12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e56736, enero-diciembre 2024 (Publicado Abr. 16, 2024)
Bhardwaj, S. B. (2013). Alcohol and gastrointestinal tract
function. In R. R. Watson, & V. R. Preedy (Eds.),
Bioactive food as dietary interventions for liver and
gastrointestinal disease (pp. 81–118). Academic Press.
https://doi.org/10.1016/C2011-0-07464-1
Bradford, M. M. (1976). A rapid and sensitive method for
the quantization of microgram quantities of pro-
tein utilizing the principle of protein-dye binding.
Analytical Biochemistry, 72, 248–254. https://doi.
org/10.1016/0003-2697(76)90527-3
Casas-Andreu, G., Barrios-Quiroz, G., & Macip-Ríos, R.
(2011). Reproducción en cautiverio de Crocodylus
moreletii en Tabasco, México. Revista Mexicana de
Biodiversidad, 82, 261–273. https://doi.org/10.22201/
ib.20078706e.2011.1.444
Chikwati, E. M., Sahlmann, C., Holm, H., Penn, M. H.,
Krogdahl, Å., & Bakke, A. M. (2013) Alterations in
digestive enzyme activities during the development
of diet-induced enteritis in Atlantic salmon, Salmo
salar L. Aquaculture, 402-403, 28–37. https://doi.
org/10.1016/j.aquaculture.2013.03.023
Clarks, J., Macdonald, N. L., & Stark, J. R. (1985). Metabo-
lism in marine flatfish-III. Measurement of elastase
activity in the digestive tract of dover sole (Solea solea
L). Comparative Biochemistry and Physiology Part B:
Comparative Biochemistry, 81(3), 695–700. https://
doi.org/10.1016/0305-0491(85)90389-X
Coulson, R. A., & Coulson, T. D. (1986). Effect of tempera-
ture on the rates of digestion, amino acid absorption
and assimilation in the alligator. Comparative Bioche-
mistry & Physiology Part A: Physiology, 83(3), 585–
588. https://doi.org/10.1016/0300-9629(86)90150-7
Díaz-López, M., Moyano-López, F., Alarcón-López, F. J.,
García-Carreño, F. L., & Navarrete del Toro, M. A.
(1998) Characterization of fish acid proteases by
substrate-gel electrophoresis. Comparative Biochemis-
try and Physiology Part B: Biochemistry and Molecu-
lar Biology, 121(4), 369–377. https://doi.org/10.1016/
S0305-0491(98)10123-2
Diefenbach, C. O. da C. (1974). Gastric function in Caiman
crocodilus (Crocodylia: Reptilia)-I. Rate of gastric
digestion and gastric motility as a function of tem-
perature. Comparative Biochemistry and Physiolo-
gy Part A: Physiology, 51(2), 259–265. https://doi.
org/10.1016/0300-9629(75)90369-2
Fox, A., & Musacchia, X. (1959). Notes on the pH of the
digestive tract of Chrysemys picta. Copeia, 1959(4),
337–339. https://doi.org/10.2307/1439895
García-Carreño, F. L., Dimes, L. E., & Haard, N. F. (1993).
Substrate-Gel electrophoresis for composition and
molecular weight of proteinases or proteinaceous
proteinase inhibitors. Analytical Biochemistry, 214(1),
65–69. https://doi.org/10.1006/abio.1993.1457
García-Carreño, F. L., Hernández-Cortés, M., & Haard,
N. F. (1994). Enzymes with peptidase and proteinase
activity from the digestive systems of a freshwater and
a marine decapod. Journal of Agricultural and Food
Chemistry, 42(7), 1456–1461. https://doi.org/10.1021/
jf00043a013
Gildberg, A., Olsen, R. L., & Bjarnason, J. B. (1990).
Catalytic properties and chemical composition of
pepsins from Atlantic cod (Gadus morhua). Compara-
tive Biochemistry and Physiology Part B: Comparative
Biochemistry, 96(2), 323–330.
Huchzermeyer, F. W. (2003). Crocodiles biology, husbandry
and diseases. CABI Publishing, Wallinford.
Ishida, M., Ogawa, M., Mori, T., & Mega, T. (1987).
Determination and characterization of succinyl tri-
alanine p-nitroanilide hydrolyzing metalloendopep-
tidase in serum. Enzyme, 37(4), 202–207. https://doi.
org/10.1159/000469263
Jesús-De la Cruz, K., Álvarez-González, C. A., Peña, E.,
Morales-Contreras, J. A., & Ávila-Fernández, A.
(2018). Fish trypsins: potential applications in biome-
dicine and prospects for production. 3 Biotech, 8, 186.
https://doi.org/10.1007/s13205-018-1208-0
Klomklao S. (2008). Digestive proteinases from marine
organisms and their applications. Songklanakarin
Journal of Science and Technology, 30(1), 37–46.
Maroux, S., Louvard, D., & Barath, J. (1973). The aminopep-
tidase from hog intestinal brush border. Biochimica et
Biophysica Acta (BBA)-Enzymology, 321(1), 282–295.
https://doi.org/10.1016/0005-2744(73)90083-1
Moreira, E., Novillo, M., Eastman, J. T., & Barrera-Oro,
E. (2020). Degree of herbivory and intestinal mor-
phology in nine notothenioid fishes from the wes-
tern Antarctic Peninsula. Polar Biology, 43, 535–544.
https://doi.org/10.1007/s00300-020-02655-w
Parachú-Marcó, M. V., Piña, C. I., & Larriera, A. (2009).
Food conversion rate (FCR) in Caiman latirostris
resulted more efficient at higher temperatures. Inter-
ciencia, 34(6), 428–431.
Pérez-Gómez, M., Naranjo-López, C., Reyes-Tur, B., &
Vega-Ramírez, I. (2009). Influencia de dos tipos de
dietas sobre la talla y el peso corporal en neonatos de
Crocodylus acutus Cuvier, 1807 (Crocodylidae: Cro-
codylia) del zoocriadero de Manzanillo, Cuba. Acta
Zoológica Mexicana, 25(1), 151–160.
Platt, S. G., Rainwater, T. R., Finger, A. G., Thorbjarnarson,
J. B., Anderson, T. A., & McMurry, S. T. (2006). Food
habits, ontogenetic dietary partitioning and obser-
vations of foraging behaviour of Morelet’s crocodile
(Crocodylus moreletii) in Northern Belize. The Herpe-
tological Journal, 16(3), 281–290.
Platt, S. G., Rainwater, T. R., Snider, S., Garel, A., Anderson,
T. A., & McMurry, S. T. (2007). Consumption of large