,
4(2), 113–123.
Hammer, O., Harper, T., & Ryan, P. (2001). PAST: Paleonto-
logical Statistics Software Package for Education and
Data Analysis. Palaeontología Electrónica, 4, 9.
Hauer, F. R., & Lamberti, G. A. (Eds.). (2011). Methods in
Stream Ecology. Academic Press.
INDECI (Instituto Nacional de Defensa Civil). (2021).
Informe de emergencia Nº 1424 (Informe N° 13)
Contaminación Hídrica de Moquegua, Perú. https://
portal.indeci.gob.pe/wp-content/uploads/2021/09/
INFORME-DE-EMERGENCIA-N%C2%BA-
1424-2OCT2021-CONTAMINACI%C3%93N-
H%C3%8DDRICA-EN-EL-DEPARTAMENTO-DE-
MOQUEGUA-13.pdf
Lavado, W. S., Ronchail, J., Labat, D., Espinoza, J. C., &
Guyot, J. L. (2012). Basin-scale analysis of rainfall
and runoff in Perú (1969–2004): Pacific, Titicaca and
Amazonas drainages. Hydrological Sciences Journal,
57(4), 625–642. http://doi.org/10.1080/02626667.20
12.672985
Leaño-Sanabria, J. J., & Pérez-Barriga, D. (2020). Deter-
minación de la calidad del agua mediante el índi-
ce BMWP/BOL (bioindicadores ecológicos) del río
Trancas, Municipio de Entre Ríos-Tarija. Acta Nova,
9(4), 567–591.
Liévano-León, A., & Ospina-Torres, R. (2007). Guía ilustra-
da de los macroinvertebrados acuáticos del río Baha-
món. Universidad El Bosque, Instituto Alexander Von
Humbolt, Colombia.
López-Mendoza, S., Huertas-Pineda, D., Jaramillo-Londo-
ño, A. M., Calderón-Rivera, D. S., & Díaz-Arévalo,
J. L. (2019). Macroinvertebrados acuáticos como
indicadores de calidad del agua del río Teusacá (Cun-
dinamarca, Colombia). Ingeniería y Desarrollo, 37(2),
269–288. http://doi.org/10.14482/inde.37.2.6281
Lorion, C. M., & Kennedy, B. P. (2009). Riparian forest
buffers mitigate the effects of deforestation on fish
assemblages in tropical headwater streams. Eco-
logical Applications, 19(2), 468–479. https://doi.
org/10.1890/08-0050.1
Mancilla, G., Valdovinos, C., Azocar, M., Jorquera, P.,
& Figueroa, R. (2009). Efecto del reemplazo de la
vegetación nativa de ribera sobre la comunidad de
macroinvertebrados bentónicos en arroyos de cli-
mas templados, Chile central. Hidrobiológica, 19(3),
193–203.
Medina-Tafur, C., Balmaceda, J., Ramírez, R., Peláez, F.,
Reyes, W., & Puhe, J. (2007). Caracterización físico-
química y microbiológica del río Chicama. Regiones
La Libertad y Cajamarca, Perú. Sciéndo, 10(2), 31–40.
Medina-Tafur, C., Hora-Revilla, M., Pereda-Ruiz, W., Agui-
lar, R. G., & Asencio-Guzmán, I. (2010). El índi-
ce Biological Monitoring Working Party (BMWP),
modificado y adaptado a tres microcuencas del Alto
Chicana. La Libertad, Perú. 2008. Sciéndo, 13(2), 280.
https://revistas.unitru.edu.pe/index.php/SCIENDO/
article/view/280
Meneses-Campo, Y., Castro, M., & Jaramillo, A. (2019).
Comparación de la calidad del agua en dos ríos
altoandinos mediante el uso de los índices BMWP/
COL y ABI. Acta Biológica Colombiana, 24(2), 299–
310. http://doi.org/10.15446/abc.v24n2.70716
Merritt, R. W., Cummins, K. W. & Berg, M. B. (2008). An
introduction to the aquatic insects of North America.
Kendall/Hunt Publishing Company.
Meza-Salazar, A. M., Rubio, J., Dias, L., & Walteros, J.
(2012). Calidad de agua y composición de macroin-
vertebrados acuáticos en la subcuenca alta del río
Chinchiná. Caldasia, 34, 443–456.
MINAM (Ministerio del Ambiente). (2017). Aprueban
Estándares de Calidad Ambiental (ECA) para agua y
establecen disposiciones complementarias. MINAM,
Perú. https://www.minam.gob.pe/wp-content/
uploads/2017/06/DS-004-2017-MINAM.pdf
Morelli, E., & Verdi, A. (2014). Diversidad de macroinverte-
brados acuáticos en cursos de agua dulce con vegeta-
ción ribereña nativa de Uruguay. Revista Mexicana de
Biodiversidad, 85, 1160–1170. http://doi.org/10.7550/
rmb.45419
Moreno, C. E. (2001). Métodos para medir la biodiversidad.
M&T Manuales y Tesis Sociedad Entomológica Arago-
nesa, 1(1), 1–84.
Norris, R. H., & Hawkins, C. P. (2000). Monitoring river
health. Hydrobiologia, 435, 5–17.
Oscoz, J., Campos, F. & Escala, M. C. (2006). Variación de
la comunidad de macroinvertebrados bentónicos en
relación con la calidad de las aguas. Limnetica, 25(3),
683–692.
Oviedo-Machado, N., & Reinoso-Flores, G. (2018). Aspec-
tos ecológicos de larvas de Chironomidae (Diptera),
del río Opia (Tolima, Colombia). Revista Colom-
biana de Entomología, 44(1), 101–109. http://doi.
org/10.25100/socolen.v44i1.6546
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e56670, enero-diciembre 2024 (Publicado May. 21, 2024)
Pinder, L. (1995). The habitats of chironomid larvae. In P.
Armitage, P. Cranston, & L. Pinder (Eds.), The Chiro-
nomidae (pp. 107–135). Springer.
Pintos, W., Conde, D., & Norbis, W. (1992). Contaminación
orgánica en el río Uruguay (Paysandú, Uruguay).
Revista de la Asociación de Ciencias Naturales del
Litoral, 23, 21–29. http://doi.org/10.14409/natura.
v1i23.3627
Prat, N., Rieradevall, M., Acosta, R., & Villamarín, C.
(2011). Guía para el reconocimiento de larvas de Chi-
ronomidae (Díptera) de los ríos altoandinos de Ecuador
y Perú. Universidad de Barcelona, España.
Principe, R. E., Marquez, J. A., & Cibils-Martina, L. (2019).
Distribution and habitat preference of Ephemeroptera
and Trichoptera in subtropical mountain streams:
implications for monitoring and conservation. Anais
da Academia Brasileira de Ciências, 91, e20180692.
http://doi.org/10.1590/0001-3765201920180692
Quinn, J. M., & Hickey, C. W. (1990). Characterization and
classification of benthic invertebrate communities in
88 New Zealand rivers in relation to environmental
factors. New Zealand Journal of Marine and Freshwa-
ter Research, 24, 387–409. https://doi.org/10.1080/002
88330.1990.9516432
Reis-Oliveira, P. C., Gomes-Nogueira, M., & Pinto-Sartori,
L. (2014). Differential environmental impacts on
small and medium size rivers from center of São
Paulo State, Brazil, and regional management pers-
pectives. Acta Limnologica Brasiliensia, 26, 404–419.
http://doi.org/10.1590/S2179-975X2014000400008
Ríos-Touma, B., Acosta, R., & Prat, N. (2014). The Andean
Biotic Index (ABI): revised tolerance to pollution
values for macroinvertebrate families and index per-
formance evaluation. Revista de Biologia Tropical,
62(2), 249–273.
Rodier, J. (1998). Análisis de las Aguas. Omega.
Roldán-Pérez, G. (1996). Guía para el estudio de los macroin-
vertebrados acuáticos del departamento de Antioquia.
Universidad de Antioquia, Colombia.
Roldán-Pérez, G. (2003). Bioindicación de la calidad del
agua en Colombia. Uso del método BMWP/Col. Edito-
rial Universidad de Antioquia, Colombia.
Roldán-Pérez, G. (2016). Los macroinvertebrados como
bioindicadores de la calidad del agua: cuatro décadas
de desarrollo en Colombia y Latinoamérica. Revista de
la Academia Colombiana de Ciencias Exactas, Físicas y
Naturales, 40(155), 254–274. http://doi.org/10.18257/
raccefyn.335
SENAMHI (Servicio Nacional de Meteorología e Hidro-
logía del Perú). (2009). Balance Hídrico Superficial
Cuenca del Río Tambo. Dirección General de Hidro-
logía y Recursos Hídricos, Perú.
Serna, D. J., Tamaris-Turizo, C. E., & Gutiérrez-Morales, L.
C. (2015). Distribución espacial y temporal de larvas
de Trichoptera (Insecta) en el río Manzanares, Sierra
Nevada de Santa Marta (Colombia). Revista de Biolo-
gía Tropical, 63(2), 465–477.
Springer, M. (2010). Trichoptera. Revista de Biología Tro-
pical, 58(4), 151–198. https://revistas.ucr.ac.cr/index.
php/rbt/article/view/20086/20288
Terneus, E., Hernández, K., & Racines, M. J. (2012). Evalua-
ción ecológica del río Lliquino a través de macroin-
vertebrados acuáticos, Pastaza-Ecuador. Revista de
Ciencias, 16, 31–45.
Ternus, R. Z, Souza-Franco, G. M., Krombauer-Anselmini,
M. E., Mocellin, D. J. C, & Dal Magro, J. (2011).
Influence of urbanisation on water quality in the basin
of the upper Uruguay River in western Santa Catarina,
Brazil. Acta Limnologica Brasiliensia, 23(2), 189–199.
https://doi.org/10.1590/S2179-975X2011000200009
Thorp, J. & Lovell, L. (2015). Phylum Annnelida. In J.
Thorp, & D. C. Rogers (Eds.), Covichs Freshwa-
ter Invertebrates. Key to Neartic Fauna (Vol. 2, pp.
223–263). Elsevier.
Tobias-Loaiza, M., & Guzmán-Soto, C. (2022). Variación
estructural de familias de macroinvertebrados acuáti-
cos y su relación con la calidad de agua en quebradas
asociadas a cultivos de café y ganadería vacuna en el
sector de La Tagua, Sierra Nevada de Santa Marta.
Revista de la Academia Colombiana de Ciencias Exac-
tas, Físicas y Naturales, 46(178), 206–216. https://doi.
org/10.18257/raccefyn.1577
Toro, M., Robles, S, Avilés, J., Nuño, C., Vivas, S., Bonada,
N, Prat, N., Alba-Tercedor, J., Casas, J., Guerrero, C.,
imez-Cuéllar, P., Moreno, J. L., Moyá, G., Ramón,
G., Suárez, M. L., Vidal Abarca, M. R., Álvarez, M.,
& Pardo, I. (2002). Calidad de las aguas de los ríos
mediterráneos del proyecto GUADALMED. Caracte-
rísticas físico-químicas. Limnetica, 21, 63–75.
Vannote, R. L., Minshall, C. W., Cummins, K. W., Sedell,
J. R., & Cushing, C. E. (1980). The river continuum
concept. Canadian Journal of Fisheries and Aquatic
Sciences, 37, 130–137. https://doi.org/10.1139/f80-017