1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
Mitochondrial DNA supports the low genetic diversity of Tursiops truncatus
(Artiodactyla: Delphinidae) in Bocas del Toro, Panama and exhibits
new Caribbean haplotypes
María Alejandra Duarte-Fajardo1, 2; https://orcid.org/0000-0002-6494-6941
Dalia C. Barragán-Barrera*1, 3, 4; https://orcid.org/0000-0003-4023-9908
Camilo A. Correa-Cárdenas1, 5; https://orcid.org/0000-0001-5009-6213
Betzi Pérez-Ortega6, 7, 8; https://orcid.org/0000-0001-5414-6329
Nohelia Farías-Curtidor9; https://orcid.org/0000-0002-2617-8988
Susana Caballero1; https://orcid.org/0000-0002-9285-3873
1. Laboratorio de Ecología Molecular de Vertebrados Acuáticos-LEMVA, Departamento de Ciencias Biológicas,
Universidad de los Andes, Bogotá, Colombia; aduarte108@gmail.com, daliac.barraganbarrera@gmail.com
(*Correspondence), camilocc510@gmail.com, sj.caballero26@uniandes.edu.co
2. Fundación Malpelo y otros Ecosistemas Marinos, Bogotá, Colombia; aduarte108@gmail.com
3. Instituto Javeriano del Agua, Pontificia Universidad Javeriana, Bogotá, Colombia; daliac.barraganbarrera@gmail.com
4. R&E Ocean Community Conservation Foundation, Oakville, Canada; daliac.barraganbarrera@gmail.com
5. Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia e Investigación,
Dirección de Sanidad, Ejército Nacional de Colombia, Bogotá, Colombia; camilocc510@gmail.com
6. Fundación Panacetacea Panamá, Ciudad de Panamá, Panamá; betziperez@yahoo.com
7. Biology Department and Redpath Museum – McGill University, Montreal, Canada; betziperez@yahoo.com
8. Instituto Smithsonian de Investigaciones Tropicales. Ciudad de Panamá, Panamá; betziperez@yahoo.com
9. Fundación Macuáticos Colombia, Medellín, Colombia; nohefa@gmail.com
Received 30-VII-2022. Corrected 13-II-2023. Accepted 09-VI-2023.
ABSTRACT
Introduction: The common bottlenose dolphin (Tursiops truncatus) is one of the most studied cetaceans world-
wide; however, information about the genetic structure of wild populations is scarce in some regions like Central
America and the Caribbean. There are two known genetic forms identified in the Caribbean based on mitochon-
drial DNA Control Region (mtDNA-CR) data: the ‘inshore (or coastal) form’ and the ‘Worldwide distributed
form. In general, the inshore form refers to coastal and highly philopatric populations that show low genetic
diversity. Worldwide distributed form refers to highly mobile populations with coastal and oceanic individuals
that do not show philopatry and usually display high genetic diversity.
Objective: To determine the preliminary genetic status of common bottlenose dolphins in La Guajira, Colombian
Caribbean, using a hypervariable portion of mtDNA-CR. The obtained haplotypes were compared with samples
collected in Panama (likely ‘inshore form’) and with haplotypes previously found in other areas of the Caribbean.
Methods: In 2016, a total of 26 skin samples were obtained by remote biopsy system (PAXARMS) in two loca-
tions, La Guajira (Colombia, N=7) and Bocas del Toro (Panama, N=19). DNA was extracted, samples sexed,
and a segment of mtDNA-CR (~550-750 bp) was amplified by PCR. The successfully amplified DNA sequences
were manually reviewed and cleaned, and subsequently compared with 44 haplotypes previously reported for
the Caribbean.
Results: The mtDNA-CR sequences from Bocas del Toro shared the same unique inshore haplotype previously
reported for this population, while the samples from La Guajira represented six novel haplotypes, five belong-
ing to the Worldwide distributed form and one to the ‘inshore form.’ Population structure analysis revealed two
https://doi.org/10.15517/rev.biol.trop..v71iS4.57291
SUPPLEMENT • SMALL CETACEANS
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
phylogroups for the Caribbean (FST=0.1353, ΦST=0.3330) with high haplotype diversity: Panama(Bocas del Toro)-
Bahamas-Cuba-Mexico (h=0.8489, π=4.2536 %) and Colombia-Costa Rica-Honduras-Puerto Rico (h=0.8837,
π=4.2423 %).
Conclusions: These findings support the results previously reported for common bottlenose dolphins in Bocas
del Toro-Panama and reinforce the need to protect this vulnerable ‘inshore’ population by treating it as a unique
population management unit. Mitochondrial DNA analysis of samples collected from La Guajira dolphins
provide the first insight into the genetic diversity of common bottlenose dolphins in this region, indicating the
presence of both inshore and Worldwide distributed genetic forms. The potential connectivity of this last form
among La Guajira-Colombia, Costa Rica, and Honduras in Central America highlights the need for more genetic
and ecological studies to determine the appropriate management units for this species in Central America and
the Caribbean.
Key words: bottlenose dolphin; cetaceans; mtDNA; genetic diversity; La Guajira, Colombia, Central America.
RESUMEN
ADN mitocondrial soporta la baja diversidad genética de Tursiops truncatus (Artiodactyla: Delphinidae)
en Bocas del Toro, Panamá y detecta nuevos haplotipos en el Caribe
Introducción: El delfín nariz de botella común (Tursiops truncatus) es uno de los cetáceos más estudiados a
nivel mundial. Sin embargo, la información sobre la estructura genética de sus poblaciones silvestres es escasa en
algunas regiones, como Centroamérica y el Caribe. Con base en datos de la Región de Control del ADN mito-
condrial (ADNmt-CR), dos formas genéticas han sido identificadas en el Caribe: la ‘forma inshore (o costera)’
y la ‘forma mundialmente distribuida. En general, la forma costera se refiere a poblaciones costeras y altamente
filopátricas que muestran baja diversidad genética. La forma mundialmente distribuida se refiere a poblaciones
altamente móviles con individuos costeros y oceánicos que no muestran filopatría y generalmente muestran alta
diversidad genética.
Objetivo: Para determinar el estado genético preliminar de los delfines nariz de botella comunes en La Guajira,
Caribe colombiano, se realizó un análisis genético utilizando una porción hipervariable de ADNmt-CR. Los
haplotipos obtenidos se compararon con muestras recolectadas en Panamá (probablemente la forma costera) y
con haplotipos encontrados previamente en otras áreas del Caribe.
Métodos: En 2016 se obtuvo un total de 26 muestras de piel colectadas con el sistema de biopsia remota
(PAXARMS) en dos localidades, La Guajira (Colombia, N=7) y Bocas del Toro (Panamá, N=19). Se extrajo el
ADN, se sexaron las muestras, y un segmento de ADNmt-CR (~550-750 pb) se amplificó mediante PCR. Las
secuencias de ADN amplificadas con éxito se revisaron y limpiaron manualmente; posteriormente, se compara-
ron con 44 haplotipos reportados previamente en el Caribe.
Resultados: Las secuencias de ADNmt-CR de Bocas del Toro compartieron el mismo haplotipo costero único
reportado previamente para esta población, mientras que las muestras de La Guajira representaron seis haplo-
tipos nuevos, cinco pertenecientes a la forma mundialmente distribuida y uno a la forma costera. El análisis de
la estructura de la población reveló dos filogrupos para el Caribe (FST=0.1353, ΦST=0.3330) con alta diversidad
haplotípica: Panamá(Bocas del Toro)-Bahamas-Cuba-México (h=0.8489, π=4.2536 %) y Colombia-Costa Rica-
Honduras-Puerto Rico (h=0.8837, π=4.2423 %).
Conclusiones: Estos hallazgos respaldan los resultados previamente reportados para los delfines nariz de botella
comunes en Bocas del Toro-Panamá y refuerzan la necesidad de proteger a esta vulnerable población costera
tratándola como una unidad de manejo poblacional única. Para La Guajira, estos resultados de ADNmt resultan
en el primer esfuerzo por determinar la diversidad y estructura genética del delfín nariz de botella común en esta
región, los cuales sugieren que ambas formas genéticas están presentes en el área, siendo la forma mundialmente
distribuida la predominante. La conectividad potencial de esta última forma entre La Guajira-Colombia, Costa
Rica y Honduras en Centroamérica destaca la necesidad de realizar más estudios genéticos y ecológicos para
determinar las unidades de manejo apropiadas para esta especie en Centroamérica y el Caribe.
Palabras clave: delfín nariz de botella; cetáceos; ADNmt; diversidad genética; La Guajira, Colombia,
Centroamérica.
Nomenclature: SMT1: Supplementary material Table 1; SMF1: Supplementary material Figure 1.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
INTRODUCTION
The common bottlenose dolphin, Tursiops
truncatus (Montagu, 1821) is a cosmopolitan
species inhabiting a variety of nearshore and
oceanic environments in tropical and temper-
ate waters. It is currently listed as Least Concern
by the International Union for the Conserva-
tion of Nature (IUCN) (Wells et al., 2019).
This broadly distributed species is one of the
most studied cetaceans worldwide (Reynolds
et al., 2000). However, genetic information is
still scarce for populations in some regions,
particularly in coastal areas of Central America
and the Caribbean, where few studies have been
conducted. The lack of information regarding
population structure may result in poor man-
agement practices, since coastal populations
show a high degree of genetic differentiation
and face more anthropogenic threats due to
the proximity to human populations (e.g., Bar-
ragán-Barrera et al., 2017; Caballero et al., 2012;
Fruet et al., 2014; Natoli et al., 2004; Parsons et
al., 2006; Tezanos-Pinto et al., 2009). Therefore,
targeted studies like this one, address critical
data gaps for geographic regions of interest and
are key for ensuring effective conservation and
management programs.
Common bottlenose dolphins are highly
adaptable to different environmental condi-
tions, where habitat selection and resource spe-
cialisation likely shape patterns of movement,
gene flow, and population structure (Hoelzel
et al., 1998; Wiszniewski et al., 2010). For
example, ‘inshore’ and ‘offshore’ ecotypes have
been described in the Gulf of Mexico and the
Northwest Atlantic based on a variety of fac-
tors such as genetics, haemoglobin profile, and
morphometry (Duffield et al., 1983; Hersh &
Duffield, 1990; Hoelzel et al., 1998; Natoli et al.,
2004; Sellas et al., 2005). However, Tezanos-
Pinto et al. (2009) provided a worldwide phy-
logeographic perspective highlighting that the
offshore’ of the Northwest Atlantic is geneti-
cally interconnected to several mitochondrial
DNA (mtDNA) haplotypes distributed world-
wide regardless of the habitat where samples
were collected (coastal or pelagic) or ocean
basin. Therefore, although the ‘inshore form
is present in the Wider Caribbean, only the
populations located in Florida-western North
Atlantic, the Bahamas (Caballero et al., 2012;
Natoli et al., 2004; Tezanos-Pinto et al., 2009),
and Bocas del Toro Archipelago, Panama (Bar-
ragán-Barrera et al., 2017) have been success-
fully classified as entire ‘inshore form.
The inshore populations found in the west-
ern North Atlantic, which are highly struc-
tured among bays (e.g., Sellas et al., 2005),
have recently been proposed as a new species
based on an integrative approach comparing
mitochondrial and nuclear DNA with mor-
phometrics (Costa et al., 2022). These findings
indicate that inshore bottlenose dolphins are
likely under-characterized and deserve addi-
tional attention. Given this, it is imperative
to conduct studies on dolphin populations in
the Caribbean and Central America regions.
This research should take into consideration
that the inshore form is primarily found in the
Wider Caribbean, specifically in Bocas del Toro
(Barragán-Barrera et al., 2017; Caballero et al.,
2012; Tezanos-Pinto et al., 2009).
The ‘inshore’ population found in Bocas
del Toro exhibits a strong population struc-
ture and low genetic diversity (all individuals
possess a single mitochondrial DNA Control
Region (mtDNA-CR) haplotype) compared to
other populations in the Caribbean (Barragán-
Barrera et al., 2017). The population is small,
shows high site fidelity, and restricted coastal
feeding habits; all characteristics usually attrib-
uted to the inshore ecotype (Barragán-Barre-
ra, Luna-Acosta et al., 2019; May-Collado et
al., 2015, May-Collado et al., 2017). However,
recent observations in the field suggest that
oceanic individuals may be entering within the
north-west region, which may result in poten-
tial genetic flow (B. Pérez, personal communi-
cation, 2022). Additional analyses are needed
to better understand the genetic isolation and
the ‘inshore form’ genetic connectivity between
the Bocas del Toro dolphins and other dolphin
populations in the Caribbean.
Little is known about the population found
in La Guajira (Colombian Caribbean). To date,
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
most of the studies have focused on habitat use
and occurrence (Combatt & González, 2007;
Palacios et al., 2013). In the absence of data on
genetic diversity and population structure, it
is unknown if bottlenose dolphins in La Gua-
jira belong to the inshore form or ‘Worldwide
distributed form, or if both forms coexist. This
information gap prevents adequate manage-
ment plans for this population, despite bottle-
nose dolphins in Colombia are facing threats
related to bycatch, interactions with fishing
gear, direct capture, vessel traffic/transit, pol-
lution, and pathogens (Avila & Giraldo, 2022).
Here, we evaluate the genetic diversity and
population structure of the common bottle-
nose dolphin in Bocas del Toro and La Guajira
by comparing the mtDNA-CR marker to 44
haplotypes previously published from various
locations in the Caribbean Sea (Barragán-Bar-
rera et al., 2017; Caballero et al., 2012). Results
from this work will contribute to the under-
standing of the genetic structure of bottlenose
dolphins in the Central American Caribbean
and represent a critical first step to local con-
servation efforts.
METHODS
Study area: The Bocas del Toro Archi-
pelago is located on the western Caribbean
coast of Panama (Fig. 1), and has great marine
biodiversity associated with coral reefs, sea-
grasses, and mangroves (Coates et al., 2005;
Guzmán et al., 2005). La Guajira, in the west-
ern coast of Colombia, is the northernmost
area of South America (Fig. 1). It is one of
the most biodiverse regions in Colombia; it
holds several coastal and marine ecosystems
such as mangroves, coral reefs, coastal wetland,
sandy beaches, and seagrasses (Corporación
Autónoma Regional de La Guajira & Instituto
de Investigaciones Marinas y Costeras, 2012).
Sample collection: Tissue samples were
collected from wild common bottlenose dol-
phins using remote biopsy darts fired from a
Fig. 1. Sample locations in Bocas del Toro Archipelago, Panama (orange dots) and La Guajira, Colombia (purple triangles)
in the Caribbean Sea. Red dot indicates the location of Cabo de la Vela in La Guajira.
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
modified rifle (PAXARMS) (Krützen et al.,
2002). This is a standardised methodology for
collecting small skin biopsies from small ceta-
ceans (Tezanos-Pinto & Baker, 2012). Samples
were collected in February, March, and Octo-
ber of 2016 in Bocas del Toro, and in May
and June of 2016 in La Guajira. GPS data and
photographs of the dolphin biopsied were also
collected. The latter allowed individual identifi-
cation avoiding re-sampling (Fruet et al., 2014;
Krützen et al., 2002). Samples were preserved
in 70 % ethanol and stored at −20 °C (Amos &
Hoelzel, 1991) for further laboratory analysis.
DNA extraction, PCR, sequencing,
and sexing: DNA was extracted from skin
samples using the DNeasy kit (QIAGEN).
Fragments of approximately 535 - 684 bp
of mtDNA-CR were amplified through the
polymerase chain reaction (PCR), using the
primers Dlp8G (5’-CCATCGWAGATGTCT-
TATTTAAGRARTTCTA-3’) or Dlp5G (5’-
GGAGTACTATGTCCTGTAACCA-3’) and
Dlp1.5 (5’-TCACCCAAAGCTGRARTTC-
TA-3’) (Baker et al., 1998). Amplification fol-
lowed this protocol: an initial pre-denaturation
step of 94 ºC as denaturation for 2 min, with
34 cycles of 2–4 repeat times of 30 s at 94 ºC,
followed by 45 s at 55 ºC as annealing and
an extension at 72 ºC, with a final elongation
after the last cycle of 10 min at 72 ºC (Baker
et al., 1998). PCR products were visualized
on agarose gel before sequencing. DNA was
cleaned and sequenced in both directions with
the Sanger sequencing method (Sanger & Coul-
son, 1975) on an ABI 3500 DNA automated
sequencer using the Big DyeTM Terminator
v.3.1 Cycle Sequencing kit. In order to identify
the sex of the samples collected, we used male-
specific SRY gene and ZFY/ZFX genes of males
and females (Gilson et al., 1998). Fragments
were amplified by PCR using the protocol pro-
posed by Gilson et al. (1998) and visualised on
agarose gel to determine sex.
Data analysis: All mitochondrial sequenc-
es were checked, cleaned manually and aligned
using the software Geneious v. 2022.1.1
(Drummond et al., 2009). To confirm that the
samples collected were from common bottle-
nose dolphins and not from other delphinid
species of the delphinid complex Delphinus-
Stenella-Tursiops, we used BLAST in NCBI
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) to
compare our sequences to publicly available
reference sequences and confirm species of
origin. Unique haplotypes were assigned using
the R script RemoveRedundantTaxa in RStudio
(v. 2022.02.3+492). Haplotypes obtained were
compared to 44 previously published sequences
on NCBI GenBank from the Bahamas, Colom-
bia, Costa Rica, Cuba, Honduras, Jamaica, Mex-
ico, Puerto Rico, and Virgins Islands (Accession
numbers: JN596281-JN596321) (Caballero et
al., 2012), Costa Rica (Accession numbers:
KY817220-KY817221), and Panama (Bocas del
Toro) (Accession number: KX833116) (Bar-
ragán-Barrera et al., 2017). The complete align-
ment was 386 bp.
To identify which of the two genetic forms
of common bottlenose dolphins the samples
analysed belonged to, a Maximum Likelihood
phylogenetic tree was constructed with the evo-
lutionary model of Generalised-Time-Revers-
ible γ + Invariant (general reversible time
substitution model GTR γ + I) substitution and
1 000 bootstrap replicates using RAxML-HPC
BlackBox tool in CIPRES Science Gateway V.
3.3 (Miller et al., 2010). As outgroup we defined
a sample from an Atlantic spotted dolphin,
Stenella frontalis (Cuvier, 1829) collected in La
Guajira in 2016, since bootstrap value indicates
100 support segregating T. truncatus from S.
frontalis, and this species has been used before
as outgroup for mtDNA analysis on bottlenose
dolphins (e.g., Wang et al., 1999). Also, a hap-
lotype network was constructed using the TCS
method in PopART software (Clement et al.,
2000) to visualise to what population the hap-
lotypes used in this study belonged and their
frequency. Finally, we defined the number of
phylogroups for the Caribbean by calculating
FCT using Arlequin v. 3.5 (Excoffier & Lischer,
2010). We used the same software to assess
estimates of genetic structure (FST and ΦST),
nucleotide (π), and haplotype diversity (h).
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
Here, samples from Jamaica and the US Virgin
Islands were excluded due to the low number of
samples (N = 1).
RESULTS
A total of 26 tissue samples from common
bottlenose dolphins were collected; seven in La
Guajira, Colombia, and 19 in Bocas del Toro,
Panama. All samples from Panama were suc-
cessfully amplified, sequenced and included
in genetic structure and diversity analyses.
Among these samples, only a single haplotype
was found. Six out of the seven samples from La
Guajira were successfully amplified, each repre-
senting a unique haplotype. Overall, ten males
and nine females were identified in Bocas del
Toro samples, and four males and three females
were identified in La Guajira samples.
When the sequences obtained from this
study were compared with 44 previously Carib-
bean haplotypes (Barragán-Barrera et al., 2017;
Caballero et al., 2012; SMT1), all samples from
La Guajira resulted in new haplotypes not
previously reported for the Caribbean, while
the only haplotype found in the samples from
Bocas del Toro was identified as the same
unique inshore haplotype reported previously
(Barragán-Barrera et al., 2017). New T. trun-
catus haplotypes were submitted to GenBank
(https://www.ncbi.nlm.nih.gov/genbank/) as
accession numbers OR090913-OR090918 and
the new S. frontalis (outgroup) haplotype was
submitted to GenBank as accession number
OR090919.
Further comparisons conducted through
phylogenetic analyses, showed samples from
Bocas del Toro nested with the previously
reported haplotype BOC (Accession number:
KX833116), which had been reported by Bar-
ragán-Barrera et al. (2017) as ‘inshore.’ Five
out of six samples from La Guajira nested with
the Worldwide distributed form, and only one
sample nested with the inshore form, group-
ing with the inshore Q haplotype from Cuba
(Fig. 2). The haplotype network (Fig. 3) shows
the relationships among haplotypes, frequency,
and locations.
In the genetic structure analysis using the
new sequences found here with the previous
ones reported in the Caribbean, we evaluated
from two to five phylogroups. Based on the
most probable phylogroups, we defined two
(FCT = 0.2655, P = 0.0352). One phylogroup
formed by Bocas del Toro (Panama)-Bahamas-
Cuba-Mexico (mostly formed by inshore hap-
lotypes) and the other one by Colombia-Costa
Rica-Honduras-Puerto Rico (mostly formed
by Worldwide distributed form haplotypes).
We reported similar values of haplotype and
nucleotide diversity between both phylogroups
(Table 1), but values of FST and ΦST showed
strong population structure between them,
especially at the nucleotide level (FST = 0.1353,
ΦST = 0.3330, P < 0.0001, Table 1). We found
relatively high haplotype and nucleotide diver-
sity in both phylogroups considered in this
analysis, with the highest haplotype diversity
found in the Colombia-Costa Rica-Honduras-
Puerto Rico phylogroup (Table 1).
Table 1
Estimates of mitochondrial differentiation among the two forms (‘inshore form’ and ‘Worldwide distributed form’) of
common bottlenose dolphin (Tursiops truncatus) located in the Caribbean Sea. FST value is shown above diagonal and ΦST
below diagonal. P-value is indicated under each value. Haplotype (h) and nucleotide diversity (π) are shown on the diagonal
for each phylogroup.
FST
ΦST
Bocas del Toro (Panama)-
Bahamas-Cuba-México
Colombia-Costa Rica-
Honduras-Puerto Rico
Bocas del Toro (Panama)-
Bahamas-Cuba-México
h = 0.8489 +/- 0.0179
π = 4.2536% +/- 0.021 0.1353*
Colombia-Costa Rica-
Honduras-Puerto Rico 0.3330* h = 0.8837 +/- 0.0337
π = 4.2423% +/- 0.0214
Significant values (p < 0.05) are indicated with an asterisk (*).
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
DISCUSSION
This study provides new insights into the
population structure and genetic diversity of
common bottlenose dolphins from La Gua-
jira (Colombia) and Bocas del Toro (Panama)
in the western Caribbean using mtDNA-CR
data. The results confirm that a single unique
haplotype is present among the individuals
sampled in Bocas del Toro, and it is unique
to the Caribbean Sea (Barragán-Barrera et al.,
2017). This population has low mitochondrial
diversity and both sexes appear to be highly
philopatric (Barragán-Barrera et al., 2017). Pre-
vious photo-ID data supports high site fidelity
(e.g., May-Collado et al. 2012, 2015, 2019), and
genetic data shows a strong population struc-
ture based on nuclear data (nine microsatellite
loci), as well as that both sexes share the same
unique inshore haplotype not reported in other
Caribbean area (Barragán-Barrera et al., 2017).
This site fidelity may be explained by the prey
availability for dolphins within the Archipelago
(Barragán-Barrera, Luna-Acosta et al., 2019), as
well as for the shallow areas suitable as nursery
(May-Collado et al., 2019). Even though most
studies have demonstrated male-biased disper-
sal (Baker et al. 1993; Escorza-Trevino & Dizon,
2000; Möller et al. 2004; Rosel et al. 1999),
philopatry in both sexes has been documented
Fig. 2. Phylogenetic reconstruction by Maximum Likelihood of Control Region haplotypes from common bottlenose
dolphins (Tursiops truncatus) in the Caribbean Sea (N = 70, 386 bp). Phylogeny in a circular polar form shows bootstrap
support in branches with percentages > 50 %. Purple line groups the ‘inshore form’ and the green line groups the ‘Worldwide
distributed form. Red letters represent the samples used for this study and the braces indicate the new haplotypes. Outgroup:
Atlantic spotted dolphin (Stenella frontalis).
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
before in odontocetes. For example, in resi-
dent killer whales located in British Colum-
bia and Washington State (Bigg et al., 1987)
and pilot whales located in the Faeroe Islands
(Amos et al., 1993). In some bottlenose dol-
phin populations, males are more mobile than
females even in resident populations (Möller &
Beheregaray, 2004).
Conversely, the genetic pattern of the pop-
ulation of La Guajira is very different. Here, we
infer that dolphins are mainly of the World-
wide distributed form, in addition to a few
inshore dolphins. A previous study (Combatt
& González, 2007) suggested that dolphins in
La Guajira probably belonged to the inshore
form (based on observations and occurrence
data). However, in general, La Guajira Penin-
sula does not have closed and protected bays
as does the Bocas del Toro Archipelago. This
geography and oceanic foraging may promote
admixture among different forms. Nonetheless,
the area is influenced by upwelling conditions,
mainly in the low (south) and high (north)
Guajira, offering nutrients to dolphin prey
species (Barragán-Barrera, Luna-Acosta et al.,
2019; Gutiérrez Leones et al., 2015; Paramo
et al., 2011). Although this upwelling is vari-
able throughout the year and between years
(Andrade & Barton, 2005), it has been related
to presence of dolphins in La Guajira (Farías-
Curtidor et al., 2017). The area appears to be
important for transit, and consequently, a very
mobile common bottlenose dolphin population
may visit La Guajira when oceanographic con-
ditions are favourable. Nevertheless, the indi-
vidual nested with ‘inshore form’ haplotypes
could suggest the potential presence of inshore
populations in the high Guajira (where the
sample was collected), or admixture between
forms. The sampled inshore individual was
a male in a group of 15 individuals that were
feeding close to a fishing boat in the Cabo de la
Fig. 3. Haplotype network reconstruction for common bottlenose dolphins (Tursiops truncatus) in the Caribbean Sea under
parsimony criteria with the TCS algorithm (N = 50, 386 bp). The size of the circles indicates the frequency of each haplotype.
Black dots indicate the hypothetical ancestral haplotype, and the perpendicular lines between the haplotypes refer to the
number of nucleotide substitutions between them. New haplotypes are highlighted within a red square.
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
Vela (12.113333º N & -72.294533º W) (Fig. 1).
In this area, mainly in the north, some enclosed
bays may offer adequate habitats for dolphins,
but sufficient monitoring data to confirm this
assumption does not exist.
La Guajira appears to be an important
transit area for common bottlenose dolphins in
the Wider Caribbean, where the presence of the
Worldwide distributed form individuals formed
by dolphins with both coastal and oceanic hab-
its, may allow for genetic flow among inshore
populations. In the Wider Caribbean, two dif-
ferentiated phylogroups were detected based
on the high FST and ΦST values: the phylogroup
formed by Bocas del Toro (Panama)-Bahamas-
Cuba-Mexico that is mostly represented by the
inshore form, and the one formed by Colom-
bia-Costa Rica-Honduras-Puerto Rico which
is mostly represented by Worldwide distributed
form individuals. Despite this differentiation,
similar haplotype and nucleotide values were
found between the two phylogroups, likely
because some countries such as Colombia (La
Guajira), Cuba, Mexico, and Puerto Rico shel-
ter both genetic forms (Caballero et al., 2012).
Furthermore, three haplotypes (CG3, CG4.1,
and CG4.2) from three samples obtained in
La Guajira seem to be intermediate haplotypes
between inshore and Worldwide distributed
forms (Fig. 2 and Fig. 3). Bootstrap support
values segregating both forms are high (Fig. 2),
but more extensive sampling for genetic and
genomic analyses are needed to elucidate the
origin of these intermediate haplotypes. Here,
we hypothesize these haplotypes could be either
conserved haplotypes or the result of the genet-
ic exchange between inshore and Worldwide
distributed forms. It is interesting to note that
the HH and LL haplotypes form Puerto Rico
also nest in this intermediate zone. A previ-
ous study using mitochondrial DNA suggested
possible ancestral connectivity between Puerto
Rico and the Mediterranean Sea (Tezanos-
Pinto et al., 2009); therefore, this may support
our second hypothesis.
The common bottlenose dolphin is likely
at risk in Colombia and worldwide (Avila et
al., 2018; Avila & Giraldo, 2022), particularly
coastal populations that are more vulnerable
to human activities (Avila et al., 2018). In the
Caribbean, a recent review documented at least
68 threats for common bottlenose dolphins:
in Aruba (2 threats), Bahamas (2), Bermu-
da (1), Colombia (2), Cuba (42), Dominican
Republic (5), Guyana (3), Haiti (2), Honduras
(1), Mexico (1), Puerto Rico (2), and Venezu-
ela (3) (Avila et al., 2018). These threats are
related to anthropogenic activities that include
fisheries (reported as interaction with fishing
activities in six cases), hunting (25), tourism
(23), scientific research (7), unreported direct
human activities (1), urban development (1),
and unidentified sources (5) (Avila et al., 2018).
However, common bottlenose dolphins in the
Caribbean could be exposed to more threats
in other countries that were not included in
the review. These threats include contamina-
tion by mercury exposure, reported in Bocas
del Toro, Panama (Barragán-Barrera, Luna-
Acosta et al., 2019), and in Colombia and Belize
for this species and other small delphinids
(Barragán-Barrera, Farías-Curtidor et al., 2019;
González-Velásquez et al., 2020), as well as
boat traffic, reported extensively in Bocas del
Toro-Panama (e.g., Kassamali-Fox et al., 2020;
May-Collado et al., 2012, 2017; May-Collado
& Quiñones-Lebrón, 2014; Pérez-Ortega et
al., 2021). The general lack of monitoring in
the Central American Caribbean may further
threaten inshore populations of common bot-
tlenose dolphins.
Considering the threats that bottlenose
dolphins face in the Wider Caribbean, identify-
ing genetically distinct dolphin populations is
critical to designing and implementing man-
agement plans. The case of common bottlenose
dolphins in Bocas del Toro exemplifies this
situation, where a small (seemingly isolated)
population that is vulnerable to contaminant
exposure and boat traffic from dolphin-watch-
ing activities (Barragán-Barrera, Luna-Acosta
et al., 2019; May-Collado et al., 2017), has
been proposed to be categorised as endan-
gered at the local level based on ecological and
genetic studies (Barragán-Barrera et al., 2017,
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
Barragán-Barrera, Luna-Acosta et al. 2019;
May-Collado et al., 2017).
The definition of population structure is
required for effective conservation planning.
Considering the threatened level for the com-
mon bottlenose dolphins in the Central Amer-
ican Caribbean, further genetic studies are
needed. The ‘inshore form,’ previously reported
in the Caribbean (Barragán-Barrera et al., 2017;
Caballero et al., 2012; Tezanos-Pinto et al.,
2009), needs to be studied in detail (particularly
in Central America) to detect the inshore form
level of isolation from the western North Atlan-
tic (Costa et al., 2022). The results of population
structure studies would provide critical infor-
mation for local management plans. Converse-
ly, in the case of Worldwide distributed form
dolphins, a regional plan at the Caribbean level
is urgent to maintain the genetic flow between
populations. At the national level, Colombia
and Panama must strengthen research and
develop effective management plans to accom-
plish better boat and fishing practices, and
reduce anthropogenic stressors for the inshore
populations. La Guajira deserves special atten-
tion as a potentially important transit area for
both common bottlenose dolphins’ forms in the
Caribbean Sea.
Here, we provide further evidence that
dolphins in Bocas del Toro belonged to the
‘inshore form,’ and for the first-time provide
genetic evidence that the dolphins sampled in
La Guajira include both genetic forms, mainly
the Worldwide distributed form. The single
inshore haplotype in La Guajira may indicate
that the northern portion of the Colombian
Caribbean may be occupied by ‘inshore’ indi-
viduals. However, there is insufficient data to
confirm this assumption or establish the com-
mon bottlenose dolphin conservation status,
unlike in Bocas del Toro.
This study constitutes the first step to
decreasing the knowledge gaps related to the
genetic status of common bottlenose dolphins
in the western Caribbean and highlights the
urgent need of conducting more studies in
Colombia and in the Central American Carib-
bean. Confirming the real conservation status
of common bottlenose dolphins and the genetic
connectivity between populations is key to
determine at which scale management must
be implemented. Under this context, further
research is critical for conservation manage-
ment of inshore populations that could be
isolated and at high risk, but their status is cur-
rently unknown.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
See supplementary material
a14v71s4-MS1
ACKNOWLEDGMENTS
We thank Roger Ayala, Tomás Ayala, and
fishermen for their support on the small-scale
surveys out of La Guajira, as well as Demetrio
Georget for his support in Bocas del Toro. We
also thank the STRI Marine Biological Station
staff and Panacetacea team for their logistical
support We want to thank Ester Quintana-
Rizzo and Laura May-Collado for leading this
special issue as scientific editors. We thank
the anonymous reviewers whose comments
improved the final version of this manuscript.
Colombian samples were collected under
Resolution 1177 of 2014 - General Permit
for Specimen Collection of Wildlife Biodiver-
sity Non-Commercial Purposes of Scientific
Research. This permit was provided by the
National Authority for Environmental Licenses
(ANLA) to Universidad de Los Andes. Panama-
nian samples were collected under permission
from the Autoridad Nacional del Ambiente–
Panamá (ANAM, now Ministerio de Ambiente;
permits SC/A-11-12, SC/A-43-12, SC/A-17-14;
SE/A-101-16, SE/AO-6-16). This study was
supported by two Small Grants in Aid of
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
Research from the Society for Marine Mam-
malogy (D. Barragán, 2011; 2014). The Sci-
ences Faculty of Universidad de Los Andes
provided three Research Grants to D. Barragán:
“Proyecto Semilla – 2013-2 Call for Funding
of Research Category: Master and Doctoral
students, project ‘Genetic structure and diver-
sity of bottlenose dolphins Tursiops truncatus
(Montagu, 1821) (Cetacea: Delphinidae) in La
Guajira, Colombian Caribbean” from Univer-
sidad de Los Andes (D. Barragán, 2014); the
“Proyecto Semilla – 2015-1 Call for Funding
of Research Category: Master and Doctoral
students, project ‘Occurrence, distribution and
preliminary genetic status of delphinids in
La Guajira, Colombian Caribbean” (D. Bar-
ragán, 2015); “Proyecto Semilla – 2017-1 Call
for Funding of Research Category: Candidates
Ph.D. students, project “Mercury concentra-
tions in bottlenose dolphins Tursiops truncatus
(Montagu, 1821) (Cetacea: Delphinidae) in
Bocas del Toro, Caribbean Coast of Panama
(D. Barragán, 2016). The Rufford Foundation
provided three grants for this research: the
Booster Grant (D. Barragán, 2015), the Sec-
ond Booster Grant (D. Barragán, 2017), and
another Rufford Small Grant (N. Farías, 2016).
Colciencias/Minciencias also supported this
study through a Research Grant awarded by the
National Ph.D. Call 727 (D. Barragán, 2015),
as well as the National Secretary of Science
and Technology of Panama (SENACYT) and
Department of Biology, Redpath Museum Class
66 Award, Neotropical Environment Option
(NEO) and Biodiversity, Ecosystem Services
and Sustainability (BESS) program form McGill
University (B. Pérez, 2016). The Vicerrectoría
de Investigaciones from Pontificia Universidad
Javeriana is acknowledged by providing a Post-
doctoral Grant (Call 2021-2) to D. Barragán
(2022), who also thanks the Instituto Javeriano
del Agua for its support during this stay. The
funders had no role in the study design, data
collection, analysis, decision to publish, or
preparation of the manuscript.
REFERENCES
Amos, W., & Hoelzel, A.R., (1991). Long-term preservation
of whale skin for DNA analysis. Report of the Interna-
tional Whaling Commission, Special Issue, 13, 99–104.
Amos, W., Schloetterer, C., & Tautz, D. (1993). Social
structure of pilot whales revealed by analytical DNA
profiling. Science, 260, 670 – 672.
Andrade, C. A., & Barton, E. D. (2005). The Guajira
upwelling system. Continental Shelf Research, 25,
1003–1022. https://doi.org/10.1016/j.csr.2004.12.012
Avila, I. C., Kaschner, K., & Dormann, C. F. (2018). Current
global risks to marine mammals: Taking stock of the
threats.Biological Conservation, 221, 44–58 https://
doi.org/10.1016/j.biocon.2018.02.021
Avila, I. C., & Giraldo, A. (2022). Áreas en riesgo para los
mamíferos marinos en Colombia. Revista de Biolo-
gía Tropical, 70, 96–113. https://doi.org/10.15517/rev.
biol. trop..v70i1.48553
Baker, C. S., Medrano-González, L., Calambokidis, J.,
Perry, A., PichlerI, F., Rosenbaum, H., Straley, J. M.,
Urban-Ramirez, J., Yamaguchi, M., & von Ziegesar,
O. (1998). Population structure of nuclear and mito-
chondrial DNA variation among humpback whales
in the North Pacific. Molecular Ecology, 7, 695–707.
https://doi.org/10.1046/j.1365-294x.1998.00384.x
Baker, C. S., Perry, A., Bannister, J. L., Weinrich, M. T.,
Abernethy, R. B., Calambokidis, J., Lien, J., Lam-
bertsen, R. H., Ramírez, J. U., &; Vasquez, O. (1993).
Abundant mitochondrial DNA variation and world-
wide population structure in humpback whales. Pro-
ceedings of the National Academy of Sciences, 90,
8239–8243. https://doi.org/10.1073/pnas.90.17.8239
Barragán-Barrera, D. C., Luna-Acosta, A., May-Collado, L.
J., Polo-Silva, C. J., Riet-Sapriza, F. G., Bustamante, P.,
Hernández-Ávila, M. P., Vélez, N., Farías-Curtidor,
N., & Caballero, S. (2019). Foraging habits and levels
of mercury in a resident population of bottleno-
se dolphins (Tursiops truncatus) in Bocas del Toro
Archipelago, Caribbean Sea, Panama. Marine Pollu-
tion Bulletin, 145, 343–356. https://doi.org/10.1016/j.
marpolbul.2019.04.076
Barragán-Barrera, D. C., Farías-Curtidor, N., Luna-Acosta,
A.,Bustamante, P., Ayala, R. & Caballero, S. (2019,
September 15 – 18). Evidence of mercury bioaccu-
mulation in skin samples of wild delphinids in La
Guajira, Colombian Caribbean [Poster presentation].
SETAC Latin America 13th Biennial Meeting, Carta-
gena, Colombia.
Barragán-Barrera, D. C., May-Collado, L. J., Tezanos-Pinto,
G., Islas-Villanueva, V., Correa-Cárdenas, C. A., &
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
Caballero, S. (2017). High genetic structure and low
mitochondrial diversity in bottlenose dolphins of the
Archipelago of Bocas del Toro, Panama: A popula-
tion at risk? PLOS ONE, 12, e0189370. https://doi.
org/10.1371/journal.pone.0189370
Bigg, M. A., Ellis, G. M., Ford, J. K. B., & Balcomb, K. C.
(1987). Killer whales: A study of their identification,
genealogy, and natural history in British Columbia and
Washington State. Phantom Press.
Caballero, S., Islas-Villanueva, V., Tezanos-Pinto, G.,
Duchene, S., Delgado-Estrella, A., Sanchez-
Okrucky, R., & Mignucci-Giannoni, A. A. (2012).
Phylogeography, genetic diversity and population
structure of common bottlenose dolphins in the
Wider Caribbean inferred from analyses of mito-
chondrial DNA control region sequences and
microsatellite loci: conservation and management
implications. Animal Conservation, 15, 95–112. https
://doi.org/10.1111/j.1469-1795.2011.00493.x
Clement, M., Posada, D., & Crandall, K. A. (2000). TCS:
a computer program to estimate gene genealo-
gies. Molecular Ecology, 9, 1657–1659. https://doi.
org/10.1046/j.1365-294x.2000.01020.x
Coates, A. G., McNeill, D. F., Aubry, M. P., Berggren, W.
A., & Collins, L. S. (2005). An introduction to the
geology of the Bocas del Toro Archipelago, Panama.
Caribbean Journal of Science, 41, 374–391.
Combatt, J. A., & González, E. A. (2007). Ocurrencia y
distribución del delfín nariz de botella Tursiops trun-
catus en las costas de Dibulla, Baja Gaujira, durante
el periodo de agosto a diciembre de 2005 [Bachelor’s
thesis, Universidad de Bogotá Jorge Tadeo Loza-
no]. Expeditio. https://expeditiorepositorio.utadeo.
edu.co/bitstream/handle/20.500.12010/1161/T766.
pdf?sequence=1&isAllowed=y
Costa, A. P. B., Mcfee, W., Wilcox, L. A., Archer, F. I., &
Rosel, P. E. (2022). The common bottlenose dolphin
(Tursiops truncatus) ecotypes of the western North
Atlantic revisited: an integrative taxonomic investiga-
tion supports the presence of distinct species. Zoolo-
gical Journal of the Linnean Society, 196, 1608–1636.
https://doi.org/10.1093/zoolinnean/zlac025
Corporación autónoma Regional de La Guajira, & Instituto
de Investigaciones Marinas y Costeras (2012). Atlas
marino costero de La Guajira. Serie de Publicaciones
Especiales de Invemar No. 27. Instituto de Investi-
gaciones Marinas y Costeras. http://www.invemar.
org.co/c/document_library/get_file?uuid=ba049204-
97cb-4dfc-b1fa-693221ca96e4&groupId=10182
Drummond, A.J., Ashton, B., Cheung. M., Heled, J., Kearse,
M., Moir, R., et al. (2009). Geneious Pro (V4.8.5)
[Computer software]. Geneious by Dotmatics. http://
www.geneious.com/default,503,previous_geneious_
versions.sm.
Duffield, D. a., Ridgway, S. H., & Cornell, L. H. (1983).
Hematology distinguishes coastal and offshore forms
of dolphins (Tursiops). Canadian Journal of Zoology,
61, 930–933. https://doi.org/10.1139/z83-123
Escorza-Treviño, S., & Dizon, A. E. (2000). Phylogeogra-
phy, intraspecific structure and sex-biased disper-
sal of dall’s porpoise, Phocoenoides dalli, revealed
by mitochondrial and microsatellite DNA analy-
ses. Molecular Ecology, 9, 1049–1060. https://doi.
org/10.1046/j.1365-294x.2000.00959.x
Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver
3.5: a new series of programs to perform population
genetics analyses under Linux and Windows. Mole-
cular Ecology Resources, 10(3), 564–567. https://doi.
org/10.1111/j.1755-0998.2010.02847.x
Farías-Curtidor, N., Barragán-Barrera, D. C., Chávez-
Carreno, P. A., Jiménez-Pinedo, C., Palacios, D. M.,
Caicedo, D., Trujillo, F., & Caballero, S. (2017). Range
extension for the common dolphin (Delphinus sp.) to
the Colombian Caribbean, with taxonomic implica-
tions from genetic barcoding and phylogenetic analy-
ses. PloS ONE, 12, e0171000. https://doi.org/10.1371/
journal.pone.0171000
Fruet, P. F., Secchi, E. R., Daura-Jorge, F., Vermeulen,
E., Flores, P. A. C., Simões-Lopes, P. C., Genoves,
R. C., Laporta, P., di Tullio, J. C., Freitas, T. R. O.,
Rosa, L. D., Valiati, V. H., Beheregaray, L. B., &
ller, L. M. (2014). Remarkably low genetic diver-
sity and strong population structure in common
bottlenose dolphins (Tursiops truncatus) from coastal
waters of the Southwestern Atlantic Ocean. Conser-
vation Genetics, 15, 879–895. https://doi.org/10.1007/
s10592-014-0586-z
Gilson, A., Syvanen, M., Levine, K., & Banks, J. (1998). Deer
gender determination by polymerase chain reaction:
Validation study and application to tissues, bloods-
tains, and hair forensic samples from California.
California Fish and Game, 84, 159–169.
González-Velásquez, M. (2020). Insights on mercury bio-
magnification in the Pantropical Spotted Dolphin (Ste-
nella attenuata) food chain from Belize [Bachelor’s
thesis, Universidad de Los Andes]. Séneca. http://hdl.
handle.net/1992/44990
Gutiérrez Leones, G. A., Correa Ramírez, M. A., & Hor-
mazabal Fritz, S. E. (2015). Análisis de la variabilidad
espacio-temporal del sistema de surgencia de La
Guajira en el dominio espacio-frecuencia, empleando
el MTM-SVD (Multi Taper Method Singular Value
Decomposition). Boletín Científico CIOH, 33, 87–106.
https://doi.org/10.26640/01200542.33.87_106
Guzmán, H. M., Barnes, P. A. G., Lovelock, C. E., & Feller, I.
C. (2005). A site description of the CARICOMP man-
grove, seagrass and coral reef sites in Bocas del Toro,
Panama. Caribbean Journal of Science, 41, 430–440.
http://striweb.si.edu/
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
Hersh, S.L. & Duffield, D.A. (1990). Distinction between
northwest Atlantic offshore and coastal bottlenose
dolphins based on hemoglobin profile and morpho-
metry. In S. Leatherwood. & R. R. Reeves (Eds), The
bottlenose dolphin (pp. 129–139). Academy Press.
Hoelzel, A. R., Potter, C. W., & Best, P. B. (1998). Genetic
differentiation between parapatric “nearshore” and
offshore” populations of the bottlenose dolphin. Pro-
ceedings of the Royal Society B: Biological Sciences, 265,
1177–1183. https://doi.org/10.1098/rspb.1998.0416
Kassamali-Fox, A., Christiansen, F., May-Collado, L. J.,
Ramos, E. A., & Kaplin, B. A. (2020). Tour boats affect
the activity patterns of bottlenose dolphins (Tursiops
truncatus) in Bocas del Toro, Panama. PeerJ, 8, e8804.
https://doi.org/10.7717/peerj.8804
Krützen, M., Barre, L. M., Moller, L. M., Heithaus, M. R.,
Simms, C., & Sherwin, W. B. (2002). A biopsy sys-
tem for small cetaceans: darting success and wound
healing in Tursiops spp. Marine Mammal Science, 18,
863–878. https://doi.org/10.1111/j.1748-7692.2002.
tb01078.x
May-Collado, L. J., Barragán-Barrera, D. C., Quiñones-
Lebrón, S. G., & Aquino-Reynoso, W. (2012, July
2-6). Dolphin watching boats impact on habitat
use and communication of bottlenose dolphins of
Bocas del Toro, Panama during [Paper presentation,
SC/64/WW2]. International Whaling Commission
2012 Panama City, Panama. http://www.panacetacea.
org/uploads/6/6/8/1/6681148/may-collado_et_al_
sc64ww2.pdf
May-Collado, L. J., & Quiñones-Lebrón, S. G. (2014). Dol-
phin changes in whistle structure with watercraft acti-
vity depends on their behavioral state. The Journal of
the Acoustical Society of America, 135, EL193–EL198.
https://doi.org/10.1121/1.4869255
May-Collado, L. J., Quinones-Lebron, S., Barragán-Barrera,
D. C., Jose D. Palacios, Monica Gamboa Poveda, &
Ayshah Kassamali-Fox. (2015, May 22 - June 3). The
Bocas del Toros dolphin watching industry relies on
a small community of bottlenose dolphins: implica-
tions for management [Paper presentation SC/66a/
WW10]. International Whaling Commission 2015,
San Diego, California, United States.
May-Collado, L. J., Amador-Caballero, M., Casas, J. J.,
Gamboa-Poveda, M. P., Garita-Alpízar, F., Gerrodette,
T., González-Barrientos, R., Hernández-Mora, G.,
Palacios, D. M., Palacios-Alfaro, J. D., Pérez, B., Ras-
mussen, K., Trejos-Lasso, L., & Rodríguez-Fonseca,
J. (2017). Ecology and Conservation of Cetaceans
of Costa Rica and Panama. In M. Rossi-Santos, & C.
Finkl (Eds.) Advances in marine vertebrate research
in Latin America (Vol. 22, pp. 293–319). https://doi.
org/10.1007/978-3-319-56985-7_12
May-Collado, L. J., Pérez, B., Barragán-Barrera, D. C.,
Gonzalez, K., Swack, N., Gamboa-Poveda, M. & J. D.
Palacios-Alfaro, J. D. (2019, May 10-23). An update of
the conservation status of the bottlenose dolphins of
Bocas del Toro Panama: Female calving intervals and
calf survivorship [Paper presentation, SC/68A/WW/
WP/03/rev1]. International Whaling Commission
2019, Nairobi, Kenya.
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010, November
14). Creating the CIPRES science gateway for infe-
rence of large phylogenetic trees [Paper presentation].
2010 Gateway Computing Environments Workshop
(GCE), New Orleans, LA, United States. https://doi.
org/10.1109/gce.2010.5676129
ller, L. M., & Beheregaray, L. B. (2004). Gene-
tic evidence for sex-biased dispersal in resi-
dent bottlenose dolphins (Tursiops aduncus).
Molecular Ecology, 13(6), 1607–1612. https://doi.
org/10.1111/j.1365-294X.2004.02137.x
Natoli, A., Peddemors, V. M., & Rus Hoelzel, A. (2004).
Population structure and speciation in the genus Tur-
siops based on microsatellite and mitochondrial DNA
analyses. Journal of Evolutionary Biology, 17, 363–375.
https://doi.org/10.1046/j.1420-9101.2003.00672.x
Palacios, D. M., Gärtner, A., Caicedo, D., Farías, N., Jimé-
nez-Pinedo, C., Curcio-Valencia, J., Aldana-Domín-
guez, J., Trujillo, F., & Moná-Sanabria, Y. (2013).
Mamíferos acuáticos de la región Caribe colombiana.
In F. Trujillo, A. Gärtner, D. Caicedo & M. C. Diaz-
granados (Eds.), Diagnóstico del estado de conoci-
miento y conservación de los mamíferos acuáticos
en Colombia (pp. 95–126). Ministerio de Ambiente y
Desarrollo Sostenible, Fundación Omacha, Conserva-
ción Internacional y WWF.
Paramo, J., Correa, M., & Núñez, S. (2011). Evidencias de
desacople físico-biológico en el sistema de surgencia
en la Guajira, caribe Colombiano. Revista de Biologia
Marina y Oceanografia, 46, 421–430. https://doi.
org/10.4067/S0718-19572011000300011
Parsons, K. M., Durban, J. W., Claridge, D. E., Herzing,
D. L., Balcomb, K. C., & Noble, L. R. (2006). Popu-
lation genetic structure of coastal bottlenose dolph-
ins (Tursiops truncatus) in the northern Bahamas.
Marine Mammal Science, 22, 276–298. https://doi.
org/10.1111/j.1748-7692.2006.00019.x
Pérez-Ortega, B., Daw, R., Paradee, B., Gimbrere, E., &
May-Collado, L. J. (2021). Dolphin-Watching Boats
Affect Whistle Frequency Modulation in Bottlenose
Dolphins. Frontiers in Marine Science, 8, 618420.
https://doi.org/10.3389/fmars.2021.618420
Reynolds, J. E., Wells, R. S., & Eide, S. D. (2000). The bott-
lenose dolphin: Biology and conservation. University
Press of Florida.
Rosel, P. E., France, S. C., Wang, J. Y., &; Kocher, T.
D. (1999). Genetic structure of Harbour Porpoise
Phocoena phocoena populations in the northwest
Atlantic based on mitochondrial and nuclear
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71(S4): e57291, diciembre 2023 (Publicado Nov. 01, 2023)
markers. Molecular Ecology, 8, S41-54. https://doi.
org/10.1046/j.1365-294x.1999.00758.x
Sanger, F, & Coulson, A. R. (1975). A rapid method
for determining sequences in DNA by pri-
med synthesis with DNA polymerase. Journal of
Molecular Biology, 94, 441–446. https://doi.
org/10.1016/0022-2836(75)90213-2
Sellas, A. B., Wells, R. S., & Rosel, P. E. (2005). Mito-
chondrial and nuclear DNA analyses reveal fine
scale geographic structure in bottlenose dolphins
(Tursiops truncatus) in the Gulf of Mexico. Conser-
vation Genetics, 6, 715–728. https://doi.org/10.1007/
s10592-005-9031-7
Tezanos-Pinto, G., & Baker, C. S. (2012). Short-term reac-
tions and long-term responses of bottlenose dolphins
(Tursiops truncatus) to remote biopsy sampling. New
Zealand Journal of Marine and Freshwater Research,
46, 13–29. https://doi.org/10.1080/00288330.2011.5
83256
Tezanos-Pinto, G., Baker, C. S., Russell, K., Martien, K.,
Baird, R. W., Hutt, A., Stone, G., Mignucci-Giannoni,
A. A., Caballero, S., Endo, T., Lavery, S., Oremus, M.,
Olavarría, C., & Garrigue, C. (2009). A Worldwide
Perspective on the Population Structure and Genetic
Diversity of Bottlenose Dolphins (Tursiops truncatus)
in New Zealand. Journal of Heredity, 100, 11–24.
https://doi.org/10.1093/jhered/esn039
Wang, J. Y., Chou, L.-S., & White, B. N. (1999). Mito-
chondrial DNA analysis of sympatric morphotypes
of bottlenose dolphins (genus: Tursiops) in Chinese
waters. Molecular Ecology, 8, 1603–1612. https://doi.
org/10.1046/j.1365-294x.1999.00741.x
Wells, R.S., Natoli, A. & Braulik, G. (2019). Tursiops
truncatus (errata version published in 2019).
e.T22563A156932432. The IUCN Red List of Threa-
tened Species https://dx.doi.org/10.2305/IUCN.
UK.2019-1.RLTS.T22563A156932432.en
Wiszniewski, J., Beheregaray, L. B., Allen, S. J., & Möller,
L. M. (2010). Environmental and social influences
on the genetic structure of bottlenose dolphins (Tur-
siops aduncus) in southeastern australia. Conserva-
tion Genetics, 11, 1405–1419. https://doi.org/10.1007/
s10592-009-9968-z