12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57126, enero-diciembre 2024 (Publicado Abr. 16, 2024)
Infante-Cangrejo, V., & Donato-Rondón, J. C. (2017). Res-
puesta de la clorofila y el metabolismo de un arroyo
andino al aumento de temperatura en un experimen-
to ex situ. Acta Biológica Colombiana, 22(2), 191–198
https://doi.org/10.15446/abc.v22n2.60741
Jing, H., Cheung, S., Zhou, Z., Wu, C., Nagarajan, S., &
Liu, H. (2016). Spatial variations of the methanogenic
communities in the sediments of tropical mangroves.
PLOS ONE, 11(9), e0161065. https://doi.org/10.1371/
journal.pone.0161065
Kurth, J. M., Op den Camp, H. J. M., & Welte, C. U. (2020).
Several ways one goal-methanogenesis from uncon-
ventional substrates. Applied Microbiology and Bio-
technology, 104, 6839–6854. https://doi.org/10.1007/
s00253-020-10724-7
Lara-Domínguez, A. L., Day, J. W., Yáñez-Arancibia, A., &
Sainz-Hernández, E. (2006). A dynamic characteriza-
tion of water flux through a tropical ephemeral inlet,
La Mancha Lagoon, Gulf of Mexico. In V. P. Singh, &
Y. Ju-Xu (Eds.), Coastal hydrology and processes (pp.
413–422). Water Resources Publication.
Li, C. (2000). Modeling trace gas emissions from agricul-
tural ecosystems. Nutrient Cycling in Agroecosystems,
58, 259–276.
Liu, Y., & Whitman, W. B. (2008). Metabolic, Phyloge-
netic, and Ecological Diversity of the Methanoge-
nic Archaea. Annals of the New York Academy of
Sciences, 1125(1), 171–189. https://doi.org/10.1196/
annals.1419.019
López-Portillo, J., Lara-Domínguez, A. L., Ávila-Ángeles,
A., & Vázquez-Lule, A. D. (2009). Caracterización
del sitio de manglar La Mancha. In CONABIO
(Ed.), Sitios de manglar con relevancia biológica y con
necesidades de rehabilitación ecológica (pp. 1–17).
CONABIO.
Lozano, S., Vásquez, C., Rivera-Rondón, C. A., Zapata, A.,
& Ortiz-Moreno, M. L. (2019). Efecto de la vegetación
riparia sobre el fitoperifiton de humedales en la Ori-
noquía colombiana. Acta Biológica Colombiana, 24(1),
67–85. https://doi.org/10.15446/abc.v24n1.69086
Lyimo, T. J., Pol, A., & Op den Camp, H. J. M. (2002a).
Methane emission, sulphide concentration and redox
potential profiles in Mtoni Mangrove Sediment, Tan-
zania. Western Indian Ocean Journal Marine Science,
1(1), 71–80. http://hdl.handle.net/1834/28
Lyimo, T. J., Pol, A., & Op den Camp, H. J. M. (2002b).
Sulfate reduction and methanogenesis in sediments of
Mtoni Mangrove Forest, Tanzania. AMBIO: A Journal
of the Human Environment, 31(7), 614–616. https://
doi.org/10.1579/0044-7447-31.7.614
Lyimo, T. J., Pol, A., Jetten, M. S. M., & Op den
Camp, H. J. M. (2009). Diversity of methanoge-
nic archaea in a mangrove sediment and isolation
of a new Methanococcoides strain. FEMS Micro-
biology Letters, 291(2), 247–253. https://doi.
org/10.1111/j.1574-6968.2008.01464.x
Lyu, Z., Shao, N., Akinyemi, T., & Whitman, W. B. (2018).
Methanogenesis. Current Biology, 28, R727–R732.
MacFarlane, G. R., Koller, C. E., & Blomberg, S. P. (2007).
Accumulation and partitioning of heavy metals in
mangroves: A synthesis of field-based studies. Che-
mosphere, 69(9), 1454–1464. https://doi.org/10.1016/j.
chemosphere.2007.04.059
Mohanraju, R., & Natarajan, R. (1992). Methanogenic bac-
teria in mangrove sediments. Hydrobiologia, 247(1–
3), 187–193. https://doi.org/10.1007/BF00008218
Mohanraju, R., Rajagopal, B. S., & Daniels, L. (1997). Iso-
lation and characterization of a methanogenic bacte-
rium from mangrove sediments. Journal of Marine
Biotechnology, 5, 147–152.
Moreno-Casasola, P. (2003). Ficha Informativa de los Hume-
dales de Ramsar (FIR). https://rsistest.ramsar.org/
RISapp/files/RISrep/MX1336RIS.pdf
Norma Oficial Mexicana (NOM-059-ECOL-2010). (2010).
Protección ambiental - especies nativas de México de
flora y fauna silvestres - categorías de riesgo y especifi-
caciones para su inclusión, exclusión o cambio - lista de
especies en riesgo.
Ozuolmez, D., Na, H., Lever, M. A., Kjeldsen, K. U., Jør-
gensen, B. B., & Plugge, C. M. (2015). Methanogenic
archaea and sulfate reducing bacteria co-cultured
on acetate: teamwork or coexistence? Frontiers in
Microbiology, 6(492), 1–12. https://doi.org/10.3389/
fmicb.2015.00492
Paez-Osuna, F., Bojórquez-Leyva, H., & Green-Ruiz, C.
(1998). Total carbohydrates: organic carbon in lagoon
sediments as an indicator of organic effluents from
agriculture and sugar-cane industry. Environmental
Pollution, 102(2–3), 321–326. https://doi.org/10.1016/
S0269-7491(98)00045-1
Parkes, R. J., Cragg, B. A., Banning, N., Brock, F., Webs-
ter, G., Fry, J. C., Hornibrook, E., Pancost, R. D.,
Kelly, S., Knab, N., Jørgensen, B. B., Rinna, J., &
Weightman, A. J. (2007). Biogeochemistry and
biodiversity of methane cycling in subsurface
marine sediments (Skagerrak, Denmark). Environ-
mental Microbiology, 9(5), 1146–1161. https://doi.
org/10.1111/j.1462-2920.2006.01237.x
Preston, M. R., & Prodduturu, P. (1992). Tidal variations
of particulate carbohydrates in the Mersey estuary.
Estuarine, Coastal and Shelf Science, 34(1), 37–48.
https://doi.org/10.1016/S0272-7714(05)80125-8
Purvaja, R., Ramesh, R., & Frenzel, P. (2004). Plant-media-
ted methane emission from an Indian mangrove.
Global Change Biology, 10(11), 1825–1834. https://
doi.org/10.1111/j.1365-2486.2004.00834.x