1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57188, diciembre 2023 (Publicado Nov. 01, 2023)
First mercury and stable isotope assessment from an unusual
mass stranding of rough-toothed dolphins (Steno bredanensis)
(Artiodactyla: Delphinidae) in Azuero peninsula, Pacific coast of Panama
Dalia C. Barragán-Barrera1, 2* https://orcid.org/0000-0003-4023-9908
Lissette Trejos Lasso3, 4 https://orcid.org/0000-0002-2495-0452
Betzi Pérez-Ortega3, 5 https://orcid.org/0000-0001-5414-6329
José Julio Casas4, 6, 7 https://orcid.org/0000-0001-9951-0542
Roberto Santamaria Valverde6 https://orcid.org/0000-0001-7371-8273
1. Instituto Javeriano del Agua, Pontificia Universidad Javeriana, Bogotá, Colombia; daliac.barraganbarrera@gmail.com
(Correspondence*)
2. R&E Ocean Community Conservation Foundation, Oakville, ON, Canada; daliac.barraganbarrera@gmail.com
3. Fundación Panacetacea Panamá, Ciudad de Panamá, Panamá; ltrejos@miambiente.gob.pa; betziperez@yahoo.com
4. Ministerio de Ambiente, Avenida Ascanio Villalaz, edificio 500, Ancón, Panamá.; ltrejos@miambiente.gob.pa;
jcasas@miambiente.gob.pa
5. Biology Department and Redpath Museum, McGill University, Montreal, Canada; betziperez@yahoo.com
6. Facultad de Ciencias del Mar, Universidad Marítima Internacional de Panamá – UMIP, Ciudad de Panamá, Panamá;
jcasas@miambiente.gob.pa; santamariaroberto43@gmail.com
7. Estación Científica Coiba AIP, Ciudad de Panamá, Panamá; jcasas@miambiente.gob.pa
Received 11-VIII-2022. Corrected 09-XII-2022. Accepted 26-V-2023.
ABSTRACT
Introduction: Small cetaceans are good bioindicators of environmental contamination; however, knowledge
about their ecotoxicological status in Central America is scarce. In Panama, access to samples from wild popula-
tions to determine the ecotoxicological status of oceanic dolphins is limited; therefore, stranding events provide
an alternative for obtaining samples. In April 2016, a rare mass stranding event occurred in the Azuero Peninsula
(Pacific coast of Panama), where 60 rough-toothed dolphins (Steno bredanensis) stranded, including ten which
died on the beach.
Objective: To assess total mercury (THg) concentrations, and δ13C and δ15N stable isotope values in rough-
toothed dolphins for the first time in this region.
Methods: Nine skin samples were collected from adults, stored in 70 % ethanol, and posteriorly analyzed to
determine THg concentrations and stable isotope values.
Results: THg concentrations ranged from 4 764 to 18 689 ng g-1 dry weight (dw) (mean = 12 841; SD = 5 083 ng
g-1 dw), δ13C values ranged between −16.8 and −15.2 ‰ (mean = −16.2; SD = 0.6 ‰), and δ15N values ranged
between 14.3 and 15.9 ‰ (mean = 15.0; SD = 0.5 ‰).
Conclusions: High THg concentrations reported for this species in the Azuero Peninsula are consistent with
values reported for rough-toothed dolphins in other areas worldwide, such as the central-northern Rio de Janeiro
State in Brazil and La Guajira in the Colombian Caribbean. Elevated mercury (Hg) concentrations may be related
to the rough-toothed dolphin diet, which according to δ15N values found here, appears to be based mainly on
high trophic level prey that bioaccumulate more Hg in their tissues compared to lower trophic level organisms.
However, additional dietary studies would be required to support these findings. Continuing monitoring of
https://doi.org/10.15517/rev.biol.trop..v71iS4.57188
SUPPLEMENT • SMALL CETACEANS
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71(S4): e57188, diciembre 2023 (Publicado Nov. 01, 2023)
INTRODUCTION
Mercury (Hg) is a global contaminant
that is biomethylated in aquatic sediments by
microorganisms (Alcala-Orozco et al., 2019;
Wiener & Suchanek, 2008) from the inorganic
form (Hg2+) to the organic methylmercury
(CH3Hg+; MeHg) form. The organic MeHg
form is more toxic and bioaccumulates in
aquatic organisms through an individuals life,
causing deleterious effects (Bossart, 2011; Cor-
rea et al., 2014; Reif et al., 2015; Schwacke et al.,
2002; Wiener et al., 2003). Top predators are
particularly vulnerable to the harmful effects
because Hg biomagnifies through aquatic tro-
phic chains (Bosch et al., 2016).
Because of their role as top predators,
dolphins tend to bioaccumulate high Hg levels
in their tissues, so they can be bioindicators of
contamination worldwide (e.g., Aubail et al.,
2013; Barragán-Barrera, Luna-Acosta et al.,
2019; Cáceres-Saez et al., 2015). However, in
Central America little information is available
on the toxicological status of dolphins. The few
Hg assessments that have been conducted in
this region have focused mainly on fish from
the Pacific coast of Costa Rica and Nicaragua,
examining Hg concentrations in four elasmo-
branchs, as well as 23 other freshwater and
marine fishes (Elliot et al., 2015; Sandoval et
al., 2015). Likewise, for feeding ecology stud-
ies based on stable isotopic data, one study has
traditional dietary analysis, as well as contamination levels in fish and dolphins, is necessary to understand the
dolphins’ ecotoxicology in Panama.
Key words: Steno bredanensis; dolphins; cetaceans; contamination; heavy metals; ecotoxicology; Panama.
RESUMEN
Primera evaluación de mercurio e isótopos estables de delfines de dientes rugosos (Steno bredanensis) pro-
venientes de un varamiento masivo inusual en la península de Azuero, Costa Pacífica de Panamá
Introducción: Los pequeños cetáceos son buenos bioindicadores de la contaminación ambiental; sin embargo, el
conocimiento acerca de su estado ecotoxicológico en Centroamérica es escaso. En Panamá, el acceso a muestras
para determinar el estado ecotoxicológico de delfines oceánicos es limitado; por lo tanto, los varamientos pro-
veen una alternativa para obtener muestras. En abril de 2016, un raro evento de varamiento masivo ocurrió en la
Península de Azuero (Pacífico panameño), en el cual 60 delfines de dientes rugosos (Steno bredanensis) vararon
incluyendo diez que murieron en la playa.
Objetivo: Determinar los niveles de mercurio total (THg), e isótopos estables de δ13C y δ15N en los delfines de
dientes rugosos por primera vez en la región.
Métodos: Nueve muestras de piel de adultos fueron colectadas, almacenadas en etanol al 70 %, y analizadas pos-
teriormente para determinar THg e isótopos estables.
Resultados: Las concentraciones de THg variaron entre 4 764 y 18 689 ng g-1 de peso seco (dw) (promedio=
12 841; DE= 5 083 ng g-1 dw), los valores de δ13C entre −16.8 y −15.2 ‰ (promedio= −16.2; DE= 0.6 ‰), y los de
δ15N entre 14.3 y 15.9 ‰ (promedio= 15.0; DE= 0.5 ‰).
Conclusiones: Los altos niveles de THg reportados para esta especie en la Península de Azuero son consistentes
con los reportados en la piel de los delfines de dientes rugosos en otras áreas del mundo, como en el estado de
Río de Janeiro en Brasil y La Guajira en el Caribe colombiano. Las altas concentraciones de mercurio (Hg) pueden
estar relacionadas con la dieta de los delfines de dientes rugosos, la cual, de acuerdo a los valores de δ15N encon-
trados aquí, parece estar basada en presas de alto nivel trófico que acumulan más Hg en sus tejidos. Sin embargo,
estudios dietarios adicionales son requeridos para confirmar estos resultados. Un monitoreo continuo de la dieta
usando análisis tradicionales, así como de los niveles de contaminación en peces y delfines, es necesario para
entender la ecotoxicología de los delfines en Panamá.
Palabras clave: Steno bredanensis; delfines; cetáceos; contaminación; metales pesados; ecotoxicología; Panamá.
Nomenclature: SMT1: Supplementary material Table 1; SMF1: Supplementary material Figure 1.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57188, diciembre 2023 (Publicado Nov. 01, 2023)
been conducted with demersal elasmobranchs
in the Costa Rican Pacific basin (Espinoza et
al., 2015). To date, the only published cetacean
study in Central America which determined
both total Hg (THg) and stable isotope mea-
surements was conducted on common bottle-
nose dolphins Tursiops truncatus (Montagu,
1821) from the Bocas del Toro Archipelago in
the Panamanian Caribbean (Barragán-Barrera,
Luna-Acosta et al., 2019).
The lack of ecotoxicological studies focused
on cetaceans in Panama is mainly due to the
difficulty in obtaining tissue samples from
wild populations, particularly for species with
oceanic habits like the rough-toothed dolphin,
Steno bredanensis (G. Cuvier in Lesson, 1828).
This species is found mainly in oceanic waters
in tropical latitudes (Jefferson, 2018), with
some occurrences in nearshore waters of oce-
anic islands (Baird, 2016; Oremus et al., 2012).
Access to tissue samples of oceanic species is
challenging, particularly where no long-term
marine mammal monitoring programs have
been established. Therefore, stranding events
provide a good alternative to obtaining samples
from oceanic dolphins.
On the night of April 19th, 2016, a group
of 60 rough-toothed dolphins was reported in
a rare mass stranding event on the Pacific coast
of Panama. This event occurred on Ostional
beach (“Playa Ostional”), in the Tonosí dis-
trict of the Azuero Peninsula, 340 kilometers
southwest of Panama City (Fig. 1). The event
was unusual because this species strands less
frequently than other marine mammal spe-
cies (Mackey et al., 2003), and most strand-
ings in Panama have been reported as isolated
individuals (May-Collado et al., 2017). In the
early morning of April 20th, 2016, experienced
marine biologists and veterinarians from the
Environmental Ministry of Panama (MiAmbi-
ente), the International Maritime University of
Panama (UMIP by its acronym in Spanish), the
Universidad de Panamá, the Aquatic Resources
Authority (ARAP by its acronym in Spanish),
Fundación Panacetacea (non-governmental
organization), and local fishermen attended to
the stranded animals. Ten of the 60 individuals
died on the beach (Fig. 1), and the remaining
animals were rescued and moved to deeper
waters. According to their total lengths, nine
of the ten deceased individuals were classi-
fied as adults (> 255 cm) and one as a calf (<
1m) (Mackey et al., 2003; Reeves et al., 2008).
Necropsies were conducted on the adults in
situ, and basic morphometric data and tissue
Fig. 1. Location of Ostional Beach in the Azuero Peninsula, Pacific coast of Panama, where the mass stranding of rough-
toothed dolphins (Steno bredanensis) occurred in April 2016. On right above, a photo of the mass stranding. On right below
a species description illustrated by Emmanuel Laverde © www.arteyconservacion.com
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71(S4): e57188, diciembre 2023 (Publicado Nov. 01, 2023)
samples were collected. Sex was determined by
external examination, identifying five females
and four males. The calf was transported to the
laboratory to conduct the necropsy and posteri-
or analyses. To prevent sampling biases related
with tissue decomposition, fresh or moderate
carcasses with body condition code 2 or 3 (Kui-
ken & Hartmann, 1991; Geraci & Lounsbury,
1993) should be used (Méndez-Fernández et
al., 2020). Therefore, because all animals were
freshly dead (body condition code 2; Geraci &
Lounsbury, 1993), samples were used for this
ecotoxicological assessment.
Although the liver is considered the main
storage organ for Hg (e.g., Mackey et al., 2003),
recent analyses in small cetaceans have shown
that skin also reflects the concentration of
Hg in the internal organs (e.g., Aubail et al.,
2013; Cáceres-Saez et al., 2015; Fontaine et al.,
2015). Therefore, nine skin samples collected
from the adults (stored in 70 % ethanol at -20
°C) were used to conduct the Hg and stable
isotope assessments. Because the remoteness
of the stranding area, ethanol was the prefer-
able storage method; however, in cetaceans
skin, ethanol could affect the composition of
the δ13C stable isotope concentration by show-
ing depletion (e.g., Hidalgo-Reza et al., 2019;
Kiszka et al., 2014). Nevertheless, the magni-
tude of ethanol effects on this isotope in dol-
phins’ skin has not been fully confirmed like
a linear relationship as has been assessed in
other taxa (Kiszka et al., 2014). To address the
potential issues related to ethanol preservation
on the δ13C composition results, lipids should
be removed, since they are depleted in δ13C
(De Niro & Epstein, 1978; Tieszen et al., 1983).
Previously to this, samples were covered with
aluminum foil and left on a bench to let the
ethanol evaporate. Posteriorly, samples were
washed ten times with distilled water, which
was evaporated at 45 °C over 48 h, and samples
were then ground and freeze-dried.
To extract lipids for isotopic analyses, the
whole sample (up 50 mg each) was delipidated
as follows: 4 ml of cyclohexane was added,
next, the sample was agitated constantly for
10 min, centrifuged at 4 500 rpm for 5 min,
and the lipid supernatant was discarded. This
process was repeated three times, and then the
sample was dried at 45 °C in an oven for 48 h.
Finally, around 0.02 – 0.04 mg lipid-free sample
was weighed in a tin cup to perform posterior
stable isotope analyses in a continuous flow
mass spectrometer (Delta V Plus with a Con-
flo IV Interface, Thermo Scientific, Bremen,
Germany) coupled to an elemental analyzer
(Flash 2000 or EA Isolink, Thermo Scientific,
Milan, Italy). The usual δ notation relative to
Vienna PeeDee Belemnite Standard for δ13C
and atmospheric N2 for δ15N, in parts per thou-
sand (‰), was used to express the results (Mén-
dez-Fernández et al., 2020). Measurements in
duplicates of internal laboratory standards
(acetanilide) during each autorun indicated an
experimental precision (SD) of 0.03 for δ13C
and 0.09 for δ15N. To determine if lipid extrac-
tion was efficient, the C:N ratio was assessed
using the percent C and N elemental composi-
tion, in which values lower than four indicate
good lipid removal (Lesage et al., 2010).
As described in Vélez et al. (2021), THg
concentrations were measured using an atomic
absorption spectrometer AMA-254 (Altec ©
Advanced Mercury Analyzer-254). To control
the analytical quality of THg measurements,
these were repeated at least two times until
there were analytical differences below 10%.
Additionally, blanks were run at the beginning
of the analytical session, and certified reference
material (CRM) TORT-2 (Reference Material
of lobster hepatopancreas marine certified by
the National Research Council of Canada) were
used after blanks and every four analyses. The
CRM measured concentration was 251 ng g-1 (n
= 2) and showed good precision with a percent-
age of recovery of 93 %. THg measurements are
presented in ng g-1 on a dry weight basis (dw)
and the detection limit was 0.05 ng.
The results found all nine samples (females:
n = 5; males: n = 4) collected from the rough-
toothed dolphins showed detectable concentra-
tions of THg, with a mean of 12 841; SD = 5
083 ng g-1 dry weight (dw) ranging between
4 764 to 18 689 ng g-1 dw (SMT1). Regarding
the stable isotopes, the C:N ratios reflected an
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57188, diciembre 2023 (Publicado Nov. 01, 2023)
efficient lipids removal (SMT1), so the results
showed that δ13C values ranged between –16.8
and –15.2 ‰ (mean = –16.2; SD = 0.6 ‰), and
δ15N values ranged between 14.3 and 15.9 ‰
(mean = 15.0; SD = 0.5 ‰) (SMT1).
This study presents the first assessment of
THg and stable isotope measurements in rough-
toothed dolphins from Central America, which
is considered to be a species of “Least Concern
but with an “unknown population trend” by
the IUCN Red List (Kiska et al., 2019). Bycatch
and direct harvest have been considered threats
to this species (Avila et al., 2018; Kiska et al.,
2019), and metal exposure may be considered
as a potential hazard. Several negative effects
have been associated to Hg in marine mam-
mals, such as immunotoxicity (Desforges et al.,
2016), neurotoxicity (Krey et al., 2015), repro-
ductive, endocrine, heart, and kidney damage
(Bossart, 2011; Correa et al., 2014; Kershaw
& Hall, 2019; Schwacke et al., 2002), as well as
cancer (Béland et al., 1993; Martineau et al.,
1994). The high concentrations that rough-
toothed dolphins bioaccumulate may warrant
special attention and qualifies them as a bioin-
dicator species in oceanic waters. However, the
rough-toothed dolphin is a highly migratory
species, so THg levels reported in their tissues
do not necessarily reflect the local Hg levels.
Studies in several areas worldwide have
found rough-toothed dolphins to have high
THg levels (SMT2). For instance, in La Guajira
(Colombian Caribbean), an assessment of Hg
concentrations in the skin of five dolphin spe-
cies (Atlantic spotted dolphin Stenella fronta-
lis Cuvier, 1829; common bottlenose dolphin;
common dolphin Delphinus sp.; rough-toothed
dolphin; and spinner dolphin Stenella longiros-
tris (Gray, 1828)) showed the highest values
for rough-toothed dolphins (THg-skin-mean
= 16 817; SD = 3 815 ng g-1 dw; n = 3; Bar-
ragán-Barrera, Farías-Curtidor, Luna-Acosta
et al. 2019, Barragán-Barrera, Farías-Curtidor,
Chávez-Carreño et al., 2019). Similarly in Bra-
zil, specifically in the central-northern Rio de
Janeiro State, rough-toothed dolphins showed
the highest values in their muscle (THg-mean
= 10 150; SD = 6 230 ng g-1 dw; n = 9), in
comparison to muscle of coastal species like the
Franciscana (Pontoporia blainvillei (Gervais &
dOrbigny, 1844); THg-mean = 1 920; SD = 960
ng g-1 dw; n = 16) and Guiana dolphin (Sotalia
guianensis (Van Bénéden, 1864); THg-mean =
3 910; SD = 2 160 ng g-1 dw; n = 28) (Baptista et
al., 2016). The same pattern was observed in the
southern Rio de Janeiro State in Brazil, where
rough-toothed dolphins showed the highest
THg values in their liver (THg-mean = 594 800;
SD = 200 300 ng g-1 dw; n = 3) in comparison
to the liver of the coastal form of common
bottlenose dolphin (THg-mean = 4 380; SD =
2 470 ng g-1 dw; n = 10) and the offshore Atlan-
tic spotted dolphin (THg-mean = 8 130; SD =
10 470 ng g-1 dw; n = 3) (Lemos et al., 2013).
The high THg levels likely reflect the
rough-toothed dolphins high-trophic prey pref-
erences, which appear to be indicated by the
isotopic values enriched in δ15N that have been
reported in dolphins’ skin here and in other
areas worldwide (SMT3). Examples include
the southern Rio de Janeiro State in Brazil
(δ15N-mean = 14.5; SD = 0.1 ‰; n = 3; δ15N-
mean-autumn = 18.1; SD = 0.5 ‰; N = 4; δ15N-
mean = 18.6; SD = 0.2 ‰; n = 5; Paschoalini
et al., 2021; Troina et al., 2020, 2021), La Gua-
jira in the Colombian Caribbean (δ15N-mean
= 12.8; SD = 0.1 ‰; n = 3; Barragán-Barrera,
Farías-Curtidor, Chávez-Carreño et al., 2019),
and Moorea Island in the Society Archipelago
(δ15N-mean = ~ 14.7 ‰; N = 35; Kiszka et al.,
2010). The rough-toothed dolphin diet consists
of cephalopods and fish of various sizes, includ-
ing large and carnivorous fish with high trophic
levels like black skipjack (Euthynnus lineatus
Kishinouye, 1920), mahimahi (Coryphaena hip-
purus Linnaeus, 1758), and ribbonfish (Trichi-
urus lepturus Linnaeus, 1758) (Ortega-Ortiz
et al., 2014; Pitman & Stinchcomb, 2002; West
et al., 2011). Unfortunately, we didn’t find any
content in the carcasses’ stomachs, so insights
about dolphins’ diet in Panamanian Pacific
waters is still unknown.
The δ13C values reported here are depleted
in δ13C, which suggests oceanic habits. These
isotopic measurements are similar to those
found in skin samples stored in ethanol of
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71(S4): e57188, diciembre 2023 (Publicado Nov. 01, 2023)
rough-toothed dolphins from La Guajira in the
Colombian Caribbean (δ13C-mean = −14.7;
SD = 0.2 ‰; n = 3; Barragán-Barrera, Farías-
Curtidor, Chávez-Carreño et al., 2019), and the
Society Archipelago (δ13C-mean = ~ −14.9 ‰;
n = 35; Kiskza et al., 2010) where the species
has neritic habits (Farías-Curtidor & Barragán-
Barrera, 2017, Farías-Curtidor & Barragán-
Barrera, 2019; Oremus et al., 2012). Indeed,
the species has been reported in coastal waters
along the Caribbean of Honduras and Panama
(Barragán-Barrera et al., 2015; Kuczaj & Yeater,
2017). However, some δ13C values reported
for rough-toothed dolphins in the Panama-
nian Pacific basin are similar to those reported
for frozen skin samples of common dolphin
oceanic form (Delphinus delphis Linnaeus,
1758) in the Gulf of California, Mexican Pacific
(δ13C-mean = −18.3; SD = 0.2 ‰) (Elorriaga-
Verplancken et al., 2020). Nevertheless, this
interspecific comparison should be interpreted
with caution due potential bias derived from
ethanol preservation on our samples (Kiskza et
al., 2014). Thus, until more information about
the effect of ethanol on rough-toothed dolphin
skin samples, as well as their potential prey and
the isoscapes is provided, it is not possible to
assess the ecological habitats of rough-toothed
dolphins in the Pacific basin of Panama.
Further monitoring is needed to assess
the rough-toothed dolphins’ feeding ecology
in the Panamanian Pacific basin, including
the assessment of their diet through stomach
content analysis or direct feeding behavior. For
isotopic analysis, it is highly recommended to
collect samples and storage frozen. Addition-
ally, complementary analyses that include the
characterization of isotopic content of organic
material content at the base of local food webs,
in order to determine local carbon sources as
well nitrogen reference levels, are necessary.
This study provides the first contribution of
ecotoxicological knowledge on a little-known
cetacean predator found in Central America,
providing important baseline data to under-
stand the feeding ecology as well as the con-
tamination of dolphins in the region.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
Author Contribution: DCBB, LTL, BPO
conceptualized the study. DCBB, LTL acquired
funding. LTL, BPO, RSV collected samples. JJ
provided logistic support. DCBB performed lab
and statistical analysis, and wrote the draft and
revisions of this manuscript. BPO participated
in editing some versions of this manuscript. All
authors approved the final version.
See supplementary material
a11v71s4-MS1
ACKNOWLEDGMENTS
We especially thank the Ministry of Envi-
ronment (MiAmbiente) of the Republic of
Panama, the National Aeronaval Service of
Panama (SENAN), and the International Mari-
time University of Panama (UMIP) for their
logistic support. Special thanks to the commu-
nity of the Ostional Beach in Tonosí for their
rapid response and help in the rescue effort.
We thank P. Bustamante, C. Churlaud, and
M. Brault-Favrou for facilitating Hg analyses,
and G. Guillou for conducting the mass spec-
trometer analyses. This study was carried out
under the scientific permit SE/AO-1-16 from
(MiAmbiente) granted to Fundación Panac-
etacea Panamá. The Vicerrectoría de Investiga-
ciones from Pontificia Universidad Javeriana
is acknowledged by providing a Postdoctoral
Grant (Call 2021-2) to D. Barragán (2022), who
also thanks to the Instituto Javeriano del Agua
for its support during the Postdoctoral stay.
This study was supported partially by the Small
Grant in Aid of Research from the Society for
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57188, diciembre 2023 (Publicado Nov. 01, 2023)
Marine Mammalogy (D. Barragán, 2019). We
thank Kristin Rasmussen for her English revi-
sion to the manuscript, Alejandra Duarte for
her support preparing the map, and Emmanuel
Laverde from Arte y Conservación (www.artey-
conservacion.com) for making the dolphin
illustration. Finally, we thank the anonymous
reviewers whose comments improved the final
version of this manuscript.
REFERENCES
Alcala-Orozco, M., Caballero-Gallardo, K., & Olivero-Ver-
bel, J. (2019). Mercury exposure assessment in indi-
genous communities from Tarapaca village, Cotuhe
and Putumayo Rivers, Colombian Amazon. Environ-
mental Science Pollution Research, 26, 36458–36467.
https://doi.org/10.1007/s11356-019-06620-x
Aubail, A., Méndez-Fernandez, P., Bustamante, P., Chur-
laud, C., Ferreira, M., Vingada, J. V., & Caurant, F.
(2013). Use of skin and blubber tissues of small ceta-
ceans to assess the trace element content of internal
organs. Marine Pollution Bulletin, 76(1–2), 158–169;
https://doi.org/10.1016/j.marpolbul.2013.09.008
Avila, I. C., Kaschner, K., & Dormann, C. F. (2018). Current
global risks to marine mammals: Taking stock of the
threats. Biological Conservation, 221, 44–58. https://
doi.org/10.1016/j.biocon.2018.02.021
Baird, R. W. (2016). The Lives of Hawai’is Dolphins and
Whales. University of Hawai’i Press.
Baptista, G., Kehrig, H. A., Di Beneditto, A. P. M., Hauser-
Davis, R. A., Almeida, M. G., Rezende, C. E., Siciliano,
S., de Moura, J. F., & Moreira, I. (2016). Mercury, sele-
nium and stable isotopes in four small cetaceans from
the Southeastern Brazilian coast: Influence of feeding
strategy. Environmental Pollution, 218, 1298–1307.
https://doi.org/10.1016/j.envpol.2016.08.088
Barragán-Barrera, D. C., Luna-Acosta, A., May-Collado, L.
J., Polo-Silva, C., Riet-Sapriza, F. G., Bustamante, P.,
Hernández-Ávila, M. P., Vélez, N., Farías-Curtidor,
N., & Caballero, S. (2019). Foraging habits and levels
of mercury in a resident population of bottleno-
se dolphins (Tursiops truncatus) in Bocas del Toro
Archipelago, Caribbean Sea, Panama. Marine Pollu-
tion Bulletin, 145, 343–356. https://doi.org/10.1016/j.
marpolbul.2019.04.076
Barragán-Barrera, D. C., Farías-Curtidor, N., Luna-Acosta,
A., Bustamante, P., Ayala, R., & Caballero, S. (2019,
September 15-18). Evidence of mercury bioaccu-
mulation in skin samples of wild delphinids in La
Guajira, Colombian Caribbean [Paper presentation].
SETAC Latin America 13th Biennial Meeting, Carta-
gena, Colombia.
Barragán-Barrera, D. C., Farías-Curtidor, N., Chávez-
Carreño, P. A., Mesa-Gutiérrez, R. A., Duarte, A.,
Correa-Cárdenas, C. A., Polo-Silva, C. J., Riet-Sapriza,
F., Luna-Acosta, A., Bustamante, P., Jiménez-Pinedo,
C., Ayala-Mendoza, R., & Caballero, S. (2019, October
22-25). Estado genético y ecotoxicológico de cuatro
especies de delfines en La Guajira, Caribe colombiano
[Paper presentation]. XVIII Seminario Nacional de
Ciencias y Tecnologías del Mar SENALMAR, Barran-
quilla, Colombia.
Béland, P., DeGuise, S., Girard, C., Lagacé, A., Martineau,
D., Michaud, R., Muir, D. C. G., Norstrom, R. J.,
Pelletier, É., Ray, S., & Shugart, L. R. (1993). Toxic
Compounds and Health and Reproductive Effects in
St. Lawrence Beluga Whales. Journal of Great Lakes
Research, 19(4), 766–775. https://doi.org/10.1016/
S0380-1330(93)71264-2
Bosch, A., O’Neill, B., Sigge, G., Kerwath, S., Hoffman,
L. (2016). Mercury accumulation in Yellowfin tuna
(Thunnus albacares) with regards to muscle type, mus-
cle position and fish size. Food Chemistry, 190, 351–
356. https://doi.org/10.1016/j.foodchem.2015.05.109
Bossart, G. D. (2011). Marine mammals as senti-
nel species for oceans and human health. Veter i-
nary Pathology, 48(3), 676–690. https://doi.
org/10.1177/0300985810388525
Cáceres-Saez, I., Goodall, R. N. P., Dellabianca, N. A., Cap-
pozzo, H. L., & Ribeiro Guevara, S. (2015). The skin
of Commersons dolphins (Cephalorhynchus com-
mersonii) as a biomonitor of mercury and selenium
in Subantarctic waters. Chemosphere, 138, 735–743.
https://doi.org/10.1016/j.chemosphere.2015.07.026
Correa, L., Rea, L. D., Bentzen, R., & O’Hara, T. M. (2014).
Assessment of mercury and selenium tissular con-
centrations and total mercury body burden in 6
Steller sea lion pups from the Aleutian Islands. Mari-
ne Pollution Bulletin, 82(1–2), 175–182. https://doi.
org/10.1016/j.marpolbul.2014.02.022
DeNiro, M. J., & Epstein, S. (1978). Influence of diet on the
distribution of carbon isotopes in animals. Geochimi-
ca et Cosmochimica Acta, 42(5), 495–506. https://doi.
org/10.1016/0016-7037(78)90199-0
Desforges, J-P. W., Sonne, C., Levin, M., Siebert, U., De
Guise, S., & Dietz, R. (2016). Immunotoxic effects
of environmental pollutants in marine mammals.
Environmental International, 86, 126–139. https://doi.
org/10.1016/j.envint.2015.10.007
Elliott, J. E., Kirk, D. A., Elliott, K. H., Dorzinsky, J., Lee,
S., Ruelas Inzunza, E., Cheng, K. M. T., Scheuham-
mer, T., & Shaw, P. (2015). Mercury in forage fish
from Mexico and Central America: implications for
fish-eating birds. Archives of Environmental Conta-
mination and Toxicology, 69, 375–389. https://doi.
org/10.1007/s00244-015-0188-x
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71(S4): e57188, diciembre 2023 (Publicado Nov. 01, 2023)
Elorriaga-Verplancken, F. R., Paniagua-Mendoza, A.,
Blanco-Jarvio, A., Carone, E., Robles-Hernández,
R., Ballínez-Ambriz, C., & Rosales-Nanduca, H.
(2020). Stable isotope assessment of a mass stran-
ding of short-beaked common dolphins (Delphinus
delphis delphis) reveals their provenance: Integrating
knowledge of a little-known odontocete in the Gulf
of California. Regional Studies in Marine Science, 40,
101503. https://doi.org/10.1016/j.rsma.2020.101503
Espinoza, M., Munroe, S. E. M., Clarke, T. M., Fisk, A. T.,
& Wehrtmann, I. S. (2015). Feeding ecology of com-
mon demersal elasmobranch species in the Pacific
coast of Costa Rica inferred from stable isotope and
stomach content analyses. Journal of Experimental
Marine Biology and Ecology, 470, 12–25. https://doi.
org/10.1016/j.jembe.2015.04.021
Farías-Curtidor, N., & Barragán-Barrera, D. C. (2017, Octo-
ber 22-27). Occurrence of odontocetes in La Guajira
(Northern portion of the Colombian Caribbean)
[Paper presentation]. The 22nd Biennial Conference
on The Biology of Marine Mammals, Halifax, Nova
Scotia, Canada.
Farías-Curtidor, N., & Barragán-Barrera, D. C. (2019,
October 22-25). Ocurrencia de pequeños cetáceos en
La Guajira (Caribe colombiano)[Paper presentation].
XVIII Seminario Nacional de Ciencias y Tecnologías
del Mar SENALMAR, Barranquilla, Colombia
Fontaine, M., Carravieri, A., Simon-Bouhet, B., Bustaman-
te, P., Gasco, N., Bailleul, F., Guinet, C., & Cherel, Y.
(2015). Ecological tracers and at-sea observations
document the foraging ecology of southern long-
finned pilot whales (Globicephala melas edwardii)
in Kerguelen waters. Marine Biology, 162, 207–219.
https://doi.org/10.1007/s00227-014-2587-3
Geraci, J., & Lounsbury, V. (1993). Marine Mammals Asho-
re: A Field Guide for Strandings. Texas A&M Universi-
ty Sea Grant College Program.
Hidalgo-Reza, M., Elorriaga-Verplancken, F. R., Aguíñiga-
García, S., & Urbán R, J. (2019). Impact of freezing
and ethanol preservation techniques on the sta-
ble isotope analysis of humpback whale (Megaptera
novaeangliae) skin. Rapid Communication in Mass
Spectometry, 33(8), 789–794. https://doi.org/10.1002/
rcm.8392
Jefferson, T. A. (2018). Rough-toothed dolphin Steno breda-
nensis. In B. Würsig, J. G. M. Thewissen & K. Kovacs
(Eds.), Encyclopedia of Marine Mammals, (3rd ed., pp.
838–840). Academic Press. https://doi.org/10.1016/
B978-0-12-804327-1.00223-5
Kershaw, J. L., & Hall, A. J. (2019). Mercury in cetaceans:
Exposure, bioaccumulation and toxicity. Science of
The Total Environment, 694, 133683. https://doi.
org/10.1016/j.scitotenv.2019.133683
Kiszka, J., Oremus, M., Richard, P., Poole, M., & Ridoux,
V. (2010). The use of stable isotope analyses from
skin biopsy samples to assess trophic relationships of
sympatric delphinids off Moorea (French Polynesia).
Ecology, 395(1–2), 48–54. https://doi.org/10.1016/j.
jembe.2010.08.010
Kiszka, J., Lesage, V., & Ridoux, V. (2014). Effect of ethanol
preservation on stable carbon and nitrogen isotope
values in cetacean epidermis: Implication for using
archived biopsy samples. Marine Mammal Science,
30(2), 788–795. https://doi.org/10.1111/mms.12058
Kiszka, J., Baird, R., & Braulik, G. (2019). Steno bre-
danensis (errata version published in 2020)
[e.T20738A178929751]. The IUCN Red List of
Threatened Species,. https://dx.doi.org/10.2305/
IUCN.UK.2019-2.RLTS.T20738A178929751.en
Krey, A., Ostertag, S. K., & Chan, H. M. (2015). Assessment
of neurotoxic effects of mercury in beluga whales
(Delphinapterus leucas), ringed seals (Pusa hispi-
da), and polar bears (Ursus maritimus) from the
Canadian Arctic. Science of The Total Environ-
ment, 509–510, 237–247. https://doi.org/10.1016/j.
scitotenv.2014.05.134
Kuczaj II, S. A., & Yeater, D. (2007). Observations of rough-
toothed dolphins (Steno bredanensis) off the coast
of Utila, Honduras. Journal of the Marine Biological
Association of the United Kingdom, 87(1), 141–148.
https://doi.org/10.1017/S0025315407054999
Kuiken, T., & Hartmann, M. (1991) Proceedings of the first
European Cetacean Society workshop on ‘Cetacean
pathology: dissection techniques and tissue sampling.
ECS Newsletter, 17, 1–39.
Lemos, L. S., de Moura, J. F., Hauser-Davis, R. A., de Cam-
pos, R. C., & Siciliano, S. (2013). Small cetaceans
found stranded or accidentally captured in southeas-
tern Brazil: Bioindicators of essential and non-essen-
tial trace elements in the environment. Ecotoxicology
and Environmental Safety, 97, 166–175. https://doi.
org/10.1016/j.ecoenv.2013.07.025
Lesage, V., Hammill, M. O., & Kovacs, K. M. (2001). Marine
mammals and the community structure of the estuary
and Gulf of St. Lawrence, Canada: Evidence from
stable isotope analysis. Marine Ecology Progress Series,
210, 203–221. https://doi.org/10.3354/meps210203
Mackey, E., Oflaz, R., Epstein, M., Buehler, B., Porter, B.
J., Rowles, T., Wise, S. A., & Becker, P. R. (2003).
Elemental composition of liver and kidney tis-
sues of rough-toothed dolphins (Steno bredanen-
sis). Archives of Environmental Contamination and
Toxicology, 44, 0523–0532. https://doi.org/10.1007/
s00244-002-2039-9
Martineau, D., De Guise, S., Fournier, M., Shugart, L.,
Girard, C., Lagacé, A., & Béland, P. (1994). Pathology
and toxicology of beluga whales from the St. Lawren-
ce Estuary, Quebec, Canada. Past, present and future.
Science of The Total Environment, 154(2-3), 201–215.
https://doi.org/10.1016/0048-9697(94)90088-4
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57188, diciembre 2023 (Publicado Nov. 01, 2023)
May-Collado, L. J., Amador-Caballero, M., Casas, J. J.,
Gamboa-Poveda, M. P., Garita-Alpízar, F., Gerrodette,
T., González-Barrientos, R., Hernández-Mora, G.,
Palacios, D. M., Palacios-Alfaro, J. D., Pérez, B., Ras-
mussen, K., Trejos-Lasso. L., & Rodríguez-Fonseca, J.
(2017). Ecology and conservation of cetaceans of Costa
Rica and Panama. In M. Rossi-Santos & C. Finkl
(Eds.), Advances in Marine Vertebrate Research in
Latin America (pp. 293–319) Springer Press. https://
doi.org/10.1007/978-3-319-56985-7_12
Méndez-Fernandez, P., Taniguchi, S., Santos, M. C. O., Cas-
cão, I., Quérouil, S., Martín, V., Tejedor, M., Carrillo,
M., Rinaldi, C., Rinaldi, R., Barragán-Barrera, D. C.,
Farías-Curtidor, N., Caballero, S., & Montone, R. C.
(2020). Population structure of the Atlantic spotted
dolphin (Stenella frontalis) inferred through ecologi-
cal markers. Aquatic Ecology, 54, 21–34. https://doi.
org/10.1007/s10452-019-09722-3
Oremus, M., Poole, M. M, Albertson, G. R., & Baker, C. S.
(2012). Pelagic or insular? Genetic differentiation of
rough-toothed dolphins in the Society Islands, French
Polynesia. Journal of Experimental Marine Biology and
Ecology, 432–433, 37–46. https://doi.org/10.1016/j.
jembe.2012.06.027
Ortega-Ortiz, C. D., Elorriaga-Verplancken, F. R., Arroyo-
Salazar, S. A., García-Valencia, R. X., Juárez-Ruiz, A.
E., Figueroa-Soltero, N. A., Liñán-Cabello, M. A., &
Chávez-Comparán, J. C. (2014). Foraging Behavior
of the Rough-Toothed Dolphin (Steno bredanensis) in
Coastal Waters of the Mexican Central Pacific. Aqua-
tic Mammals, 40(4), 357–363. https://doi.org/10.1578/
AM.40.4.2014.357
Paschoalini, V. U., Troina, G. C., Campos, L. B., & San-
tos, M. C. O. (2021). Trophic ecology and foraging
areas of cetaceans sampled in the coastal waters of
south-eastern Brazil assessed through skin δ13C and
δ15N. Journal of the Marine Biological Association of
the United Kingdom, 101(2), 471–480. https://doi.
org/10.1017/S0025315421000217
Pitman, R. L., & Stinchcomb, C. (2002). Rough-toothed
dolphins (Steno bredanensis) as predators of mahi-
mahi (Coryphaena hippurus). Pacific Science, 56(4),
447-450. https://doi.org/10.1353/psc.2002.0043
Reeves, R. R., Stewart, B. S., Clapham, P. J., Powell, J. A.
(2008). Guide to marine mammals of the world. Natio-
nal Audubon Society Inc.
Reif, J. S., Schaefer, A. M., & Bossart, G. D. (2015). Atlantic
bottlenose dolphins (Tursiops truncatus) as a senti-
nel for exposure to mercury in humans: closing the
loop. Veterinary Sciences, 2(4), 407–422. https://doi.
org/10.3390/vetsci2040407
Sandoval-Herrera, N. I., Vargas-Soto, J. S., Espinoza, M.,
Clarke, T. M., Fisk, A. T., & Wehrtmann, I. S. (2015).
Mercury levels in muscle tissue of four common
elasmobranch species from the Pacific coast of Costa
Rica, Central America. Regional Studies in Mari-
ne Science, 3, 254–261. http://dx.doi.org/10.1016/j.
rsma.2015.11.011
Schwacke, L. H., Voit, E. O., Hansen, L. J., Wells, R. S.,
Mitchum, G. B., Hohn, A. A., & Fair, P. A. (2002).
Probabilistic risk assessment of reproductive effects
of polychlorinated biphenyls on bottlenose dolphins
(Tursiops truncatus) from the Southeast United Sta-
tes Environmental Toxicology and Chemistry, 21(12),
2752–2764. https://doi.org/10.1002/etc.5620211232
Tieszen, L. L., Boutton, T. W., Tesdahl, K. G., & Slade,
N. A. (1983). Fractionation and turnover of stable
carbon isotopes in animal tissues: Implications for δ
13C analysis of diet. Oecologia, 57, 32–37. https://doi.
org/10.1007/BF00379558
Troina, G. C., Botta, S., Dehairs, F., Di Tullio, J. C., Elskens,
M., & Secchi, E. R. (2020). Skin δ13C and δ15N reveal
spatial and temporal patterns of habitat and resource
use by free ranging odontocetes from the southwes-
tern Atlantic Ocean. Marine Biology, 167(186), 1–19.
https://doi.org/10.1007/s00227-020-03805-8
Troina, G. C., Riekenberg, P., van der Meer, M., Botta,
S., Dehairs, F., & Secchi, E. R. (2021). Combining
isotopic analysis of bulk-skin and individual amino
acids to investigate the trophic position and foraging
areas of multiple cetacean species in the western
South Atlantic. Environmental Research, 201, 111610.
https://doi.org/10.1016/j.envres.2021.111610
Vélez, N., Bessudo, S., Barragán-Barrera, D. C., Ladino,
F., Bustamante, P., & Luna-Acosta, A. (2021). Mer-
cury concentrations and trophic relations in sharks
of the Colombian Pacific. Marine Pollution Bulle-
tin, 173(Part B), 113109. https://doi.org/10.1016/j.
marpolbul.2021.113109
West, K. L., Mead, J. G., & White, W. (2011). Steno breda-
nensis (Cetacea: Delphinidae). Mammalian Species,
43(886), 177–189. https://doi.org/10.1644/886.1
Wiener, J. G., Krabbenhoft, D. P., Heinz, G. H., & Scheu-
hammer, A. M. (2003). Ecotoxicology of mercury.
In J. G. Wiener, D. P. Krabbenhoft, G. H. Heinz & A.
M. Scheuhammer (Eds.), Handbook of Ecotoxicology
(2nd ed., pp. 409–463). CRC Press.
Wiener, J. G., & Suchanek, T. H. (2008). The basis for
ecotoxicological concern in aquatic ecosystems
contaminated by historical mercury mining. Eco-
logical Application, 18(8), A3–A11. https://doi.
org/10.1890/06-1939.1