1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
Diversity and cultural value of the mastofauna associated
with coffee plantations in Oaxaca, Mexico
Karina Madrid-Espinosa1, https://orcid.org/0000-0001-6532-8662
Remigio A. Guzmán-Plazola1*, http://orcid.org/0000-0003-4896-3642
Carlos García Estrada2, http://orcid.org/0000-0002-4965-9426
Dulce María Ávila-Nájera3, https://orcid.org/0000-0001-8535-1528
José Luis Pimentel Equihua1, https://orcid.org/0000-0002-8116-1978
1. Colegio de Postgraduados, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco, Estado de México, México;
karinamadrid3@gmail.com, rguzmanp@colpos.mx (*Correspondence), jequihua@colpos.mx
2. Instituto de Ecología, Universidad del Mar, campus Puerto Escondido, Oaxaca, México; cgarcia@zicatela.umar.mx
3. Departamento de Investigación y Posgrado, Universidad Intercultural del Estado de México, Lib. Francisco Villa S/N,
San Felipe del Progreso 50640, Estado de México, México; dul.avna@gmail.com
Received 19-I-2024. Corrected 13-I-2025. Accepted 08-IX-2025.
ABSTRACT
Introduction: The expansion of conventional agriculture has caused the loss of natural habitats for the fauna, but
the coffee agroecosystems of Oaxaca can provide an alternative habitat for mammals, which is associated with the
cultural value that human communities assign to them.
Objective: To assess the diversity and cultural value of medium and large mammals associated with the coffee
plantation, and what they represent for the inhabitants of San Gabriel Mixtepec, Oaxaca, Mexico.
Method: A mixed method was used. For the diversity analysis, the mammal species were identified through
camera traps. To determine the Cultural Importance Index (IIC), semi-structured interviews and participatory
workshops were carried out with the residents, who also helped to identify the different uses of the medium and
large mammals.
Results: A total of 26 species grouped into seven orders, 14 families, and 23 genera were recorded. Alpha diversity
was greater in the dry season than in the wet season. Some species were detected in only one of the two seasons.
Six hundred and thirty-nine records of cultural uses of mammals were obtained; use as food was the most men-
tioned. Twelve types of uses were identified. The species with the greatest cultural importance were Odocoileus
virginianus (IIC = 0.92), with 11 uses, followed by Dasypus novemcinctus (IIC = 0.61), with 10 uses, Conepatus
leuconotus (IIC = 0.60), with eight uses and Didelphis virginiana (IIC = 0.52), with 11 uses.
Conclusion: The results show the importance that human residents assign to mammals associated with coffee
agroecosystems, both for their use for subsistence and to complement the family economy. Furthermore, the
residents themselves emphasize the importance of their traditional knowledge and the need to adopt sustainable
management practices for the mastofauna, because they recognize the importance it has in the community and
the benefits it can have on the environment.
Key words: mammals; Cultural Importance Index (IIC); coffee; agroecology; biocultural.
https://doi.org/10.15517/rev.biol.trop..v73i1.57668
VERTEBRATE BIOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
INTRODUCCIÓN
Mexico has a large diversity of mammals.
There are more than 500 identified species;
many of them are in danger of extinction due
to habitat loss and ecological fragmentation
(Hernández-Betancourt et al., 2010; Sánchez-
Cordero et al., 2014). According to their body
size, they are classified as small (less than 100
g), medium (101 g to 10 kg), and large (greater
than 10 kg) (Ceballos et al., 2005). Oaxaca is
the state in Mexico with the largest diversity of
terrestrial mammals, with 216 species, of which
155 are small, 50 are medium, and 11 are large
(Briones-Salas et al., 2015).
Medium and large mammals are impor-
tant as seed dispersers, pollinators, predators,
and prey (Bolaños & Naranjo, 2001; Lavariega
et al., 2012). They influence the composition
and structure of plant and animal communities
(Bell et al., 2021). These changes can result in
the modification of habitats and affect the avail-
ability of resources and biological diversity (Bell
et al., 2021; Cortés-Marcial & Briones-Salas,
2014). It has been suggested that medium and
large mammals have different degrees of sensi-
tivity to ecological disturbance, depending on
their requirements of space, food, and behavior
(Torres et al., 2003). Despite their ecological
importance, medium and large mammals are
being threatened by the pressure from various
anthropogenic activities such as agriculture;
then, knowledge of habitat characteristics that
determine their distribution and abundance is
crucial for the management and conservation
of biodiversity (Lavariega et al., 2012; Mezhua-
Velázquez et al., 2022).
Given the loss and fragmentation of the
habitat, the restricted knowledge about medi-
um and large mammals (Altamirano-Álvarez
et al., 2009; Álvarez-Cárdenas et al., 2009;
Ríos-Solís et al. 2021), and the change in the
conventional agricultural model, it has been
suggested that one of the agricultural models
designed to be sustainable is the agroecosystem
(Landa-Ochoa et al., 2024). It is defined as an
RESUMEN
Diversidad y valor cultural de la mastofauna asociada a plantaciones de café en Oaxaca, México
Introducción: La expansión de la agricultura convencional ha provocado la pérdida de hábitats naturales para la
fauna, pero los agroecosistemas cafetaleros de Oaxaca pueden proporcionar un hábitat alternativo para la masto-
fauna, lo cual está asociado con el valor cultural que las comunidades humanas les asignan.
Objetivo: Conocer la diversidad y el valor cultural de los mamíferos medianos y grandes asociados al cafetal, y lo
que representan para los habitantes de San Gabriel Mixtepec, Oaxaca, México.
Método: Se utilizó un método mixto. Para el análisis de diversidad se identificaron las especies de mamíferos a
través de cámaras trampa, y para determinar el Índice de Importancia Cultural (IIC), se realizaron entrevistas
semiestructuradas y talleres participativos con los pobladores, quienes también ayudaron a identificar los dife-
rentes usos de los mamíferos medianos y grandes.
Resultados: Se registraron 26 especies agrupadas en siete órdenes, 14 familias y 23 géneros. La diversidad alfa fue
mayor en la época seca que en la húmeda. Algunas especies se detectaron en solo una de las dos temporadas. Se
obtuvieron 639 registros de usos culturales de los mamíferos; el uso como alimento fue el más mencionado. Se
identificaron 12 tipos de usos. Las especies con mayor importancia cultural fueron: Odocoileus virginianus (IIC =
0.92), con 11 usos, seguido de Dasypus novemcinctus (IIC = 0.61), con 10 usos, Conepatus leuconotus (IIC = 0.60),
con ocho usos y Didelphis virginiana (IIC = 0.52), con 11 usos.
Conclusión: Los resultados muestran la importancia que los pobladores asignan a los mamíferos asociados a los
agroecosistemas cafetaleros, tanto por su uso para subsistencia como para complementar la economía familiar.
Además, los propios pobladores enfatizan la importancia de su conocimiento tradicional y la necesidad de adop-
tar prácticas de manejo sostenible de la mastofauna, porque reconocen la importancia que tiene en la comunidad
y los beneficios que puede tener en el ambiente.
Palabras clave: mamíferos; Índice de Importancia Cultural (IIC); café; agroecología; biocultural.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
ecosystem deliberately modified by humans to
obtain goods and services, mainly for economic
purposes (Paleologos et al., 2017). This concept
implies that dynamic relationships are estab-
lished between human populations and their
physical-biological environment, which high-
lights the interaction between the biotic and
abiotic elements that compose it. In addition,
the importance of understanding how these
modifications affect both agricultural produc-
tion and the sustainability of the ecosystem as
a whole is emphasized (Blanco & Leyva, 2007;
Landa-Ochoa et al., 2024; Machado & Campos,
2008; Sans, 2007).
Various agroecosystems form a smooth
transition between natural ecosystems and
disturbed areas (López-Barrera & Landgrave,
2008). Their management designs are based
on an approach linked to the environment that
is more socially sensitive and focused not only
on production but also on ecological stability
(Paleologos et al., 2017). In these cases, biodi-
versity plays an important role in its mainte-
nance by providing ecosystem services, defined
as the benefits people obtain from ecosystems
since they are essential for human well-being
(Avendaño-Leadem et al., 2020). These systems
contribute to nutrient recycling, to the control
of local microclimate, and to the regulation of
hydrological processes, among others (López-
Barrera & Landgrave, 2008). For example, the
shaded coffee agroecosystems associated with
rainforests have a wide variety of native trees
that have contributed to mitigating the loss of
these services (Ruelas-Monjardín et al., 2014).
For these reasons, they are important at a
national and international level, since in many
cases they have replaced ecosystems and have
been capable of maintaining part of the original
biodiversity (García-Burgos et al., 2014).
Coffee-producing countries are in regions
that are considered biodiversity hotspots, which
are regions of the world that host an exceptional
number of endemic species and ecosystems;
however, they are experiencing significant habi-
tat loss, making them particularly vulnerable
to extinction (Lessler et al., 2017; Perfecto et
al., 2019). In the context of coffee-producing
countries, many of these regions are in tropical
and subtropical areas, where coffee production
has led to drastic changes in land use (Coltri et
al., 2019; Navidad-Murriera et al., 2023). How-
ever, coffee production faces significant chal-
lenges, as intensive agricultural practices can
lead to deforestation and habitat loss, putting
local biodiversity at risk (Escobar-Ibáñez et al.,
2023; Sinu et al., 2021). Therefore, it is essential
to promote sustainable cultivation techniques
that integrate biodiversity conservation with
agricultural production, thus ensuring the eco-
nomic and ecological viability of these regions
(Perfecto et al., 2019; Otero-Jiménez et al.,
2020). Shade coffee agroecosystems in rain-
forests have contributed to mitigating the loss
of ecosystem services and can also be of great
importance as habitat, refuge area, food for var-
ious groups of animals, and the conservation of
biodiversity, because they have a tree canopy
that is usually more complex and diverse, with
different heights and strata, which provides
denser and more heterogeneous shade (Calde-
rón-Patrón, 2016; García-Luis et al., 2013).
Oaxaca is one of the main coffee-produc-
ing areas; it ranks fourth nationally, with 135
000 ha cultivated in marginalized indigenous
regions (García-Domínguez et al., 2021). Cof-
fee represents an important economy for its
inhabitants (among whom a high indigenous
presence stands out). Coffee plantations are
grown in seven of the eight regions of the state
that make up the territory, where 17 coffee-pro-
ducing municipalities are located (Girón-Iles-
cas, 2023). However, according to the literature,
San Gabriel Mixtepec, is not registered among
the coffee-producing municipalities despite
receiving support from the government Pro-
grama para el Bienestar 2023, in coffee produc-
tion (Secretaría de Agricultura y Desarrollo
Rural, 2023). Approximately 100 000 families
are dedicated to growing coffee. This represents
almost half a million Oaxacans out of the 4
132 148 total state population (Figueroa et al.,
2020). In addition, coffee plantations represent
important corridors between the jungles of the
lowlands and the coniferous and oak forests of
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
the highlands of the Northern and Southern
Sierras of the state (Anta, 2006).
The mammals associated with coffee plan-
tations have great cultural importance, since
these species are not only part of the states
biodiversity, but are also deeply integrated into
the traditions, beliefs, and practices of local
communities. Species such as the white-tailed
deer and the coyote, are valued not only for
their ecological role but also for their relevance
in the mythology and popular culture of the
region. For example, the coyote is seen as a
symbol of cunning and adaptability, while the
deer is considered a sacred animal in many
indigenous communities (Corona-Mendoza &
Escalante, 2021; García-Grajales et al., 2022).
However, studies on terrestrial mammals in the
state of Oaxaca have focused on the analysis
of their distribution, mammalian lists, and
expansion of distribution areas (Briones-Salas,
2012; Cervantes & Yépez, 1995; López et al.,
2009; Santos-Moreno & Ruiz-Velásquez, 2011).
Some authors have reported exclusively on
medium and large mammals (Cruz-Espinoza
et al., 2012; Cruz-Jácome et al., 2015; Lira-
Torres & Briones-Salas, 2012). In the case of
the study area, works carried out near San
Gabriel Mixtepec have also focused on mam-
mals of all sizes (Briones-Salas et al., 2016;
Buenrostro-Silva et al., 2012; Buenrostro-Silva
et al., 2015; Lira-Torres et al., 2005; Lira-Torres,
2006; Lira-Torres et al., 2008), while works on
medium and large mammals have been recent
(Hernández-Hernández, 2002; Juárez-Velasco,
2016; Sigüenza-Pérez, 2014). Works focused on
the mastofauna associated with coffee agroeco-
systems are not too many (Palacios-Romo et al.,
2012; Pinacho López, 2014) and studies focused
on the cultural value of mammals associated
with the coffee plantation in Oaxaca are rela-
tively recent (Lavariega et al., 2012; Palacios-
Romo et al., 2012; Ruiz-Velásquez, 2019).
From this perspective, and considering that
shaded coffee agroecosystems preserve a com-
position, structure, and diversity that resembles
the original ecosystems, these agroecosystems
function as habitats for medium and large-sized
mammals. These are essential to maintain the
balance of the ecosystem and are appreciated
by local communities due to their various uses.
Therefore, this study aimed to evaluate whether
shade-grown coffee agroecosystems support a
high diversity of medium and large mammals
and to analyze the cultural value they have for
the inhabitants of San Gabriel Mixtepec, in
Southern Oaxaca.
MATERIALS AND METHODS
Study area: The municipality of San Gabri-
el Mixtepec has an altitude that varies from
550 to 1 360 meters above sea level. It is lim-
ited to the North by the municipalities of San
Juan Lachao and San Jerónimo Coatlán; to
the South by San Pedro Mixtepec and Santa
María Colotepec; to the East by San Sebastián
Coatlán and the West by Santos Reyes Nopala
(Díaz-Olivera, 2013). It is located between the
coordinates 15°50’ to 15°13’ N & 96°10’ to
97°15’ W (Fig. 1). The predominant climate
is warm sub-humid with rains in summer and
with an average relative humidity of 77.6 %;
it has an average annual temperature range of
20 to 28 °C and mean annual precipitation of
1 000 to 2 500 mm (Cruz, 2013; Pinacho-López,
2014). The municipality has a vegetation of
Oak Forest, Pine-Oak Forest, Mountain Cloud
Forest with Secondary Vegetation and Rainfed
Agriculture, Induced Grassland, and Medium
Sub-evergreen Forest with Secondary Vegeta-
tion (Instituto Nacional de Estadística y Geo-
grafía [INEGI], 2021).
Methodology: The work was carried out
from August 2022 to April 2023, in three
stages: 1) The first was to determine diversity
and evaluate differences in species composition
between two times of the year (dry and wet sea-
son). A sampling of medium and large mam-
mals associated with the coffee agroecosystem
located in the Jamaica farm was carried out; this
is an area characterized by a shade coffee plan-
tation associated with a medium sub-deciduous
forest in the extension of approximately 500
hectares; 2) In the second stage, the cultural
value of medium and large mammals associated
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
with coffee plantations given to them by the
residents of San Gabriel Mixtepec was inves-
tigated through semi-structured interviews in
which questions were asked such as personal
data, perceptions of changes in vegetation and
fauna of the community, different uses of mam-
mals, among other questions; and 3) In the
third stage, three participatory workshops were
held for coffee growers and high school stu-
dents to learn their perspective on medium and
large mammals and the uses that they are given.
Sampling of medium and large mam-
mals: Sampling was carried out with seven
camera traps (Bushnell, model 119467C) for the
detection of medium and large mammal species
in coffee agroecosystems of the Finca Jamaica,
that belongs to Mr. Guillermo Rojas Saldaña;
the farm is located at coordinates 16°07’ to
16°08’ N & 97°65’ to 97°03’ W (Fig. 2). To
cover the dry and wet seasons of the year, this
work was carried out from August 2022 to April
2023. A linear transect was used; first, the study
site was georeferenced, and the points for plac-
ing the camera traps were also georeferenced.
For this, the location of the permanent stream,
located in the middle part of the farm polygon,
was taken as a linear reference. Seven digital
wildlife cameras were used, with 8-megapixel
images configured for three photographs per
event, and one minute between each event,
programmed with the highest sensitivity. In this
case, no attractants were used to avoid bias in
the results and minimize habitat disturbance.
The photo traps were placed among the veg-
etation, taking the previously georeferenced
points as a reference; they were attached to the
trunk of a tree at an average height of 50 cm.
The sampling sites had distances from each
other of 350 to 550 linear meters according
to the topographic condition of the area. The
cameras remained active 24 hours a day for 188
days of sampling. They were reviewed approxi-
mately every 15 days, to verify their correct
operation and to extract the captured images.
Fig. 1. Location map of the municipality of San Gabriel Mixtepec. Prepared by the authors with data from INEGI and
field data.
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
Subsequently, data on dates, times, and sam-
pling sites were taken for species identification.
Species diversity: The sample was analyzed
by constructing a species accumulation curve,
according to the Mao Tao estimator (Collwell,
et al., 2004; Moreno & Halffter, 2000); sampling
was randomized 100 times, and the accumula-
tion curve was compared with that obtained
with the Clench model (Moreno, 2001). Sub-
sequently, species richness was calculated with
the first-order non-parametric estimators Chao
2 and Jacknife, based on incidence (Guido-
Lemus, 2015). Alpha diversity was calculated
using the Shannon-Wienner index (H’). To
avoid underestimation, the Pielou equity was
calculated (J’; Moreno, 2001). To determine the
difference between species diversity in the dry
and wet seasons of the year, Hutchenson t test
was used (Zar, 2010). Species turnover between
the dry and wet seasons was calculated using the
Whitaker index (Moreno, 2001). The similarity
of medium and large mammal species numbers
between the dry and wet seasons of the year was
calculated with the qualitative similarity indices
of Jaccard and Sørensen (Moreno, 2001). Past
(Hammer et al., 2001), R Core Team (v. 4.3.1,
2022), and Species Diversity & Richness III (v.
3.0.2) software were used.
Cultural value: The Cultural Importance
Index (IIC; Ávila-Nájera et al., 2011) is used
to assess and measure the value of different
cultural elements within a society. This index
can include topics such as traditions, customs,
tangible and intangible heritage, and the cul-
tural diversity of a community. The index aims
to provide a framework for understanding how
these elements contribute to the social and
economic development of a region. In these
cases, semi-structured interviews were car-
ried out with the staff of the Jamaica farm and
residents of the municipality of San Gabriel
Mixtepec. Formula:
Cultural Importance Index (IICz) =
Σ (Iuz + Fmz + Vutz) / 300
Where: Luz = usage intensity, Fmz = frequency
of mentions, Vuz = usage value.
Fig. 2. Map with the location of the sampling sites (red diamonds).
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
A description of each of these sub-indexes
is given by Ávila-Nájera et al. (2011).
To obtain the sample size, a simple random
sampling without replacement was applied,
based on Thompsons formula (1992), to the
population size estimated from the 2020 Popu-
lation and Housing Census (INEGI, 2021), with
a confidence level of 95 %. and a margin of
error of 6 %. Formula:
Where: n = sample size, N = Population size, p
= expected proportion (5 % = 0.05), q = 1-p, Z
= confidence value (1.96 at 95 % confidence), d
= tolerable error margin (6 % = 0.06).
Participatory workshops: Three partici-
patory workshops were held. One was carried
out with coffee growers from San Gabriel Mix-
tepec. In this, the presentation of the catalog of
potential species, for their visual identification,
was used. Two other workshops were applied to
young people at the high school level. In these,
the dynamic consisted of exposing the catalog
to one of the groups but not to the other; this
was done to evaluate the knowledge, interest,
and perspective that young people have. With
the information provided in the participatory
workshops, their knowledge, and perspective
on medium and large mammals associated with
coffee plantations were determined; also, the
uses that the participants mentioned for each
species they identified and recognized through
the illustrative catalog were listed.
RESULTS
Nine hundred and eighteen records of
medium and large mammals belonging to 26
species, grouped into seven orders, 14 families,
and 23 genera were obtained using the three
methods. Of the 26 species recorded, 10 were
detected from samplings with the camera traps
on the Finca Jamaica farm, 25 were from the
semi-structured interviews and 24 were men-
tioned in the participatory workshops (Table 1).
Sampling of medium and large mam-
mals: Two hundred and seventy-six effective
records (independent records) of medium and
large mammals were obtained, with 188 days
Table 1
List of species by taxa according to the proposal of Ramírez-Pulido et al., (2014), common name and number of medium and
large mammals recorded by sampling on the Jamaica farm (F), Workshops (T), and Interviews (E).
# Species TAXA Common name Registration method
ORDER DIDELPHIMORPHIA
FAMILY DIDELPHIDAE
SUBFAMILY DIDELPHINAE
1Didelphis marsupialis Linnaeus, 1758 Opossum/Opossum F T
2Didelphis virginiana Kerr, 1792 Tlacuache F T E
CINGULATE ORDER
FAMILY DASYPODIDAE
SUBFAMILY DASYPODINAE
3Dasypus novemcinctus Linnaeus, 1758 Armadillo F T E
PILOUS ORDER
FAMILY MYRMECOPHAGIDAE
4Tamandua mexicana (Saussure, 1860) Honeysucker/ Miereneters F T E
FAMILY CYCLOPEDIDAE
5Cyclopes didactylus (Linnaeus, 1758) Marto T E
ORDER LAGOMORPHA
FAMILY LEPORIDAE
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
of sampling effort from the camera traps. The
records belong to 10 species grouped into six
orders, six families, and nine genera. The spe-
cies accumulation curve obtained during the
188 field samplings was fitted to the Clench
model with parameters a = 0.260, b = 0.022,
and rho = 0.941. In this model, the “a” value
(0.260) indicates that, by increasing the sam-
pling effort, approximately 26 % of possible
species in the area are expected to be identified,
# Species TAXA Common name Registration method
SUBFAMILY LEPORINAE
6Lepus flavigularis J. A. Wagner, 1844 Hare/Mountain rabbit T E
7Sylvilagus cunicularius (Waterhouse, 1848) Rabbit T E
RODENTIAN ORDER
8sspp Gopher T E
FAMILY SCIURIDAE
SUBFAMILY SCIURINAE
9Sciurus aureogaster F. Cuvier, 1829 Squirrel F T E
10 Sciurus deppei Peters, 1863 Daughter/Squirrel T E
FAMILY ERETHIZONTIDAE
11 Coendou mexicanus Kerr, 1792 Porcupine T E
CARNIVORA ORDER
FAMILY FELIDAE
SUBFAMILY FELINAE
12 Leopardus pardalis (Linnaeus, 1758) Ocelot F T E
13 Leopardus wiedii (Schinz, 1821) Margay T E
14 Puma concolor (Linnaeus, 1771) Cougar F T E
15 Herpailurus yagouaroundi (Lacépède, 1809) Panther/Ounce T E
SUBFAMILY PANTHERINAE
16 Panthera onca (Linnaeus, 1758) Jaguar/Panther T
CANIDAE FAMILY
17 Canis latrans Say, 1823 Coyote T E
18 Urocyon cinereoargenteus (Schreber, 1775) Costoche/Slut T E
FAMILY MUSTELIDAE
SUBFAMILY MUSTELINAE
19 Eira barbara (Linnaeus, 1758) Water dog T E
20 Mustela frenata Lichtenstein, 1831 Xiquimilla/Jiquimilla/Weasel T E
FAMILY MEPHITIDAE
21 Conepatus leuconotus (Lichtenstein, 1832) Skunk T E
FAMILY PROCYONIDAE
SUBFAMILY PROCYONINAE
22 Bassariscus astutus (Lichtenstein, 1830) Cacomixtle E
23 Nasua narica (Linnaeus, 1766) Badger F T E
24 Procyon lotor (Linnaeus, 1758) Raccoon T E
ARTIODACTYLA ORDER
FAMILY TAYASSUIDAE
25 Dicotyles tajacu (Linnaeus, 1758) Wild boar/Javelin F T E
FAMILY CERVIDAE
SUBFAMILY ODOCOILEINAE
26 Odocoileus virginianus (Zimmermann, 1780) Deer F T E
Total species by record type 10 24 25
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
suggesting that there are still many species to
be discovered, but sampling is approaching its
limit. The “b” value (0.022) indicates that, even
if sampling continues, the probability of find-
ing new species is low. The rho value (0.941)
indicates good model fitting. This means that
the accumulating species curve is a good rep-
resentation of mammal diversity in the study
area. Such a high value supports the idea that
the results on species diversity are reliable, and
this can be concluded since the accumulation
curve did not reach an asymptote. The model
predicted 12 species (Fig. 3). The number of
species recorded is lower than that obtained
with the non-parametric estimators (Chao 2 =
11.48; Jacknife 1 = 12.96). In this case, a Chao
value of 2 suggests an average of 11 species of
medium and large mammals associated with
coffee plantations. A Jacknife value of 1 sug-
gests that 3 species are estimated. Although a
single record may not adequately reflect species
diversity, the Chao 2 and Jackknife 1 estimators
are designed to compensate precisely for this
limitation. These estimators use information
from existing records, including singletons,
to make projections about the total species
richness in the area; therefore, although the
degree of sample coverage is important and can
influence the interpretation of the results, the
non-parametric estimators already consider the
possibility that there are unrecorded species.
Thus, the estimation of 11 to 13 species remains
valid and relevant, regardless of the number
of individual records. The alpha diversity of
medium and large mammal species was greater
in the dry season (H= 1.6851, J= 0.734) than
in the wet season (H= 1.3407, J= 0.961), but
the differences were not significant (t = 1.8482,
d.f. = 81.426, p = 0.068). The species turnover
between the dry and wet seasons of the year
Fig. 3. Accumulation curve of medium and large mammal species, according to the Mao Tao estimator and its confidence
intervals, and the Clench model at Jamaica Farm, San Gabriel Mixtepec.
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
was low (βw = 0.333), while the similarity was
intermediate (IJ = 0.5; IS = 0.666) (Table 2).
Cultural value: A total of 68 semi-struc-
tured interviews were carried out with the
owners and workers of Finca Jamaica (n = 7)
and the residents of San Gabriel Mixtepec (n
= 61), from which 639 records of 24 species
were obtained, grouped into seven orders, in
14 families and 21 genera. Twelve uses given
to medium and large mammals were recorded:
food, pet, medicinal, ornamental, artisanal,
hunting, myths and legends, ritual, beneficial,
harmful, sale, and perfumery (Table 3). The
deer is the species with the highest Cultural
Importance Index (IIC = 0.92), followed by the
armadillo (IIC = 0.61), the skunk (IIC = 0.60),
and the opossum (IIC = 0.52). These indices
reflect the relevance that those species have in
the local community, both in terms of use and
cultural significance. Their high score in the
IIC indicates that they are species valued and
recognized for their contribution to the local
culture and economy, as well as for their impor-
tance in the ecosystems where they live. This is
confirmed by the high number of uses report-
ed. The species with the highest number of uses
are the opossum and the deer with 11 uses out
of 12 reported, followed by the armadillo, with
10 uses, the rabbit with nine, and the squirrel,
the skunk, and the wild boar, with eight uses.
Participatory workshops: Fifty-eight cof-
fee growers and two groups of 22 students
each, of high school level, participated in the
participatory workshops. One hundred and
seventy-eight mentions of uses were obtained
for 24 species grouped into seven orders, 16
families, and 22 genera. The use of food was
the most mentioned in the three workshops.
Eight uses were mentioned: food, pet, medici-
nal, ornamental, artisanal, myths and legends,
beneficial and harmful, with food use being
the most mentioned, followed by harmful
and ornamental.
DISCUSSION
Ten medium and large mammal species
were recorded from the coffee farm studied.
This finding is significant. It suggests that
coffee plantations may provide habitats for a
large number of species. However, the species
accumulation curve did not reach an asymp-
tote. This indicates that the sampling effort
undertaken in this work might have not been
sufficient to capture all diversity present in the
ecosystem. This phenomenon is common in
biodiversity studies, where habitat complex-
ity and species behavior can make it difficult
to obtain a complete inventory. The medium
and large mammals recorded by this method
Table 2
Species of medium and large mammals for the wet and dry season of the year, at Finca Jamaica, San Gabriel Mixtepec.
Species Common name Epoch Total records
Wet Dry
Dasypus novemcinctus Armadillo 8 30 38
Dicotyles tajacu Wild boar/boar 2 8 10
Didelphis marsupialis Opossum 1 1
Didelphis virginiana Tlacuache 10 12 22
Leopardus pardalis Ocelot 1 1 2
Nasua narica Badger 4 4
Odocoileus virginianus Deer 2 1 3
Puma concolor Cougar 1 1
Sciurus aureogaster Squirrel 10 10
Tamandua mexicana Honeysucker/Aardvark 1 1
Total records 35 57 92
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
were more numerous than what was reported
by Pinacho-López (2014), who found seven
species of medium and large mammals of the
30 reported in his list in San Gabriel Mixtepec.
Considering the information obtained from
the people of the Finca Jamaica farm and
the non-parametric estimator Jacknife 1, it
can be inferred that more than three species
were missing to be recorded. The residents
indicated having observed the ounce or pan-
ther (Herpailurus yagouaroundi), the porcupine
(Coendou mexicanus), the costoche or gray
fox (Urocyon cinereoargenteus), and the skunk
(Conepatus leuconotus); in addition, the pres-
ence of these species has been reported for
the coast of Oaxaca (Briones-Salas et al., 2015;
Buenrostro-Silva et al., 2012; Juárez-Velasco,
2016; Lira-Torres et al., 2005). The ounce or
Table 3
Species of medium and large mammals recorded from interviews in San Gabriel Mixtepec.
Species Common name Total mentions
of the species Applications Types of uses IIC
Didelphis virginiana Opposum 45 11 Al, Ma, Me, Or, Ar, Ca, ML, Ri,
Be, Da, Ve
0.52
Dasypus novemcinctus Armadillo 101 10 Al, Ma, Me, Or, Ar, Ca, ML, Be,
Da, Ve
0.61
Tamandua mexicana Honeysucker/
Miereneters
13 5 Al, Ma, Or, ML, Da 0.11
Cyclopes didactylus Marto 3 3 Al, Or, ML 0.03
Lepus flavigularis Hare/Mountain rabbit 9 3 Al, Ma, Or 0.04
Sylvilagus cunicularius Rabbit 57 9 Al, Ma, Or, Ar, Ca, ML, Be,
Da, Ve
0.39
sspp Gopher 4 1 Da 0.02
Sciurus aureogaster Squirrel 82 8 Al, Ma, Me, Or, Ar, Ca, Be, Da 0.37
Sciurus deppei Daughter/Squirrel 14 4 Al, Ma, Or, Da 0.06
Coendou mexicanus Porcupine 5 4 Al, Ma, Me, Da 0.04
Leopardus pardalis Ocelot 6 5 Ma,Or, Ca, ML, Da 0.07
Leopardus wiedii Margay 16 6 Ma, Or, Ar, Ca, ML, Da 0.16
Puma concolor Cougar 4 4 Al, Ma, Or, ML 0.04
Herpailurus
yagouaroundi
Ounce 3 2 Or, Be 0.03
Canis latrans Coyote 1 1 Or 0.01
Urocyon
cinereoargenteus
Costoche/Slut 15 4 Al, Ma, Ar, Da 0.09
Eira barbara Water dog 2 2 Al, Or 0.01
Mustela frenata Xiquimilla/Jiquimilla/
Weas el
4 2 Al, Da 0.02
Conepatus leuconotus Skunk 31 8 Al, Ma, Me, Or, ML, Be, Da, Pe 0.60
Bassariscus astutus Cacomixtle 2 2 Al, Or 0.01
Nasua narica Badger 51 6 Al, Ma, Or, Ri, Be, Da 0.26
Procyon lotor Raccoon 3 3 Al, Ma, Ar 0.02
Dicotyles tajacu Wild boar/Javelin 50 8 Al, Ma, Or, Ar, Ca, Be, Da, Ve 0.22
Odocoileus virginianus Deer 118 11 Al, Ma, Me, Or, Ar, Ca, ML, Ri,
Be, Da, Ve
0.92
Al = Food, Ma = Pet, Me = Medicinal, Or = Ornamental, Ar = Artisanal, Ca = Hunting, ML = Myths and Legends, Ri = Ritual,
Be = Beneficial, Da = Harmful, Ve = Sale, Pe = Perfumery. IIC = Cultural Importance Index.
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
panther is a species associated with high-eleva-
tion areas such as humid forests or habitats near
water bodies. Unlike other felines, this species
has mainly diurnal habits, although it can also
be active at night, so it is more likely to be seen
during the day than other more nocturnal
felines (cathemeral habits); coupled with the
fact that they are good swimmers and climbers,
and it has been observed that they store food in
trees. Their cathemeral habits allow them to be
more efficient as predators, taking more advan-
tage of their environment, increasing their
chances of survival, and allowing them to avoid
humans and other dangers. They can adjust
their behavior according to hunting pressure or
human activity in their habitat (Ávila-Nájera et
al., 2016; Reid, 2009). The porcupine is an arbo-
real species that spends most of its time in trees.
It is mainly nocturnal and solitary (Marineros-
Sánchez et al., 2018). The costoche or gray fox
is also a nocturnal and solitary species; they can
climb trees and swim (Wong-Smer et al., 2022).
Lastly, the skunk is primarily nocturnal. During
the winter, some skunks can enter a state of tor-
por, although it does not account for complete
hibernation. They build underground burrows
where they rest and take refuge and usually
have an affinity with water bodies (Martínez-
Ku et al., 2008). They sometimes share burrows
dug by other species such as foxes and rac-
coons (Farías-González & Hernández-Mendo-
za, 2021). The difficulty in recording skunks
in tropical areas can be attributed to several
interrelated factors, including their nocturnal
and elusive behavior, which limits opportuni-
ties for direct observation, making their detec-
tion difficult, especially in dense habitats where
their natural camouflage allows them to avoid
human contact, coupled with the complexity
and heterogeneity of tropical ecosystems, which
represent an additional challenge (Astiazarán-
Azacarraga et al, 2020).
According to the species recorded by Buen-
rostro-Silva et al. (2017) in their work carried
out in a Private Reserve of San Gabriel Mixte-
pec, the species that remained to be recorded
are probably the margay (Leopardus wiedii)
and the raccoon (Procyon lotor). It is feasible
that the lack of findings of these species of
medium and large mammals could be because
the ocelot is a difficult species to record due to
its nocturnal-crepuscular and arboreal habits,
despite its wide distribution (Morales-Delgado
et al., 2021; Oliveira-Calleia et al., 2009). The
diversity and distribution of mammal species
can vary depending on the habitat, the avail-
ability of food resources, and the interaction
with other animals and humans. Medium and
large mammals tend to occupy more specific
ecological niches and require extensive home
ranges (Ávila-Nájera et al., 2016), which means
that they may not pass near the camera traps
as frequently as necessary to be recorded; nev-
ertheless, when designing and analyzing the
sampling data, these variables were considered
to obtain more precise results.
The diversity of medium and large mam-
mals was numerically greater in the dry season
than in the wet season, although the differences
were not statistically significant. These con-
siderations suggest that variations in diversity
are not simply the result of chance; they rather
reflect ecological responses and behavioral pat-
terns of species that rely on environmental
conditions. Our results are similar to those of
Juárez-Velasco (2016) for medium and large
mammals associated with low deciduous for-
ests in the same region. These species may
require greater amount of resources, such as
larger prey or larger habitat areas, which may
limit their distribution and abundance as com-
pared to smaller species (Cruz-Jácome et al.,
2015). The similarities in diversity between
both works can also be explained by the occur-
rence of the permanent stream throughout
the year. Water availability is very important
because medium and large mammals can meet
their liquid requirements during the dry sea-
son (Juárez Velasco, 2016; Lira-Torres, 2006),
even though seasonality is well-marked in
this agroecosystem.
Although the turnover of medium and
large mammal species between the dry and
wet seasons was low, species similarity was
intermediate, suggesting a significant number
of species was found in both seasons, although
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
some species are unique to each season. This
may indicate that certain species are resilient
and can adapt to seasonal variations, while
others may be more specific to a habitat type
or environmental conditions. The presence of
deer and badger could have been due to their
generalist habits; furthermore, the deer is one
of the most adaptable and tolerant species to
different anthropogenic activities, persisting in
agricultural areas and even near urban centers,
as long as there are pockets of habitat that pro-
vide shelter, food, water and cover in quantity
and sufficient quality (Lira-Torres, 2006; Rey-
na-Hurtado & Tanner, 2007). The presence of
tlacuache in both seasons is possibly related to
its omnivorous habits because it consumes sev-
eral food groups (Mesa-Zavala et al., 2012; Pina
et al., 2004). The case of armadillo is possible
since it is considered a common species that
has been reported in disturbed environments
and its movements are short, which allows it
to be recorded (Mendoza-Durán, 2005). The
badger is omnivorous and feeds on a variety
of foods including fruits, insects, small verte-
brates, and carrion (Altamirano-Álvarez et al.,
2013); however, its populations have probably
decreased or have been uprooted from certain
areas due mainly to the loss and fragmenta-
tion of its habitat, illegal hunting, and preda-
tor control campaigns (Espinoza-García et al.,
2014). In the case of the ocelot, it is a widely
distributed carnivore with nocturnal habits,
although it presents some diurnal activity. They
are opportunists related to high consumption
of mammals of less than one kilogram, so
their presence in the coffee agroecosystem can
be ecologically indicative since it is a species
considered key because it not only regulates
the populations of its prey but also determines
the dynamics of the community of Neotropical
mesopredators (Castagnino-Vera, 2017; Nive-
lo-Villavicencio et al., 2019). However, some
medium and large mammals may be more
vulnerable to poaching, habitat loss, and other
human factors, which may affect their presence
and abundance in certain areas.
Mammals are relevant in coffee crops (Bar-
rera-Méndez & Vázquez-López, 2020). They
play various roles in the coffee plantation eco-
system and are valued for their contribution
to biodiversity and natural beauty (Escrib-
ano-Ávila et al., 2015; Herrera-Flores et al.,
2019). The uses given to the medium and large
mammals obtained in this work are similar to
those reported by García et al. (2018), Zavala-
Sánchez et al. (2018), and Herrera-Flores et
al. (2019), with food, pet, and sale being those
most reported by community residents. Inter-
estingly, the deer, armadillo, skunk, ocelot,
rabbit, and squirrel are the species of greatest
cultural importance. These have been an inte-
gral part of Mexican culture for centuries and
play various roles in different aspects of society
(Estrada-Portillo et al., 2018; García-Grajales
et al., 2022). Likewise, the cultural impact of
medium and large mammals associated with
coffee plantations in Mexico is significant. For
example, in some works (Herrera-Flores et al.,
2019; Medina-Gutiérrez & Ramírez-Silva, 2019;
Ojeda-Lavariega et al., 2019) it has been indicat-
ed that the deer is considered a sacred animal in
many indigenous cultures of Mexico. Its meat is
used in traditional festivities and ceremonies,
and its horns and skin are used to make handi-
crafts. Similarly, the rabbit is appreciated for its
meat and is used in Mexican cuisine. In addi-
tion, its skin is used to make handicrafts, such
as hats and bags (Buenrostro-Silva et al., 2017).
The armadillo is used in traditional Mexican
medicine. Parts of its body are believed to have
healing properties and are used to treat various
diseases (Zavala-Sánchez et al., 2018).
The results obtained from the participatory
workshops indicate that the use of mammals
is of great importance for the residents of the
various indigenous or peasant communities
(Ojeda-Lavariega et al., 2019), not only because
they have realized that the populations of these
species are decreasing. With the passage of time
and the exchange of knowledge by the residents
with the researchers and vice versa, both parties
have been sensitized to become aware of the
importance of mammals and the role they play
within ecosystems and agroecosystems, as well
as the importance they have for residents and
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
the relevance of their conservation (Estrada-
Portillo et al., 2018).
The mammals associated with coffee plan-
tations represent an important resource for
the community in their daily life, as a self-
sufficiency activity that allows them to meet
two basic needs: food and health. Knowledge
of relationships allows us to understand the
human-nature interaction, uses, and pressure
of use, as well as the importance of the rela-
tionship between mammals and coffee planta-
tions under shade. With this, researchers and
decision-makers can facilitate the identification
of the species that require greater protection
(Zavala-Sánchez et al., 2018).
From this view, the mammals associated
with coffee agroecosystems are of great ecologi-
cal importance due to the role they play in the
environment as seed dispersers, which con-
tributes to the conservation of biodiversity and
the maintenance of crop productivity. In addi-
tion, many of these mammals are important
for the diet and local economy of San Gabriel
Mixtepec, which highlights their ecological,
cultural, and socioeconomic value. Something
important to highlight is the little interest that
is observed in the new generations that live in
the most anthropocentric areas, concerning the
interest shown by the young people who live in
the rancherias or on the outskirts of the munic-
ipality which, in turn, they and their families
are related to some productive activity such as
coffee, corn, etc., because they show knowledge
not only of the mammals of the community but
of the entire environment that surrounds them.
Ethical statement: The authors declare
that they all agree with this publication and
made significant contributions; that there is no
conflict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
ACKNOWLEDGMENTS
We thank the inhabitants of the munici-
pality of San Gabriel Mixtepec, Oaxaca. To
Mr. Guillermo Rojas Saldaña, Francisco Asun-
ción Rojas Ramírez, and Mr. Arnulfo González
Mendoza for their assistance in the field (Finca
Jamaica farm).
To the Communal Property Committee of
San Gabriel Mixtepec for the facilities provided
to carry out this work.
To the College of Postgraduates and the
National Council of Humanities, Science, and
Technology (CONAHCyT) for the scholarship
awarded to Karina Madrid Espinosa.
REFERENCES
Altamirano-Álvarez, T. A., Soriano-Sarabia, M., & de la
Luz-Maldonado-Rosales, M. (2013). Alimentación
del coatí Nasua narica, en la comunidad de las Áni-
mas, Municipio de Chapa de Mota, Estado de México,
México. Revista de Zoología, 24, 16–26.
Altamirano-Álvarez, T. A., Soriano-Sarabia, M., García-
Bernal, A. J., Miranda-González, N. P., & Jimé-
nez-Gutiérrez, B. E. (2009). Mamíferos medianos
y grandes de la comunidad El Paredón, Miacatlán,
Morelos, México. Revista de Zoología, 20, 17–29.
Álvarez-Cárdenas, S., Gallina-Tessaro, P., Díaz-Castro, S.,
Guerrero-Cárdenas, I., Castellanos-Vera, A., & Mesa-
Zavala, E. (2009). Evaluación de elementos estruc-
turales del hábitat del borrego cimarrón en la Sierra
del Mechudo, Baja California Sur, México. Tropical
Conservation Science, 2(2), 189–203.
Anta, S. (2006). El café de sombra: Un ejemplo de pago de
servicios ambientales para proteger la biodiversidad.
Gaceta Ecológica, 80, 19–31.
Astiazarán-Azcarraga, A., Gallina-Tessaro, S., & Delfin-
Alfonso, C. A. (2020). Activity patterns of arbo-
real mammals in a tropical rain forest in México.
Therya, 11(2), 225–231. https://doi.org/10.12933/
therya-20-779
Avendaño-Leadem, D. F., Cedeño-Montoya, B. C., & Arro-
yo-Zeledón, M. S. (2020). Integrando el concepto de
servicios ecosistémicos en el ordenamiento territorial.
Revista Geográfica de América Central, 65(2), 63–90.
https://dx.doi.org/10.15359/rgac.65-2.3
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
Ávila-Nájera, D. M., Chávez, C., Lazcano-Barrero, M. A.,
Mendoza, G. D., & Perez-Elizalde, S. (2016). Traslape
en patrones de actividad entre grandes felinos y sus
principales presas en el norte de Quintana Roo, Méxi-
co. Therya, 7(3), 439–448. https://doi.org/10.12933/
therya-16-379
Ávila-Nájera, D. M., Rosas-Rosas, O. C., Tarango-Arám-
bula, L. A., Martínez-Montoya, J. F., & Santoyo-Brito,
E. (2011). Conocimiento, uso y valor cultural de seis
presas potenciales del Jaguar (Panthera onca) en San
Nicolás de los Montes, San Luis Potosí. Revista Mexi-
cana de Biodiversidad, 82, 1020–1028.
Barrera-Méndez, W., & Vázquez-López, H. (2020). Fauna
silvestre asociada a un sistema cafetalero en Córdoba,
Veracruz, México. BIOCYT, 13, 941–956. https://doi.
org/10.22201/fesi.20072082.2020.13.75829
Bell, D. A., Kovach, R. P., Robinson, Z. L., Whiteley, A. R. &
Reed, T. E. (2021). The ecological causes and conse-
quences of hard and soft selection. Ecology Letters, 24,
1505–1521. https://doi.org/10.1111/ele.13754
Blanco, Y., & Leyva, Á. (2007). Las Arvenses en el agroeco-
sistema y sus beneficios agroecológicos como hos-
pederas de enemigos naturales. Cultivos Tropicales,
28(2), 21–28.
Bolaños, C., & Naranjo, J. E. (2001). Abundancia, densidad
y distribución de las poblaciones de ungulados en
la cuenca del río Lacatún, Chiapas, México. Revista
Mexicana de Mastozoología, 5(1), 45–57.
Briones-Salas, M. (2012). Mamíferos de Oaxaca. Therya,
3(3), 273–275.
Briones-Salas, M., Cortés-Marcial, M., & Lavariega, M. C.
(2015). Diversidad y distribución de los mamíferos
terrestres del estado de Oaxaca, México. Revista Mexi-
cana de Biodiversidad, 86(3), 685–710.
Briones-Salas, M., Martín-Regalado, N., & Lavariega, M. C.
(2016). Mammals in tropical dry forest on the central
coast of Oaxaca, Mexico. Check List, 12(2), 1862.
Buenrostro-Silva, A., Antonio-Gutiérrez, M., & García-
Grajales, J. (2012). Mamíferos del Parque Nacional
Lagunas de Chacahua y La Tuza de Monroy, Oaxaca,
México. Acta Zoológica Mexicana, 28, 56–72.
Buenrostro-Silva, A., Pinacho-López, B., & García-Grajales,
J. (2017). Diversidad de mamíferos en una reserva pri-
vada de la Sierra Sur de Oaxaca, México. Ecosistemas y
Recursos Agropecuarios, 4(10), 111–122.
Buenrostro-Silva, A., Sigüenza Pérez, D., & García-Grajales,
J. (2015). Mamíferos carnívoros del Parque Nacional
Lagunas de Chacahua, Oaxaca, México Riqueza,
abundancia y patrones de actividad. Revista Mexicana
de Mastozoología, 5(2), 39–54.
Calderón-Patrón, J. (2016). El estudio de los mamíferos en
cafetales de México: Tendencias y resultados. En A.
Ramírez-Bautista, & R. Pineda-López (Eds.), Fauna
nativa en ambientes antropizados (pp. 179–197).
CONACYT-UAQ.
Castagnino-Vera, R. (2017). Estudio ecológico del ocelote
(Leopardus pardalis) utilizando el método de cámaras
trampa en el distrito de Las Piedras, Madre de Dios,
Perú. Espacio y Desarrollo, 29, 153–178. https://doi.
org/10.18800/espacioydesarrollo.201701.007
Ceballos, G., Arroyo-Cabrales, J., Medellín, R. A., Medra-
no González, L., & Oliva, G. (2005). Diversidad y
conservación de los mamíferos de México. En G.
Ceballos & G. Oliva (Eds.), Los mamíferos silvestres
de México (pp. 21–49). Comisión Nacional para el
Conocimiento y Uso de la Biodiversidad, y Fondo de
Cultura Económica.
Cervantes, F., & Yépez, L. (1995). Species richness of mam-
mals from the vicinity of Salina Cruz, Coastal Oaxaca,
Mexico. Anales del Instituto de Biología, Universidad
Nacional Autónoma de México (Serie Zoología), 66,
113–122.
Collwell, R., Mao, C., & Chang, J. (2004). Interpolating,
extrapolating, and comparing incidence-based spe-
cies accumulatioon curves. Ecology, 85, 2717–2727.
Coltri, P. P., Lima, P. R., Koga-Vicente, A., & Gonçalves, R.
R. (2019). Coffee land cover changes analyses: a study
case in São Paulo State. Coffee Science, 14(2), 131–137.
Corona-Mendoza, W., & Escalante, T. (2021). Aspectos
ambientales y culturales de los nodos panbiogeográfi-
cos prioritarios para mamíferos terrestres del centro-
sur de México. Acta Zoológica Mexicana, 37, e3712354.
https://doi.org/10.21829/azm.2021.3712354
Cortés-Marcial, M., & Briones-Salas, M. (2014). Diversi-
dad, abundancia relativa y patrones de actividad de
mamíferos medianos y grandes en una selva seca del
Istmo de Tehuantepec, Oaxaca, México. Revista de
Biología Tropical, 62(4), 1433–1448.
Cruz, F. (2013). Finanzas de Oaxaca. México: Plan munici-
pal de desarrollo sustentable 2011-2013 de San Gabriel
Mixtepec, Oaxaca. Secretaría de Finanzas del Estado
de Oaxaca. https://finanzasoaxaca.gob.mx/pdf/inver-
sion_publica/pmds/11_13/153.pdf
Cruz-Espinoza, A., González-Pérez, G. E., & Ronel-Váz-
quez, P. (2012). Nota de la variación en la riqueza
específica de mamíferos entre áreas de conservación
y de aprovechamiento forestal en la Sierra Madre de
Oaxaca. Therya, 3(3), 327–332.
Cruz-Jácome, O., López-Tello, E., Delfín-Alfonso, C. A., &
Mandujano, S. (2015). Riqueza y abundancia relativa
de mamíferos medianos y grandes en una localidad en
la Reserva de la Biosfera Tehuacán-Cuicatlán, Oaxaca,
México. Therya, 6(2), 435–448.
Díaz Olivera, B. (2013). Flora medicinal del municipio de
San Gabriel Mixtepec, Juquila, Oaxaca [Degree´s
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
thesis, Universidad del Mar]. UMAR Repository.
http://bibliotecape.umar.mx:8080/TESIS/files/origina
l/69f26d796097fd2b755f5b44573bbce4.pdf
Escobar-Ibáñez, J. F., Hernández-Cumplido, J., Rodríguez,
W. D., Saldaña-Vázquez, R. A., & Zamora-Gutierrez,
V. (2023). Mexican fauna in agroecosystems: Cha-
llenges, opportunities and future directions. In R.
W. Jones, C. P. Ornelas-García, R. Pineda-López,
& F. Álvarez (Eds.), Mexican fauna in the Anthro-
pocene (pp. 333–356). Springer, Cham. https://doi.
org/10.1007/978-3-031-17277-9_16
Escribano-Ávila, G., Pías, B., Escudero, A., & Virgós, E.
(2015). Importancia ecológica de los mamíferos fru-
gívoros en la dinámica de regeneración de campos
abandonados en ambientes mediterráneos. Ecosiste-
mas, 24(3), 35–42.
Espinoza-García, C. R., Martínez-Calderas, J. M., Palacio-
Núñez, J., & Hernández-SaintMartín, A. D. (2014).
Distribución potencial del coatí (Nasua narica) en el
noreste de México: Implicaciones para su conserva-
ción. Therya, 5(1), 331–345. https://doi.org/10.12933/
therya-14-195
Estrada-Portillo, D., Rosas-Rosas, O., Parra-Inzunza, F.,
Guerrero-Rodríguez, J., & Tarango-Arambula, L.
(2018). Valor de uso, importancia cultural y per-
cepciones sobre mamíferos silvestres medianos
y grandes en la Mixteca poblana. Acta Zoológica
Mexicana (nueva serie), 34(1), e3412131. https://doi.
org/10.21829/azm.2018.3412131
Farías-González, V., & Hernández-Mendoza, K. H. (2021).
Coexistence of three mephitids in Tehuacán-Cui-
catlán Biosphere Reserve, México. Therya, 12(3),
527–536.
Figueroa, D., Galeana, M., & Lagunares, D. (2020). Plata-
forma Pacífico Sur. México: Alianza estratégica para el
desarrollo sustentable de la Región Pacífico Sur. Labo-
ratorio Nacional de Geointeligencia. http://adesur.
centrogeo.org.mx/
García, A., Valle, R., & Monroy, R. (2018). Aprovechamien-
to tradicional de mamíferos silvestres en Pitzotlán,
Morelos, México. Revista Colombiana de Ciencia
Animal, 10(2), 111–123.
García-Burgos, J., Gallina, S., & González-Romero, A.
(2014). Relación entre la riqueza de mamíferos
medianos en cafetales y la heterogeneidad espacial
en el centro de Veracruz. Acta Zoológica Mexicana
(nueva serie), 30(2), 337–356.
García-Domínguez, J. U., Villegas-Aparicio, Y., Duran-
Medina, E., Carrillo-Rodríguez, J. C., Sangerman-
Jarquín, D. M., & Castañeda-Hidalgo, E. (2021).
Descripción y análisis de productores de café de la
región Mixe, Oaxaca. Revista Mexicana de Ciencias
Agrícolas, 12(7), 1235–1247. https://doi.org/10.29312/
remexca.v12i7.2781
García-Luis, M., Cortés-Marcial, M., Martínez-Cortes, M.,
& Briones-Salas, M. (2013). Los murciélagos del
jardín Botánico Regional Cassiano Conzatti, Oaxaca.
In M. Briones-Salas, G. Manzanero-Medina, & G.
González Pérez (Eds.), Estudios de la zona áridas de
Oaxaca (pp. 118–129). Instituto Politécnico Nacional.
García-Grajales, J., Luis-Curiel, C. A., & Buenrostro-Silva,
A. (2022). Wildlife use and harmful wild species in
rural communities around the Communal Natural
Protected Area El Gavilán, Oaxaca, Mexico. Acta
Zoológica Mexicana, 38(1), e38125281–20. https://
doi.org/10.21829/azm.2022.3812528
Girón- Ilescas, R. (2023). Archivo General del Estado
de Oaxaca. Oaxaca, México: Oaxaca y su café, a
través de la historia. Archivo General del Estado
de Oaxaca. https://www.oaxaca.gob.mx/ageo/
oaxaca-y-su-cafe-a-traves-de-la-historia/
Guido-Lemus, D. (2015). Riqueza, abundancia y patrones
de actividad de los mamíferos medianos y grandes,
en diferentes condiciones de manejo en la región del
Bajo Balsas, Michoacán [Master´s thesis, Universidad
Michoacana de San Nicolás de Hidalgo]. UMSNH
Repository. http://bibliotecavirtual.dgb.umich.
mx:8083/xmlui/handle/DGB_UMICH/1731
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST:
Paleontological Statistics Software Package for Edu-
cation and Data Analysis (Version 3.06.) [Software].
Palaeontologia Electronica.
Hernández-Betancourt, S. F., Cimé-Pool, J., Sosa-Escalan-
te, J., Pech-Canché, J., & Chablé-Santos, J. (2010).
Mamíferos terrestres. En R. Durán-García, & M. E.
Méndez-González (Eds.), Biodiversidad y desarrollo
humano en Yucatán (pp. 268–271). Centro de Investi-
gación Científica de Yucatán.
Hernández-Hernández, C. (2002). Mamíferos medianos
del Parque Nacional Huatulco, Oaxaca [Degree´s
thesis, Universidad Nacional Autónoma de Méxi-
co]. UNAM Repository. https://repositorio.unam.mx/
contenidos/204472
Herrera-Flores, B., Santos-Fita, D., Naranjo, E., & Hernán-
dez-Betancourt, S. (2019). Importancia cultural de la
fauna silvestre en comunidades rurales del Norte de
Yucatán, México. Península, 14(2), 27–55.
Instituto Nacional de Estadística y Geografía. (2021). Uso
de Suelo y vegetación. Escala 1:250 000, Serie VII. Con-
junto Nacional.’, escala: 1:250 000. edición: 1 [Map].
Comisión Nacional para el Conocimiento y Uso de la
Biodiversidad http://geoportal.conabio.gob.mx/meta-
datos/doc/html/usv250s7gw.html
Juárez-Velasco, I. N. (2016). Diversidad de mamíferos
medianos y grandes y evaluación de su hábitat para
una propuesta de manejo en el Jardín Botánico “Che-
pilme de la Universidad del Mar, región Costa, Oaxa-
ca [Master´s thesis, Universidad del Mar]. UMAR
17
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
Repository. http://bibliotecape.umar.mx:8080/TESIS/
files/original/eee148126d0d8afaadef3c665372dc21.
pdf
Landa-Ochoa, J. L., Gallardo-López, F., Escamilla-Prado,
E., Cerdán-Cabrera, C. R., & Ortiz-Ceballos, G. C.
(2024). Resiliencia socioecológica: Concepto clave
para el estudio de la sustentabilidad en agroeco-
sistemas. Tropical and Subtropical Agroecosystems,
27(1),026. http://doi.org/10.56369/tsaes.4758
Lavariega, M. C., Briones-Salas, M., & Gómez-Ugalde, R.
M. (2012). Mamíferos medianos y grandes de la Sierra
de Villa Alta, Oaxaca, México. Mastozoología Neotro-
pical, 19(2), 225–241.
Lessler, J., Azman, A. S., McKay, H. S., & Moore, S. M.
(2017). What is a hotspot anyway? The American
Journal of Tropical Medicine and Hygiene, 96(6),
1270–1273. https://doi.org/10.4269/ajtmh.16-0427
Lira-Torres, I. (2006). Abundancia, densidad, preferencia
de hábitat y uso local de los vertebrados en la Tuza de
Monroy, Santiago Jamiltepec, Oaxaca. Revista Mexi-
cana de Mastozoología, 10, 41–66.
Lira-Torres, I., & Briones-Salas, M. (2012). Abundancia
relativa y patrones de actividad de los mamíferos
de los Chimalapas, Oaxaca, México. Acta Zoológica
Mexicana (nueva serie), 20(3), 566–585.
Lira-Torres, I., Camacho-Escobar, M., & Hernández-Santia-
go, C. (2008). Mamíferos de la Bahía y Micro-Cuenca
del Río Cacaluta, Municipio de Santa María Huatulco,
Oaxaca. In J. M. Domínguez-Licona (Ed.), Diagnósti-
co de los recursos naturales de la Bahía y Microcuenca
del Río Cacaluta, Municipio de Santa María Huatulco,
Oaxaca (pp. 267–280). Universidad del Mar, Secre-
taria de Medio Ambiente y Recursos Naturales, y
Consejo Nacional de Ciencia y Tecnología.
Lira-Torres, I., Mora-Ambriz, L., Camacho-Escobar, M.
A., & Galindo-Aguilar, R. E. (2005). Mastofauna del
Cerro de la Tuza, Oaxaca. Revista Mexicana de Mas-
tozoología, 9, 6–20.
López, J. A., Lorenzo, C., Barragán, F., & Bolaños, J. (2009).
Mamíferos terrestres de la zona lagunar del istmo de
Tehuantepec, Oaxaca, México. Revista Mexicana de
Biodiversidad, 80, 49–505.
López-Barrera, F., & Landgrave, R. (2008). Variación de
la biodiversidad a nivel paisaje. En R. Manson, V.
Hernández-Ortiz, S. Gallina, & K. Mehltreter (Eds.),
Agroecosistemas cafetaleros de Veracruz: Biodiversi-
dad, manejo y conservación (pp. 259–269). Instituto
de Ecología A.C. (INECOL) & Instituto Nacional de
Ecología (INE-SEMARNAT).
Machado, H., & Campos, M. (2008). Reflexiones acerca de
los ecosistemas agrícolas y la necesidad de su conser-
vación. Pastos y Forrajes, 31(4), 307.
Marineros-Sánchez, L., Portillo-Reyes, H. O., Vega, H., &
Hernández, J. (2018). Registros y distribución poten-
cial del puercoespín (Coendou mexicanus) (Rodentia:
Erethizontidae) en Honduras. Revista Mexicana de
Mastozoología (nueva época), 1(2), 96–102.
Martínez-Ku, D. H., Escalona-Segura, G., & Vargas-Contre-
ras, J. A. (2008). Importancia de las aguadas para los
mamíferos de talla mediana y grande en Calakmul,
Campeche, México. In C. Lorenzo, E. Espinoza, & J.
Ortega (Eds.), Avances en el estudio de los mamíferos
de México (pp. 449–468). Asociación Mexicana de
Mastozoología.
Medina-Gutiérrez, F., & Ramírez-Silva, J. (2019). Uso de la
mastofauna silvestre en la comunidad cafetalera de
cumbres de Huicicila, Compostela, Nayarit, México.
Revista Mexicana de Mastozoología (nueva época),
9(2), 29–42.
Mendoza-Durán, A. (2005). Dasypus novemcinctus Lin-
naeus, 1758. Armadillo. En G. Ceballos, & G. Oliva
(Eds.), Los mamíferos silvestres de México (pp. 117–
118). Comisión Nacional para el Conocimiento y Uso
de la Biodiversidad & Fondo de Cultura Económica.
Mesa-Zavala, E., Álvarez-Cárdenas, S., Gallina-Tessaro, P.,
Troyo-Diéguez, E., & Guerrero-Cárdenas, I. (2012).
Vertebrados terrestres registrados mediante fototram-
peo en arroyos estacionales y cañadas con agua
superficial en un hábitat semiárido de Baja California
Sur, México. Revista Mexicana de Biodiversidad, 83,
235–245.
Mezhua-Velázquez, M. J., Serna-Lagunes, R., Torres-Can-
tú, G. B., Pérez-Gracida, L. D., Salazar-Ortiz, J., &
Mora-Collado, N. (2022). Diversidad de mamíferos
medianos y grandes del Ejido Zomajapa, Zongolica,
Veracruz, México: Implicaciones de manejo. Ecosiste-
mas y Recursos Agropecuarios, 9(2), e3316. https://doi.
org/10.19136/era.a9n2.3316
Morales-Delgado, L. M., Farías-González, V., & Téllez-Val-
dés, O. (2021). Distribución potencial de Leopardus
wiedii en las áreas naturales protegidas de México.
Revista Mexicana de Biodiversidad, 92, e923322.
Moreno, C. E. (2001). Métodos para medir la biodiversidad.
Sociedad Entomológica Aragonesa.
Moreno, C., & Halffter, G. (2000). Assessing the comple-
teness of bat biodiversity inventories using species
accumulation curves. Journal of Applied Ecology, 37,
149–158.
Navidad-Murrieta, D. L., Marceleño-Flores, S. M. L., Náje-
ra-González, A., Nájera-González, O., & Ramírez-
Silva, J. P. (2023). Effects of land cover and land
use change on natures contributions to people of
the shade-grown coffee agroecosystem: An analysis
of Cumbres de Huicicila, Nayarit, Mexico. Con-
servation, 3(3), 426–443. https://doi.org/10.3390/
conservation3030029
18 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
Nivelo-Villavicencio, N., Fernández de Córdova, J., Jimé-
nez, A., & Astudillo, P. X. (2019). Aportes sobre la
dieta y distribución del Ocelote Leopardus pardalis
(Linné 1758) en los altos Andes de Ecuador. Revista
Peruana de Biología, 26(3), 399–402. http://dx.doi.
org/10.15381/rpb.v26i3.15715
Ojeda-Lavariega, E., Vásquez-Dávila, M., Padilla-Gómez,
E., & Manzanero-Medina, G. (2019). Uso de mamí-
feros silvestres medianos y grandes en San Pablo Etla,
Oaxaca, México. AICA, 14, 42–46.
Oliveira-Calleia, F., Rohe, F., & Gordo, M. (2009). Hun-
ting strategy of the margay (Leopardus wiedii)
to attract the wild Pied Tamarin (Saguinus bico-
lor). Neotropical Primates, 16, 32–34. https://doi.
org/10.1896/044.016.0107
Otero-Jiménez, B., Li, K., & Tucker, P. K. (2020) Landscape
drivers of connectivity for a forest rodent in a coffee
agroecosystem. Landscape Ecology, 35, 1249–1261.
https://doi.org/10.1007/s10980-020-00999-6
Palacios-Romo, T. M., Sánchez-Vázquez, A., Contreras-
Díaz, R. G., & Pérez-Lustre, M. (2012). Inventario
de mamíferos en sistemas de sombra asociados a la
cuenca del río Copalita, Oaxaca, México. Therya,
3(3), 303–310.
Paleologos, M. F., Iermanó, M. J., Blandi, M. L., & Sarandón,
S. J. (2017). Las relaciones ecológicas: un aspecto cen-
tral en el rediseño de agroecosistemas sustentables,
a partir de la Agroecología. Redes, 22(2), 92–115.
https://doi.org/10.17058/redes.v22i2.9346
Perfecto, I., Jiménez-Soto, M. E., & Vandermeer, J. (2019).
Coffee landscapes shaping the Anthropocene: forced
simplification on a complex agroecological landscape.
Current Anthropology, 60(Supplement 20), S236-S250.
https://doi.org/10.1086/703413
Pina, G. P. L., Gómez, R. A. C., & González, C. A. L. (2004).
Distribution, habitat association and activity patterns
of medium and large sized mammals of Sonora, Mexi-
co. Natural Areas Journal, 24, 354–357.
Pinacho-López, B. (2014). Maferos silvestres del Rancho
El Sagrado, San Gabriel Mixtepec, Juquila, Oaxa-
ca [Degree´s thesis, Universidad del Mar Puer-
to]. UMAR Repository. http://bibliotecape.umar.
mx:8080/TESIS/items/show/127
R Core Team. (2022). R: A language and environment
for statistical computing [Software]. R Foundation
for Statistical Computing. Vienna, Austria. https://
www.R-project.org/
Ramírez-Pulido, J., González-Ruiz, N., Gardner, A. L., &
Arroyo-Cabrales, J. (2014). List of recent land mam-
mals of Mexico. Museum of Texas Tech University.
Reid, F. (2009). A field guide to mammals of Central America
and Southeast Mexico (2th ed.). Oxford University
Press.
Reyna-Hurtado, R., & Tanner, G. W. (2007). Ungulate
relative abundance in hunted and non-hunted sites in
Calakmul forest (Southern Mexico). Biodiversity and
Conservation, 16, 743–756.
Ríos-Solís, J. A., Flores-Martínez, J. J., Sánchez-Cordero,
V., & Lavariega, M. C. (2021). Diversity and activity
patterns of medium- and large-sized terrestrial mam-
mals at the Los Tuxtlas Biosphere Reserve, México.
Therya, 12(2), 237–248. .https://doi.org/10.12933/
therya-21-1105
Ruelas-Monjardín, L., Nava-Tablada, M., Cervantes, J., &
Barradas, V. (2014). Importancia ambiental de los
agroecosistemas cafetaleros bajo sombra en la zona
central montañosa del estado de Veracruz, México.
Madera y Bosques, 20(3), 27–40.
Ruiz-Velásquez, E. (2019). Ecología poblacional de mamífe-
ros pequeños de un policultivo tradicional cafetalero de
la región de Pluma Hidalgo, Oaxaca, México [Master´s
thesis, Instituto Politécnico Nacional de Oaxaca]
DSpace Repository. http://literatura.ciidiroaxaca.ipn.
mx:8080/xmlui/handle/LITER_CIIDIROAX/422
Sánchez-Cordero, V., Botello, F., Flores-Martínez, J. J.,
Gómez-Rodríguez, R. A., Guevara, L., Gutiérrez-Gra-
nados, G., & Rodríguez-Moreno, A. (2014). Biodiver-
sidad de Chordata (Mammalian) en México. Revista
Mexicana de Biodiversidad, 85(Supl. ene), S496–S504.
Sans, F. (2007). La diversidad de los agroecosistemas. Eco-
sistemas, 16(1), 44–49.
Santos-Moreno, A., & Ruiz-Velásquez, E. (2011). Diversi-
dad de mamíferos de la región de Nizanda, Juchitán,
Oaxaca, México. Therya, 2(2), 155–168.
Secretaría de Agricultura y Desarrollo Rural. (2023). Datos
abiertos: Beneficiarios del Programa Producción para
el Bienestar 2023 [Data set]. Gobierno de México.
https://datos.gob.mx/busca/dataset/corte-a-marzo-
2023-beneficiarios-del-programa-produccion-
para-el-bienestar-2023
Sigüenza-Pérez, D. (2014). Comparación del fototrampeo
con otros métodos de muestreo de mamíferos medianos
y grandes en la cuenca baja del río Verde, Oaxaca
[Degree´s thesis, Universidad del Mar]. UMAR Repo-
sitory. http://bibliotecape.umar.mx:8080/TESIS/files/
original/4aadfa922ec059b42d2656bc77cc7661.pdf
Sinu, P. A., Viswan, G., Fahira, P. P., Rajesh, T. P., Manoj, K.,
Hariraveendra, M., & Jose, T. (2021). Shade tree diver-
sity may not drive prey-predator interaction in coffee
agroforests of the Western Ghats biodiversity hotspot,
India. Biological Control, 160, 104674. https://doi.
org/10.1016/j.biocontrol.2021.104674
Thompson, S. K. (1992). Sampling. John Wiley & Sons.
Torres, A., Velázquez, A., & Lobato, J. (2003). Riqueza,
diversidad y patrones de distribución espacial de los
mamíferos. In A. Velázquez, A. Torres, & G. Bocco
19
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e57668, enero-diciembre 2025 (Publicado May. 15, 2025)
(Eds.), Las enseñanzas de San Juan: Investigación par-
ticipativa para el manejo integral de recursos naturales
(pp. 277–299). Instituto Nacional de Ecología.
Wong-Smer, J. R., Soria-Díaz, L., Horta-Vega, J. V., Astudi-
llo-Sánchez, C. C., Gómez-Ortiz, Y., & Mora-Olivo,
A. (2022) Dieta y abundancia relativa de la zorra
gris Urocyon cinereoargenteus (Carnivora: Cani-
dae) en el Área Natural Protegida Altas Cumbres,
Tamaulipas, México. Acta Zoológica Mexicana (nueva
serie), 38, e38124266. https://doi.org/10.21829/
azm.2022.3812426
Zar, J. H. (2010). Biostatistical analysis (5th ed.). Pearson
Prentice Hall.
Zavala-Sánchez, Z., Segura-Pacheco, H., Ávila-Nájera, D.,
Herrera-Castro, N., Barrera-Catalán, E., & Sarabia-
Ruiz, G. (2018). Valoración cultural y uso de la fauna
silvestre en San Vicente deBenítez, Guerrero, México.
Revista Etnobiología, 16(3), 78–92.