1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
Abundance and physiognomic characteristics of woody natives
in a sub-urban talar forest remnant extensively
invaded by exotic vegetation
Leandro Alcalde1,2*; https://orcid.org/0000-0002-4365-243
Luisina Rodríguez-Allo3; https://orcid.org/0009-0004-8667-7182
1. Sección Herpetología, Instituto de Limnología Dr. R. A. Ringuelet, Boulevard 120 y 62, CP 1900, La Plata, Buenos
Aires, Argentina; alcalde@ilpla.edu.ar (*Correspondence).
2. Consejo Nacional de Investigaciones Científicas y Técnicas–Centro Científico y Tecnológico La Plata, 8 N° 1467,
Buenos Aires, Argentina.
3. Bioparque La Plata, Paseo del Bosque, Avenida Iraola y 52, CP 1900, La Plata, Buenos Aires, Argentina;
luisinaunlp@gmail.com
Received 21-XI-2024. Corrected 27-IX-2024. Accepted 26-XI-2024.
ABSTRACT
Introduction: The talares are small xerophytic forests dominated by the trees Celtis tala and Scutia buxifolia,
which are characteristic of the pampas in the Northeast of Buenos Aires Province, Argentina. Talares coexist
with areas facing significant urban and agricultural pressures, leading to their impoverishment, fragmentation,
and even local extinction.
Objective: To characterize a resilient talar patch within a suburban forest invaded by exotic vegetation to identify
the patterns and processes currently affecting native woody species.
Methods: The forest (55 ha) was divided into seven sampling sites. We assessed the abundance and physiognomic
variables of native woody species through random searches (approach 1). For exotic woody species, we used a
combination of transects and grids within the forest and on adjacent streets (approach 2). The analyses included
descriptive statistics, index calculations, and comparisons through confidence interval establishment and Chi-
square tests with Yates’ correction.
Results: Total sampling time per team member was 118.5 h for approach 1 and 48 h for approach 2. Two native
species dominate the studied talar patch: C. tala (88 %) and S. buxifolia (11 %), while other native woody spe-
cies were extremely rare (1 %). Exotic woody species were dominant structurally and numerically. We observed
variations of C. tala and S. buxifolia height between forest stands, most common under 3 m in height. The Mantle
Index indicated light competition due to shading caused by fast-growing, large exotic species. Damage due to fall-
ing eucalyptus branches was observed only in C. tala, although at a low percentage. S. buxifolia had 20 % and C.
tala 15 % of individuals with a shrub-like form with some cases being variable among forest stands. We propose
several manageent strategies aimed at favoring native species over exotics.
Conclusion: The studied forest is a hybrid ecosystem with neo-ecosystem traits, which implies a series of con-
servation problems for the remaining native woody species present. It is highly valuable for the conservation
of talares, particularly for one of its most emblematic species, S. buxifolia, which is virtually absent outside the
forest area.
Key words: adaptive management; forest resilience; hybrid ecosystems; suburban forests; habitat loss; woody
natives.
https://doi.org/10.15517/rev.biol.trop..v72i1.57706
CONSERVATION
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
INTRODUCTION
Grasslands represent the climax communi-
ty of the Pampa ecoregion, which spans Brazil,
Uruguay, and Argentina. They consist of vast
pastures occasionally interrupted by marsh-
es, meandering streams, shallow lagoons, and
small xeric forest patches that thrive in well-
drained soils. In the Southern Pampa, these
patches, locally referred to as talar forest patch-
es (TFPs), are found in three sub-ecoregions:
Rolling Pampa, Low-land Pampa, and Hill-land
Pampa (Cabrera, 1971; Matteucci, 2012; Parodi,
1940). TFPs are dominated by Celtis tala Gillies
ex Planch. and Scutia buxifolia Reissek, two
species with a relatively wide distribution in
Southern Bolivia, Paraguay, Northern Argen-
tina, Southern Brazil, and Uruguay. However,
dense populations of these species are primarily
restricted to the Southern range of Argentina,
particularly Buenos Aires province. Within
TFPs, C. tala and S. buxifolia often co-dominate
and are accompanied by less abundant species
(Cabrera, 1971). Due to the relatively recent
formation of Pampas soils after the last sig-
nificant sea level drop (late Holocene, approxi-
mately 3000 years ago: Cavalotto, 2002), TFPs
can be considered young forest communities. A
recent study found that TFP diversity is higher
in Northeastern patches due to their proximity
to Northern forest ecoregions and hygrophilous
forests, with diversity decreasing toward the
South and West (Torres-Robles, 2009).
Pre-Hispanic settlers utilized TFPs in vari-
ous ways (Paleo et al., 2002). However, during
the Hispanic period entire trees were used for
RESUMEN
Abundancia y características fisonómicas de leñosas nativas de un talar suburbano
remanente extensamente invadido por exóticas
Introducción: Los talares son pequeños bosques xerofíticos dominados por los árboles Celtis tala y Scutia buxi-
folia, característicos de las pampas en el noreste de la Provincia de Buenos Aires, Argentina. Los talares coexisten
con áreas que enfrentan presiones urbanas y agrícolas significativas, lo que ha llevado a su empobrecimiento,
fragmentación e incluso extinción local.
Objetivo: Caracterizar un talar resiliente ubicado en un bosque suburbano invadido por vegetación exótica, para
identificar los patrones y procesos que actualmente afectan a las especies leñosas nativas.
Métodos: El bosque (55 ha) se dividió en siete sitios de muestreo. Hemos evaluado la abundancia y las variables
de la fisiognomía de las especies leñosas nativas mediante búsquedas aleatorias (enfoque 1). Para las especies
leñosas exóticas, utilizamos una combinación de transectos y cuadrículas dentro del bosque y en calles aledañas
a él (enfoque 2). Los análisis incluyeron estadística descriptiva, cálculo de índices, y comparaciones mediante
establecimiento de límites de confianza y pruebas Chi-cuadrado con corrección de Yates.
Resultados: En total, el tiempo dedicado fue de 118.5 h por miembro del equipo para el enfoque 1 y 48 h por
miembro del equipo para el enfoque 2. Dos especies nativas dominan el parche talar estudiado: C. tala (88 %) y
S. buxifolia (11 %), mientras que otras especies leñosas nativas fueron extremadamente raras (1 %). Las especies
leñosas exóticas dominaron estructural y numéricamente. Observamos variación en la altura de C. tala y S. buxi-
folia entre los rodales forestales, siendo más comunes de menos de 3 m. El Índice de Manto indicó competencia
lumínica por la sombra causada por especies exóticas grandes y de rápido crecimiento. Hubo daño debido a la
caída de ramas de eucalipto solo en C. tala, aunque en un porcentaje bajo. En cuanto a la presencia de un hábito
arbustivo, S. buxifolia tuvo el 20 % y C. tala 15 % de individuos con forma arbustiva, siendo algunos casos variables
entre los rodales forestales. Proponemos varias estrategias de manejo tendientes a favorecer a las especies nativas
sobre las exóticas.
Conclusión: El bosque estudiado es un ecosistema híbrido con rangos de neo-ecosistema que implica una serie
de problemas de conservación para los remanentes de leñosas nativas allí presentes. Es altamente valioso para la
conservación de los talares, particularmente para una de sus especies más emblemáticas, S. buxifolia, la cual está
prácticamente ausente fuera del área de bosque.
Palabras clave: manejo adaptativo; resiliencia de bosques; ecosistemas híbridos; bosques suburbanos; pérdida de
hábitat; leñosas nativas.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
firewood, construction, and fencing; fruits were
harvested for poultry feed; and cattle intrusion
facing an increasing overexploitation that led
to general impoverishment of the community
(Pochettino et al., 2014). The decline in TFP
species and the loss of many patches were noted
early by pioneer researchers (Bruch, 1937; Par-
odi, 1940). Today, few TFPs are effectively
protected, and most are either impoverished
or extinct due to various threats (Fundación de
Historia Natural Félix de Azara, 2006a; Guerre-
ro, 2019; Morello, 2006). Over the past 30 years,
conservationists have focused on the prob-
lems affecting TFPs, leading to new research
and proposals for effective protection measures
(Arturi, 1997; Arturi et al., 2006; Franco et al.,
2018). These conservation and research efforts
have highlighted two key issues: (i) invasion by
exotic plants and transformation of TFPs into
hybrid ecosystems, and (ii) generation of young
TFPs that established themselves (colonizer
TFPs) in areas where the soil has been disturbed
or where exotic trees were introduced as part of
the Pampas’ lignification process (Apodaca
& Guerrero, 2019; Morello, 2006). Globally,
implanted forests that support subsistence or
facilitate the creation of new native patches are
a widespread phenomenon (Lugo, 1997; Par-
rotta, 1992). Radical ecosystem transformations
have significantly altered native ecosystems
worldwide. Such transformations have sparked
theoretical debates and diverse conservation
practices in these increasingly degraded eco-
systems. The concept of a neo-ecosystem (or
transformed ecosystem: Aronson et al., 2014;
or emerging ecosystem: Clewell & Aronson,
2013), first proposed by Chapin & Starfield
(1997), refers to a system of biotic, abiotic, and
social factors that, due to human influence, dif-
fers from the historically dominant one. Neo-
ecosystems tend to self-organize and develop
new characteristics without intensive human
management (Hobbs et al., 2013). The chal-
lenge lies in determining where each system
falls on the gradient between an original state
and a neo-ecosystem. Miller & Bestelmeyer
(2016) stress the importance of identifying irre-
versibility thresholds in hybrid ecosystems to
guide ecological restoration efforts. They also
argue that, even if restoration is not feasible,
controlling exotic species-whether for eradi-
cation or not-should be a key consideration.
Managing exotic species, especially the most
harmful ones, can reduce pressure on natives
and potentially provide valuable functions if
kept within acceptable abundance levels (Bel-
nap et al., 2012; Davis et al., 2011; Simberloff,
2011). The aims of this study were: 1) to assess
the composition, abundance, and physiognomy
of a TFP within a suburban forest extensively
invaded by exotic plant species, and 2) to esti-
mate the abundance of these woody exotics in
the TFP and its surroundings. We believe that
identifying patterns in the physiognomy, abun-
dance, and local distribution of native woody
plants will help us understand the impact of
invasive species and guide effective remediation
and adaptive management strategies.
MATERIALS AND METHODS
Study Site: Las Banderitas Forest spans
55 hectares of forest and 6 hectares of shrubs
and grasses. Located Northwest of La Plata
city, near the headwaters of Carnaval stream
(34°54’58’’ S & 58°06’10’’ W), it is an ecosystem
where native and exotic woody plants coexist
(Fig. 1). The site lies in a suburban area with
three dispersed population centers covering
1 200 hectares of heavily modified Rolling
Pampa landscapes. The dominant land uses are
intensive, including 70 hectares of horticulture,
254 hectares of greenhouse floriculture, 35
hectares of soybean and corn fields, and smaller
areas for beekeeping, poultry farming, small
cattle and sheep farms, and pig breeding. The
remaining area consists of abandoned green-
houses and non-productive soil, which has
been colonized by native and exotic vegetation,
sometimes forming hybrid grasslands, shrub
lands, or small patches of exotic woody forest.
Urbanization is minimal, lower than 1 house /
hectare, and most pathways are unpaved. The
area is undergoing continuous change due to
city expansion, which is encroaching on rural
and natural spaces, creating stressful social and
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
ecological sceneries (Frediani, 2013; Matteucci
& Morello, 2009).
Sampling design: We divided the 55 hect-
ares of forest into seven smaller stands (S1: 8
ha, S2: 10ha, S3: 4 ha, S4: 8.5 ha, S5: 6 ha, S6:
6.5 ha, S7: 12 ha), using existing paths and open
forest areas for demarcation (Fig. 1). Data col-
lection involved two approaches: (1) measuring
the abundance and physiognomic variables of
native trees through random searches inside
each stand, and (2) using transects and grids
to sample exotic and native woody plants for
assessing species abundance both inside and
outside the forest. In both cases the search
effort was measured in hours per person (we
always used two people), with each team mem-
ber given hours based on the search area (the
larger the stand area, the more hours were
dedicated proportionally). In total the complete
work related to each approach involved 118.5
hours / team member in approach 1and 48
hours /team member in approach 2. We exclud-
ed shrubs from the genera Pavonia and Bac-
charis from sampling and analysis due to their
extensive cover and abundant basal branching,
which made individual identification difficult
and required different methodologies. These
genera will be included in future studies where
understory vegetation will be addressed using
appropriate methodologies and analyses.
Approach 1: Involved three phases, each
covering the entire forest area. Phase 1 (initial
count) included 15 visits between 22 August
2020, and 5 November 2020. Phase 2 (first
re-count and new detections) comprised 56
visits from 13 November 2020 to 22 April 2022.
Phase 3 (second re-count and new detections)
consisted of eight visits between 30 June 2022
Fig. 1. Study site. Note the seven stands (S1-S7) into which the 55 ha of forest were divided and the converging streets (154,
157, 160 and 178). White stars at the beginning and end of each street indicate the area in which woody plants were sampled
on the street shoulders out of the forest. Arrows indicate the course of the Carnaval stream. The area encircled represents the
influence area of the central wetland within the forest. The white lines represent the approximate position of transects within
stands. North is indicated by the red cone in the upper left corner of the figure.
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
and 8 August 2022. We marked all sampled
native woody species with a paint dot on the
main trunk to prevent data duplication and
recorded them based on (a) growing habit
(arborescent or bushy), (b) height ( meters)
from ground level to the top edge of the crown,
(c) crown diameter (meters), (d) trunk perim-
eter (centimeters) at a point between 0.5 and
1 meter in height (measured on the dominant
trunk for bushy individuals), and (e) mode
of growth (erect or comb-shaped). We also
recorded standing dead individuals caused by
lightning, excess water, or unknown reasons.
We measured length variables using a semi-
rigid 10 m long tape. The sampling method
used in this approach was random. We ceased
random sampling when we accounted for near-
ly all C. tala and S. buxifolia individuals within
each stand. In other words, while the sampling
method was random, the outcome approached
a census. We used the ratio of recounted indi-
viduals to new detections to estimate the com-
pleteness of sampling within each stand.
Approach 2: Involved sampling using tran-
sects and grids. Within the forest, transects (20
x 4 meters; oriented Southeast-Northwest) and
grids (placed at the beginning, middle, and end
of each transect) were uniformly positioned
every 50 meters within each stand to ensure
consistent coverage across all stands, covering
25 % of each stands area. Outside the forest,
transects were placed on both sides of the four
roads leading into the forest, ensuring almost
complete coverage of the entire road area with
minimal gaps (Fig. 1). Transects measured the
abundance and height class frequency of woody
species > 1 m tall. We measured the abundance
of woody species < 1 m tall within 2 m2 circle
grids established at beginning, middle, and
end of each transect. Along the transects on
the streets out of the forest, we assessed plant
abundance but not the height class frequency
of all woody plants since shoulders constantly
suffer from pruning by municipality operators.
Data Analysis: We used data on native
woody species inside the forest to describe
the physiognomy and abundance of domi-
nant native trees. The dataset included three
variables: height, crown diameter, and trunk
perimeter. Heights were categorized into six
classes for analysis: 1 (< 1 m), 2 (1-2.99 m), 3
(3-4.99 m), 4 (5-6.99 m), 5 (7-8.99 m), and 6
(> 9 m). The height of C. tala and S. buxifolia
was statistically described using measures of
central tendency (arithmetic mean) and dis-
persion (standard deviation) and compared
between forest sites by establishing confidence
limits for the mean of each species per site. The
comparisons of the means were evaluated using
the confidence intervals of the means with an
alpha = 0.05 (the level used for the graphical
part) and also at an alpha = 0.01 (to have greater
confidence about the detected differences). We
calculated the Mantle Index (MI = Crown
Diameter / Height, Burger, 1939) to assess
how tree crowns relate to lighting, with val-
ues near zero indicating asymmetrical crowns.
To describe (using descriptive statistics and
graphs) and analyze (by calculating confidence
intervals for the mean) the index we followed
the same procedure in the dominant natives,
C. tala and S. buxifolia. For this purpose, we
excluded trees shorter than 3 meters tall. Trunk
diameter was derived from trunk perimeter and
used to estimate the basal area of trees in height
classes 2 to 6 using the formula Basal area = (π
/ 4) * trunk diameter². The basal area served as
a complementary measure of tree density.
Chi-square tests with Yates’ correction
were used to evaluate differences in the per-
centages and proportions of the most abundant
native woody plants, specifically in relation
with standing dead trees, trees growing hori-
zontally due to crushing by eucalyptus branch-
es, and specimens with a shrubby growth form.
The abundance of native and exotic woody
species inside the forest was addressed based
on the data obtained from transect sampling.
We assessed abundance by calculation of the
Relative Importance Index (RII: Pinkas et al.,
1971), an index of common usage in studies
of trophic ecology, here adapted to evaluate
the importance of each species. The index was
calculated for each species using the variables
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
% FO (Percentage Frequency of Occurrence),
% FH (Percentage Frequency of Height), and
% FN (Percentage Frequency of Numerosity).
The % FO variable represents the percentage
of transects into which a particular species was
found relative to the total number of transects
and grids conducted. The % FH variable is the
sum of the products between the mean of each
height class and the abundance of each spe-
cies within each height class, expressed glob-
ally as a percentage of the total height value for
each species. This was the only variable modi-
fied from the original RII, which uses volume
instead of height. Finally, the % FN variable is
the abundance of each species expressed as a
percentage of the total abundance of all species.
The RII values of each species were ranked as a
percentage relative to the highest RII value to
better visualize the importance of each species
and facilitate comparisons. Grid sampling was
employed to assess the abundance of saplings
within the forest.
We used Statistica 8.0 (StatSoft, 2007) and
SigmaPlot 10.0 (Systat Software, 2006) for data
analysis and graphing, with significance set at p
< 0.05. The entire dataset is available at Alcalde
(2024). Once you have accessed the page, you
should enter the full name of the first author
into the search bar. This will then display a set
of research data from which you can select the
desired one.
RESULTS
We detected a total of 4 029 native woody
trees and bushes across the seven forest stands:
3 553 C. tala, 454 S. buxifolia (present in all
stands), 30 Abutilon grandifolium (Will.) Sweet
(S5), 11 Sambucus australis Cham. & Schltdl.
(bushy and < 5 m tall, in S1-S3, S5, and S7), four
Senegalia bonariensis (Gillies ex Hook. & Arn.)
Seigler & Ebinger (S1, S2, and S4), three Ery-
thrina crista-galli L. (S2), and two Parkinsonia
aculeata L. (S5). Since C. tala and S. buxifolia
accounted for 99 % of the woody natives, we
focused our analysis on these dominant species.
C. tala had a higher density than S. buxi-
folia across all forest stands (Table 1). The late
species was so scarce at stands 3 to 7 that these
stands had to be grouped to obtain satisfactory
degrees of freedom for all comparisons and
analyses conducted. S. buxifolia exhibited high-
er density in S1 and S2, while C. tala was denser
in S3, followed by S5 and S1. The basal area of
C. tala for the entire forest was 860.27 m² (15.6
m²/ha), with the lowest value in S6 (10.61 m²,
1.6 m²/ha) and the highest in S3 (351.76 m²,
87.9 m²/ha) (Table 1).
C. tala consistently dominated numeri-
cally over S. buxifolia across all stands, with
particularly dominance in S3 to S7 where S.
buxifolia was extremely infrequent (Table 1).
Analysis of the height for S. buxifolia and C.
tala revealed that trees were less than 3 meters
height were predominant (Fig. 2, Table 1). The
overall height pattern of both species was simi-
lar, with both dominated by individuals shorter
than three meters in height. The forest stands
that replicated the global pattern of both spe-
cies, and partly explained it, were the stands at
the forest front (S1, S2 for both species, S3 for
C. tala), with a greater number of taller trees
observed at the stands on the opposite end of
the forest (Fig. 2, Table 1).
The mean height of S. buxifolia was not
different between S1 and S2, but both differed
from the mean of the groupings of the stands
at the opposite end of the forest (S3-7) using a
99 % confidence level (Fig. 3A).
When comparing the mean heights of C.
tala using stringent confidence intervals (99 %),
we also detected general height differences,
with lower means at the NE-NW front sites of
the forest (S1, S2, S3, and S5, being S2 the place
with the higher mean of them) compared to the
higher mean heights at the SE-SW sites on the
opposite end (Fig. 3B).
The comparison through the establishment
of 99 % confidence limits of the mean mantle
index did not detect differences between forest
stands for S. buxifolia equal to or greater than
three meters in height (the differences were not
detected even when using a more relaxed confi-
dence level of 95 %, Table 2 and Fig. 4A). How-
ever, it can be said that the mean mantle index
trends from higher values at the forest front in
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
Fig. 2. Number of S. buxifolia and C. tala trees (X-axis) of different height (Y-axis) for the entire forest and stand to stand (S.buxifolia for S3 to S7 were presented together, see text).
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
Table 1
Global and stand to stand values of tree density (td), basal area (ba), and height of C. tala and S. buxifolia from the studied
forest.
stand ntd ba mean H (min-max) - 95 + 95 sd
S. Buxifolia
global 454 8.2 8.3 (0.15/ha) 1.6 (0.12-10) 1.5 1.8 1.5
S1 252 31.5 4.5 (0.56/ha) 1.6 (0.15-10) 1.4 1.8 1.4
S2 162 16.2 2.4 (0.24/ha) 1.5 (0.12-10) 1.2 1.7 1.4
S3-7 40 1 1.27 (0.03/ha) 2.7 (0.15-9) 2.08 3.3 2
C. Tala
global 3 553 64.1 860.2 (15.6/ha) 2.7 (0.1-13) 2.6 2.8 2.3
S1 839 104.5 141.4 (17.6/ha) 2.3 (0.1-9.2) 2.2 2.4 1.7
S2 311 31 116.4 (11.6/ha) 2.7 (0.1-11.6) 2.5 3.08 2.5
S3 1 322 330.5 351.7 (87.9/ha) 2.5 (0.1-11.8) 2.3 2.6 2.2
S4 183 20.8 36.6 (4.3/ha) 3.5 (0.1-10.2) 3.2 3.9 2.2
S5 667 112.3 111.4 (18.5/ha) 2.5 (0.1-12.4) 2.3 2.7 2.1
S6 37 5.53 10.61(1.6/ha) 4.5 (0.4-9.6) 3.9 5.1 1.8
S7 184 14.5 91.87 (7.6/ha) 5.5 (0.5-13) 5.1 5.9 2.8
td: trees/ha, ba: crude and referred to 1 ha, n: number of trees, min-max: minimum height – maximum height, - 95 % and +
95 %: confidence limits of mean, sd: standard deviation.
Table 2
Values and descriptive statistics of the mantle index for S. buxifolia and C. tala specimens equal to or greater than 3 meters
in height, presented for the entire forest and broken down by stand (S).
stand nmean (min-max) - 95 + 95 sd
Scutia buxifolia
global 71 0.76 (0.23-1.38) 0.7 0.82 0.24
S1 36 0.8 (0.23-1.38) 0.71 0.89 0.27
S2 17 0.67 (0.31-1.15) 0.55 0.79 0.23
S3-7 18 0.77 (0.46-1.05) 0.68 0.86 0.17
Celtis tala
global 1 285 0.66 (0.04-1.88) 0.62 0.67 0.23
S1 246 0.65 (0.2-1.47) 0.62 0.68 0.22
S2 67 0.69 (0.2-1.54) 0.62 0.75 0.26
S3 431 0.66 (0.2-1.78) 0.64 0.68 0.24
S4 100 0.71 (0.3-1.4) 0.66 0.76 0.24
S5 237 0.65 (0.04-1.8) 0.62 0.68 0.23
S6 30 0.71 (0.4-1.51) 0.63 0.8 0.23
S7 143 0.61 (0.29-1.19) 0.57 0.64 0.18
n: number of trees, (min-max): (minimum-maximum), -95 and + 95: confidence limits of the mean, sd: standard deviation.
Note that for the first species, neighboring stands S3 to S7 were grouped due to the low number of specimens in each one.
S1 and forest bottom in S7 (indicating crown
imbalance and higher competition for light)
toward higher values at the center of the forest
(and vice versa). The mean mantle index of C.
tala varied across forest stands, but significant
differences, as determined by 99 % stringent
confidence limits, were only noted between S4
and S7 (Table 2, Fig. 4B).
Of the two most abundant native woody
species, the phenomenon of standing dead trees
was observed only for C. tala at stands on the
NE-NW edge of the forest (S1, S2) and at the
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
stands on the opposite end (S5, S6, and S7), but
was not observed at the central forest stands.
The percentages of standing dead C. tala were
low across stands (S1: 0.4 %, S2: 1.9 %, S5: 5
%, S6: 2 %, S7: 3 %), and comparisons using
the Chi-square test with Yates’ correction did
not detect differences between them. Another
phenomenon we detected in C. tala but not in
S. buxifolia was the presence of trees growing
flattened with their main axis parallel or bent
relative to the ground due to the falling of large
branches, primarily from E. camaldulensis. The
Fig. 3. Box plots of the height. A. Of S. buxifolia. B. Of C. tala. Globally for the forest (G) and from each forest stand (S).
Black squares: mean, grey boxes: 95 % confidence limits of mean, extreme ends of vertical lines: minimum and maximum
height values.
Fig. 4. Box plots of the Mantle Index values. A. Of S. buxifolia. B. Of C. tala. Corresponding to tress equal or higher than
three meters in height. References as in Fig. 3.
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
percentage of flattened C. tala trees in each for-
est stand was low (S1: 2 %, S2: 6 %, S3: 1.5 %, S4:
2 %, S5: 4 %, S6: 5 %, S7: 2 %), and the compari-
son of these values using the Chi-square test
with Yates’ correction did not detect significant
differences between any pair.
Overall, S. buxifolia exhibited 20 % of
individuals with a shrub-like form, with similar
values across each forest stand (S1: 17 %, S2:
25 %, S3-7: 10 %). The comparison using the
Chi-square test with Yates’ correction detected
differences only between S2 and S3-7 (p <
0.05). Considering all sites, C. tala showed 15
% of individuals with a shrub-like habit. Com-
parisons between stands using the Chi-square
test with Yates’ correction detected differences
between stands at the SE-SW end of the forest
(except for S6 which had the lowest percentage)
and stands at the opposite end (NE-NW forest
edge) (Table 3).
The total number of woody species detect-
ed inside and outside the forest was similar (39
inside with seven native and 40 outside with
eight native), but the species composition dif-
fered (Table 4). Streets 154 and 160 each had
21 species, while Street 160 had the fewest
(19) and Street 178 had the most (29). Exotic
species were dominant, especially C. laevigata,
L. lucidum, C. australis, M. alba, L. sinense, G.
triacanthos, and P. a l ba . The former was the
most prevalent and, together with L. lucidum,
both dominated on the four streets. Gledit-
sia triacanthos was dominant only on Street
178 (limiting stands 5 to 7, Fig. 1). Fraxinus
pennsylvanica was dominant only on Street 157
(limiting stands 1 and 2, Fig. 1). Of the natives,
C. tala was present on all streets, but other
native species were mostly limited to Street 178,
with one species (V. cave n) only found on Street
160 (limiting stands 4 and 7, Fig. 1).
Both full RIIf and its simplified RIIs (with-
out using height frequency) version coincided
in provided the same global ranking of the
species inside the forest (Table 4). When com-
paring stand by stand, some of them showed
changes in the ranking of the top five species in
each case (Fig. 6). These differences occurred
at S1 to S4, where some large species (generally
E. camaldulensis) moved to less important posi-
tions and were replaced by species with greater
numerical abundance but not as tall (Table 4
and Fig. 5 for discordances between RIIf and
RIIs values).
The simplified % RIIs identified the follow-
ing five dominant species (listed in descending
order according to RIIs value): L. sinense, C. lae-
vigata, E. camaldulensis, M. alba, and L. lucidum
(inside forest), and C. laevigata, L. lucidum, M.
alba, L. sinense, and G. triacanthos (outside
forest). The exclusion of E. camaldulensis from
the top five species outside the forest and its
replacement by G. triacanthos, which turned
out to be particularly abundant in one of the
adjacent streets, explains the only differences
detected by the RIIs between inside and outside
the forest. Finally, grid sampling within the for-
est detected an almost absolute sapling abun-
dance of L. sinense (86 %), followed by L. nobilis
Table 3
Percentage of C. tala with shrub-like habit we found at each forest site (diagonal line) and its comparison between stands
using Chi-square test with Yates’ correction.
S1 S2 S3 S4 S5 S6 S7
S1 11 %
S2 NS 9 %
S3 NS NS 9 %
S4 NS * * 22 %
S5 * ** ** NS 26 %
S6 NS NS NS ** ** 5 %
S7 * ** ** NS NS ** 26 %
One asterisk represents significant differences (p < 0.05), two asterisks indicate highly significant differences (p < 0.01), and
NS represents no significance in the comparison.
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
Table 4
Percentage values of frequency of occurrence (% FO), numerical frequency (% FN), height frequency (% FH), % RII full (%
RIIf) and RII simplified (% RIIs) of the woody species detected trough transect sampling.
Species % FO % FN % FH % RIIf% RIIs
Global forest
Oleaceae: Ligustrum sinense Lour. 78.6 42.4 20.5 100 100
Cannabaceae: Celtis laevigata Willd. 90.7 28.7 23.4 96 78.1
Myrtaceae: Eucalyptus camaldulensis Dehnh. 86.4 8.01 35.5 76 20.6
Moraceae: Morus alba L. 60.1 5.5 7.5 16 9.9
Oleaceae: Ligustrum lucidum W. T. Aiton 48.05 3.4 2.1 5 4.9
Cannabaceae: Celtis tala* 31.06 2.8 2.1 3 2.6
Cannabaceae: Celtis australis L. 29.1 1.2 1.3 2 1.07
Sapindaceae: Acer negundo L. 14.5 2.4 2.8 2 1.07
Lauraceae: Laurus nobilis L. 22.3 1.7 1.1 1 1.01
Fabaceae: Gleditsia triacanthos L. 13.1 0.6 0.7 < 1 < 1
Lauraceae: Cinnamomum glanduliferum (Wall.) Meisn. 12.1 0.2 0.4 < 1 < 1
Verbenaceae: Lantana camara L. 8.2 0.6 0.2 < 1 < 1
Rhamnaceae: Scutia buxifolia* 8.2 0.3 0.2 < 1 < 1
Rosaceae: Pyracantha coccinea M. Roem. 6.3 0.2 0.1 < 1 < 1
Fabaceae: Racosperma melanoxylon R. Br. 3.3 0.2 0.4 < 1 < 1
Salicaceae: Populus alba L. 1.45 0.45 0.36 < 1 < 1
Salicaceae: Salix babylonica L. 0.9 0.07 0.2 < 1 < 1
Pittosporaceae: Pittosporum tobira (Thunb.) W. T. Aiton 1.9 0.04 0.02 < 1 < 1
Arecaceae: Phoenix canariensis H. Wildpret 1.4 0.03 0.02 < 1 < 1
Arecaceae: Syagrus romanzoffiana (Cham.) Glassman 1.4 0.03 0.01 < 1 < 1
Fagaceae: Quercus robur L. 0.9 0.04 0.04 < 1 < 1
Adoxaceae: Sambucus australis* 1.4 0.04 0.01 < 1 < 1
Oleaceae: Fraxinus pennsylvanica Marshall 0.4 0.07 0.05 < 1 < 1
Rosaceae: Prunus serrulata Lindl. 0.9 0.02 0.02 < 1 < 1
Casuarinaceae: Casuarina cunninghamiana Miq. 0.4 0.05 0.02 < 1 < 1
Anacardiaceae: Schinus areira L. 0.9 0.02 0.01 < 1 < 1
Arecaceae: Livinstona australis (R. Br.) Mar. 0.9 0.02 0.09 < 1 < 1
Cupressaceae: Cupressus lusitanica Mill. 0.9 0.02 0.009 < 1 < 1
Arecaceae: Butia yatay (Mart.) Becc. 0.4 0.01 0.004 < 1 < 1
Fabaceae: Parkinsonia aculeata* L. 0.4 0.01 0.004 < 1 < 1
S1 (top five)
C. laevigata 100 37 36 100 100
E. camaldulensis 88 11 27 46 26.7
L. sinense 73 22 11 32 42.5
M. alba 81 11 10 23 24.5
L. lucidum 54 6 4 8 9.1
S2 (top five)
C. laevigata 97 25 22 100 80.03
L. sinense 72 41 18 95 100
E. camaldulensis 97 7 32 84 22.8
A. negundo 56 13 13 32 24.5
M. alba 75 6 9 25 14.8
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
Species % FO % FN % FH % RIIf% RIIs
S3 (top five)
C. laevigata 75 27 58 100 100
C. tala* 69 25 9 36 85.8
M. alba 88 13 8 29 58.9
E. camaldulensis 31 11 16 13 16.9
L. lucidum 50 7 2 7 17.6
S4 (top five)
L. sinense 91 72 40 100 100
E. camaldulensis 88 7 29 31 9.3
C. laevigata 68 11 15 17 11.1
M. alba 59 4 10 8 3.4
L. lucidum 50 2 2 2 1.6
S5 (top five)
C. laevigata 100 46 27 100 100
E. camaldulensis 79 11 45 61 23.2
L. sinense 63 17 8 22 19.7
C. tala* 50 7 5 8 7.2
M. alba 42 6 6 7 3.05
S6 (top five)
L. sinense 88 55 23 100 100
E. camaldulensis 92 14 55 91 26.03
C. laevigata 96 19 12 44 38.1
L. lucidum 50 3 2 4 3.2
M. alba 27 2 3 2 1.2
S7 (top five)
L. sinense 92 48 24 100 100
C. laevigata 96 33 26 87 72
E. camaldulensis 96 7 37 65 16.3
M. alba 58 3 5 7 3.2
L. lucidum 54 2 1 3 2.6
Street shoulders
C. laevigata 100 40.7 - - 100
L. lucidum 75 19.09 - - 35.1
M. alba 100 7.4 - - 18.8
L. sinense 100 1.1 - - 14.4
G. triacanthos 100 4.4 - - 11
C. tala* 100 2.9 - - 7.3
F. pennsylvanica 100 2.5 - - 6.3
C. australis 50 4.5 - - 5.5
P. a l b a 50 4.03 - - 4.9
L. nobilis 100 1.1 - - 2.7
R. pseudoacacia 75 1.01 - - 1.8
C. cunningamiana 75 1.005 - - 1.6
C. lussitanica 75 05 - - 1
S. bonareinsis* 25 1.5 - - < 1
E. camaldulensis 75 0.3 - - < 1
B. papyrifera 50 0.5 - - < 1
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
Species % FO % FN % FH % RIIf% RIIs
Salicaceae: Populus deltoides W. Bartram ex Marshall 100 0.2 - - < 1
Meliaceae: Melia azedarach L. 100 0.1 - - < 1
A. negundo 50 0.2 - - < 1
R. melanoxylon 50 0.1 - - < 1
S. areira 75 0.1 - - < 1
Q. robur 50 0.1 - - < 1
B. forficata 50 0.1 - - < 1
Cupressaceae: Cupressus sempervirens L. 25 0.1 - - < 1
S. babylonica 75 0.03 - - < 1
P. coccinea 50 0.04 - - < 1
S. australis* 25 0.07 - - < 1
E. japonica 50 0.03 - - < 1
P. aculeata* 25 0.04 - - < 1
V. cave n * 25 0.02 - - < 1
P. g ra n a t u m 25 0.02 - - < 1
L. camara 50 0.01 - - < 1
A. grandifolium 25 0.03 - - < 1
S. buxifolia* 25 0.01 - - < 1
C. glanduliferum 25 0.01 - - < 1
Phytolaccaceae: Phytolacca dioica* L. 25 0.01 - - < 1
Myrtaceae: Callistemon citrinus (Curtis) Skeels 25 0.01 - - < 1
Moraceae: Ficus cairica L. 25 0.01 - - < 1
Simaroubaceae: Ailanthus altissima (Mill.) Swingle 25 0.01 - - < 1
Species within forests but not detected trough transects
Scrophulariaceae: Myosporum laetum G. Forst. Present in S2
Rosaceae: Raphiolepis umbellata (Thunb.) Makino Present in S3
Grossulariaceae: Ribes rubrum L. Present in S1, S5, and S6
Fabaceae: Senegalia bonaeriensis* Present in S1-S4
Moraceae: Maclura pomifera (Raf.) C. K. Schneid.Present in S1, S2, and S3
Fabaceae: Robinia pseudoacacia L. Present in S6 and S7
Fabaceae: Erythrina crista-galli* Present in S2
Rutaceae: Citrus trifoliata L. Present in S5
Moraceae: Broussonetia papyrifera L. (Vent.) Present in S5
Malvaceae: Abutilon grandifolium* Present in S5
% FH: not calculated for transects out of the forests: see explanation in M&M section, % RIIf: using the three variables, %
RIIs: using % FO and % FN only. Note that the full % RIIf was not calculated for street´s species: see explanation in M&M
section. The ten species listed at the end of the table were not detected through transect samplings inside the forest due their
extremely low abundance. In addition, some trees were recently planted in few quantities (< 10) in the forest borders (thus
not listed in the table): Gynkgo biloba L. (Gynkgoaceae), Lagestroemia indica (L.) Pers. (Lythraceae), Cydonia oblonga Mill.
(Rosaceae), Eriobotrya japônica (Thunb.) Lindl (Rosaceae), Persea Americana Mill. (Lauraceae), Bauhinia forficata Link
(Fabaceae), Firmiana simplex (L.) W. Eight (Malvaceae), Schinus longifolius* Lindl. (Speg.) (Anacardiaceae), Ceiba speciosa
(A. St.Hill.) Ravenna (Malvaceae), Enterolobium contortisiliquum (Vell.) Morong (Fabaceae). Asterisks following species
names denote the species is native of the area.
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
(8 %), the pair C. tala-L. lucidum (2 % each),
and C. laevigata (1 %), while the remaining
percentage (1 %) corresponded to species with
very low representation of saplings (Fig. 5C).
The stand by stand discrimination of the spe-
cies that presented saplings is as follows: (S1)
C. glanduliferum, L. sinense (dominant), and S.
buxifolia; (S2) A. negundo, C. glanduliferum, L.
sinense (dominant), M. alba, palm indet., and S.
buxifolia; (S3) C. laevigata, C. tala (dominant),
E. camaldulensis, L. camara, L. lucidum, and
L. sinense (dominant); (S4) E. camaldulensis,
L. sinense (dominant), and P. coccínea; (S5) G.
triacanthos, L. camara, L. sinense (dominant),
and P. a l b a ; (S6) E. camaldulensis, L. camara,
and L. sinense (dominant); and (S7) L. sinense.
DISCUSSION
This study inventories and establishes a
baseline for the species’ composition and abun-
dance of woody plants in a suburban forest
under urban pressure and suggests manage-
ment strategies to enhance native species. We
characterized the forest as a neo-ecosystem
based on Clewell & Aronson (2013) and Aron-
son et al. (2014) ecosystem concepts. These
ecosystems, described by Chapin & Starfield
(1997), arise from the interplay of biotic, abi-
otic, and social factors, creating a new eco-
system distinct from the historical one due to
human influence. They tend to self-organize
and sustain themselves with minimal human
intervention (Hobbs et al., 2013).The studied
forest exhibited the following characteristics:
(1) C. tala was the dominant native woody
species both inside and outside the forest, fol-
lowed by S. buxifolia (which was nearly absent
outside the forest), being other native species
more abundant in the surroundings than in
the forest; (2) there were 33 woody exotic spe-
cies (Table 4), five of them being structurally
and numerically dominant over native species;
(3) most S. buxifolia and C. tala individuals
were < 3m in height; and (4) the mantle index,
which indicates imbalanced growth due to
light competition, revealed intense competition
for light in both species, particularly notice-
able in young individuals. Characteristics 2-4,
combined with the apparent greater success of
exotic species in being dispersed by frugivorous
birds (see disclaimers views in Traveset 2015;
Fig. 5. Percentage values (Y-axis) of occurrence frequency
(fo), numerical frequency (fn), height frequency (fh),
relative importance index in its full version (If), and its
simplified version (excluding height frequency, Is). A. For
the five species identified as most important by this index in
the transects within the forest. B. outside the forest. C. The
pie chart shows the percentage of saplings detected through
grid sampling within the forest. References: CL: C. laevigata,
CT: C. tala, EC: E. camaldulensis, GT: G. triacanthos, LL: L.
lucidum, LN: L. nobilis, LS: L. sinense, MA: M. alba, O: other
species (A. negundo, C. glanduliferum, E. camaldulensis,
G. triacanthos, L. camara, M. alba, palm indet., P. a l b a , P.
coccinea, and S. buxifolia.
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
Fig. 6. Profile of the forest strata and their composition considering the woody species detected in the sampling by transects
according to their numerical frequency and height. The pie charts at the base of the figure correspond to the lower shrub
layer and the regeneration of trees from the lower strata (< 5m). The pie charts in the center of the figure represent the
percentage composition of abundance of the middle layer, dominated by specimens of species whose height does not exceed
15m, but also with the presence of growing specimens from the next layer. Finally, the pie charts in the upper portion of
the figure illustrate the composition of the upper layer with trees over 15m tall. References: AN: A. negundo, CA: Celtis
australis, CG: Cinnamomum glanduliferum, CL: Celtis laevigata, CT: Celtis tala, EC: Eucalyptus camaldulensis, GT: Gleditsia
triacanthos, LC: Lantana camara, LL: Ligustrum lucidum, LN: Laurus nobilis, LS: Ligustrum sinense, MA: Morus alba, O:
species with less than 10 individuals (see discrimination above), PA: Populus alba, SB: Scutia buxifolia. Composition of less
abundant species (OTHER) by stratum and stand: S1 < 5 m (CA-CG-EC-Pittosporum tobira-Sambucus australis-Schinus
areira) / S1 / 5-15 m (AN-CA-CG-LL-LN-LS-S. areira-SB) / S2 < 5 m (Butia yatay-CA-CG-CT Cupressus lusitanica-EC-GT-
LN-LS-P. tobira-Pyracantha coccinea) / S2 / 5-15 m (CA-CG-CT-GT-LL-LN-Salix babylonica-SB) / S3 < 5 m (GT-LN-PA-P.
coccinea-Racosperma melanoxylon-S. australis) / S3 / 5-15 m (AN-CA-LL-PA-R. melanoxylon) / S4 < 5 m (AN-Casuarina
cunninghamiana-CA-CT-CG-Fraxinus pennsylvanica-GT-LN-Phoenix canariensis-P. tobira-P. coccinea-Quercus robur-R.
melanoxylon-SB) / S4 / 5-15 m (AN-CG-LL-PA-Q. robur-SB) / S5 < 5 m (CG-C. lusitanica-EC-GT-P. aculeata-P. canariensis-
Syagrus romanzoffiana) / S5 / 5-15 m (CA-GT-LS-LL-S. babylonica) / S6 < 5m (CA-CT-CG-GT-Livinstona australis-LC-
Prunus serrulata-S. romanzoffiana) / S6 / 5-15 m (CA-CG-GT-LL-LN-LS) / S7 < 5 m (CT-CG-EC-LC-S. romanzoffiana) / S7
/ 5-15 m (CG-CT-LL-LN-SB).
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
Vergara-Tabares, et al. 2022) suggest that the
studied forest have reached the threshold of
irreversibility required to be considered as a
neo-ecosystem, as proposed by Miller & Bestel-
meyer (2016).
There were published many works evi-
dencing dispersion of the plants by bird present
in the study site (De la Peña, 2002; Guidetti,
2020; Murriello et al., 1993; Weyland et al.,
2014). We observed this phenomenon dur-
ing fieldwork Native birds (Mimus saturni-
nus, Pitangus sulphuratus, Turdus rufiventris,
T. amaurochalinus) have fed upon over exotic
plants but also displayed a high consumption
over both dominant natives, particularly over
S. buxifolia during the coldest months. We
observed two fructification periods in the late
species (fall-winter and late spring) contrary to
C. tala (late spring-summer).
We believe that the central wetland of
the studied forest and the higher soils in the
wetland surroundings may contribute to the
heterogeneity within stands S1, S2, S4, and S7,
surely favoring the survival of TFPs in these
stands. Similarly, the elevated areas near the
Carnaval streams floodplain might explain the
survival of TFPs in stands 3 and 5. The great-
est abundance of S. buxifolia and the tallest
trees of this species were found around the
central wetland. Flooding in the wetland likely
protected the ancient trees from logging and
provided suitable conditions for the species.
Ribichich (1996) reported that TFPs near the
Rio de La Plata shoreline showed dominance
of S. buxifolia over C. tala, while further from
the coast, both species co-dominated, with
C. tala becoming more dominant. This study
demonstrated S. buxifolias tolerance to some
flooding, suggesting that flooding limits C. tala.
Indeed, TFPs closer to the river shoreline are
nearer to the surface water table compared to
more inland ones (Arturi, 1997). This pattern
was also observed in S. buxifolia from Martin
Garcia Island and Punta Lara Natural Reserve,
where the species adapted to varying soil mois-
ture levels, including some flooding (Arturi &
Juarez, 1997).
The TFPs within the studied forest were
significantly impacted by taller and faster-
growing exotic species due to shading. We
observed a significantly higher proportion of
standing dead C. tala compared to none for S.
buxifolia. This could be explained by two fac-
tors (which may even combine additively): (1)
most exotic trees that provide significant shade
are deciduous (like C. tala), allowing S. buxifo-
lia (an evergreen species) to photosynthesize
during the autumn and winter, and (2) C. tala’s
intolerance to waterlogging versus S. buxifolia’s
higher resistance to it (as mentioned in previ-
ous paragraphs), particularly in areas close to
the central wetland. Highly invasive species
often exhibit similar competitive behavior in
their introduced environments across world-
wide. Several exotic species we found in the
studied forest were reported for various Argen-
tine ecosystems (Fundación de Historia Natural
Félix de Azara, 2006b; Zagel, 2006). Ligustrum
lucidum was recorded invading the Punta Lara
Natural Reserve’ hygrophilous forests 79 years
ago (Cabrera & Dawson, 1944), and by later
years, the site was dominated by pure stands of
L. lucidum (Dascanio & Ricci, 1988). This spe-
cies has significantly impacted native woody
species in coastal TFPs. Thirty years after inva-
sion patches showed 80 % of individuals stand-
ing dead compared to the 20 % reported earlier
(Franco et al., 2018; Goya et al., 1992). Ribich-
ich & Protomastro (1998) suggested that the
invasion of L. lucidum might have been acceler-
ated by the exclusion of cattle in the 1980s, as
cows previously grazed on this species.
We think that the abundance of each
woody exotic in the studied forest is primarily
influenced by their presence in areas outside
the forest (a facilitating factor) and secondarily
by subtle soil characteristics within the forest
(a limiting factor). In that sense, the eradica-
tion of certain invasive woody exotics would be
extremely difficult, considering the multiplic-
ity of life history strategies (re-growth from
stumps, root sprouting, abundant palatable
fruits with highly germinal seeds, fast growth).
Although there are no entirely successful
examples of controlling invasive exotics once
17
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
they are established (Aragón & Groom, 2003),
some acceptable success has been achieved with
significant operational and economic efforts.
Examples include control of blackberries (Maz-
zolarri et al., 2011), privets and green ashes
(Fontes, 2015), honey locusts (Sosa et al., 2015),
and white mulberries (Torresin et al., 2013).
The cost-benefit ratio of these efforts often
makes them unfeasible in the long term, as even
a slight relaxation can lead to re-colonization.
The Rolling Pampa ecosystems, espe-
cially around the densely populated Buenos
Aires Metropolitan Area (Instituto Nacional de
Estadística y Censos, 2012a; Instituto Nacio-
nal de Estadística y Censos, 2012b; Instituto
Nacional de Estadística y Censos, 2016), have
been heavily exploited and degraded over cen-
turies, losing their original condition (Manuel-
Navarrete et al., 2009; Matteucci & Morello,
2009; Morello & Mateucci, 2000). The region
now consists of hybrid and neo-ecosystems
with complex, not fully understood dynamics,
yet they still support many valuable native spe-
cies of high conservation value.
Miller & Bestelmeyer (2016) emphasized
the importance of neo-ecosystems in successful
conservation strategies. Effective management
should focus on supporting desirable species
rather than solely eradicating undesirable ones
(Belnap et al., 2012; Davis et al., 2011; Seastedt
et al., 2008; Simberloff, 2011). Given the chal-
lenges of restoring historical conditions, efforts
should prioritize mitigating and containing
invasive species while promoting local econom-
ic benefits through methods like pruning and
native planting (Arturi et al., 2006; Doumecq
& Arenas, 2018; Plaza-Behr et al., 2016; Vargas-
Monter, 2012; Wilcox, 2000). Different pruning
methods (selective, mixed, low) have been rec-
ommended to positively affect growth of native
renewals, especially when applied to rotating
small parcels and combined with native plant-
ing for environmental restoration (Adminis-
tración de Parques Nacionales, 2007; Arturi et
al., 2006; Franco et al., 2018; Plaza-Behr et al.,
2016). Such practices would likely benefit the
native species in the studied forest. Our study
identifies viable populations of two declining
species: the tree S. buxifolia and the Argentine
flag butterfly Morpho epistrophus argentinus
Fruhstorfer (Nymphalidae) recently reported
there (Alcalde & Rodríguez-Allo, 2023), which
depends on S. buxifolia as its host. The site also
supports a ground orchid Chloraea membrana-
cea Lindl. (Orchidaceae) and other threatened
native herbs (Delucchi, 2006) like Senecio selloi
(Spreng,) DC. (Asteraceae) and Cypella herber-
tii (Lindl.) Herb. (Iridaceae), providing hope
for their conservation.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
ACKNOWLEDGMENTS
The authors are grateful to the “Asociación
Vecinal para la Protección del Bosque Las
Banderitas” and all the neighbors who, in one
way or another, have shown interest in protect-
ing this forest and its resident species. This
work is ILPLA Scientific Contribution N° 1248.
Although this research did not receive any
specific grant, resources from ANPCYT and
CONICET allocated to LA for other studies
conducted in the same study area were partially
utilized. A. Di Maggio has kindly improved the
English, especially during the first round of
revision; we extend our gratitude to her.
REFERENCES
Alcalde, L. (2024). Datos de abundancia y fisonomía de
leñosas nativas y exóticas en un ecosistema híbrido
con vegetación talar remanente. Consejo Nacional
de Investigaciones Científicas y Técnicas. (Dataset).
http://hdl.handle.net/11336/242993
Alcalde, L., & Rodríguez-Allo, L. (2023). Notas acerca
de una población de mariposa Bandera Argentina
(Morpho epistrophus argentinus) y lista preliminar de
lepidópteros registrados en la futura reserva Bosque
18 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
Las Banderitas (City Bell – Buenos Aire). Historia
Natural, 13(3), 127–133.
Administración de Parques Nacionales. (2007). Lineamien-
tos estratégicos para el manejo de especies exóticas en la
Administración de Parques Nacionales (APN).
Apodaca, M. J., & Guerrero, E. L. (2019). ¿Por qué se
expande hacía el sur la distribución de Tilland-
sia recurvata (Bromeliaceae)? Boletín Sociedad
Argentina de Bonica, 54(2), 255–261. https://doi.
org/10.31055/1851.2372.v54.n2.24371
Aragón, R., & Groom, M. (2003). Invasion by Ligustrum
lucidum in NW Argentina: plant characteristics in
different habitat types. Revista de Biología Tropical,
51(1), 59–70.
Aronson, J., Murcia, C., Kattan, G. H., Moreno-Mateosa, D.,
Dixon, K., & Simberloff, D. (2014). The road to con-
fusion is paved with novel ecosystem labels: a reply
to Hobbs et al. Trends in Ecology & Evolution, 29(12),
646–647. https://doi.org/10.1016/j.tree.2014.09.011
Arturi, M. F., & Juarez, M. C. (1997). Composición de las
comunidades arbóreas de la Isla Martín García en
relación a un gradiente ambiental. Ecología Austral,
7(2), 65–72.
Arturi, M. F. (1997). Regeneración de Celtis tala Gill ex
Planch en el noreste de la provincia de Buenos Aires.
[Tesis doctoral, Universidad Nacional de La Plata].
Repositorio Institucional de la UNLP. http://sedici.
unlp.edu.ar/handle/10915/4658
Arturi, M. F., Pérez, C. A., Horlent, M., Goya, J. F., &
Torres-Robles, S. S. (2006). El manejo de los talares
de Magdalena y Punta Indio como estrategia para su
conservación. En E. Mérida, & J. Athor (Eds.), Talares
bonaerenses y su conservación (pp. 37–45). Fundación
de Historia Natural Félix de Azara.
Belnap, J., Ludwig, J. A., Wilcox, B. P., Betancourt, J.
L., Dean, W. R. J., Hoffman, B. D., & Milton, S. J.
(2012). Introduced and invasive species in novel
rangeland ecosystems: friends or foes? Rangeland
Ecology and Management, 65(6), 569–578. https://doi.
org/10.2111/REM-D-11-00157.1
Bruch, C. (1937). Notas ecológicas acerca del tuco-tuco
(Ctenomys talarum O. Thomas) y nómina de los
artrópodos que viven en sus habitáculos. Notas del
Museo de La Plata, Zoología, 2(6), 81–87.
Burger, H. (1939). Baumkrone und zuwachs in zwei hie-
bsreifen fichtenbeständen. Mitteilungen der Schwei-
zerischen Anstalt für das Forstliche Versuchwesen, 21,
147–176.
Cabrera, A. L. (1971). Fitogeografía de la República Argen-
tina. Boletín Sociedad Argentina de Botánica, 14(1-2),
1–42.
Cabrera, A. L., & Dawson, G. (1944). La Selva Marginal de
Punta Lara en la ribera argentina del Río de la Plata.
Revista del Museo de La Plata, 5(22), 267–382.
Cavalotto, J. L. (2002). Evolución holocena de la llanura
costera del margen sur del Río de La Plata. Revista
de la Asociación Geológica Argentina, 57(4), 376–388.
Chapin, F. S., & Starfield, A. M. (1997). Time lags and novel
ecosystems in response to transient climatic change in
arctic Alaska. Climate Change, 35, 449–461.
Clewell, A. F., & Aronson, J. (2013). Ecological restora-
tion: principles, values, and structure of an emer-
ging discipline (2nd ed.). Island Press. https://doi.
org/10.5822/978-1-59726-323-8
Dascanio, L. M., & Ricci, S. E. (1988). Descripción floris-
tico-estructural de las fisonomías dominadas por
árboles en la Reserva Integral de Punta Lara (Pcia.
de Buenos Aires, República Argentina). Revista del
Museo de La Plata, 14(97), 191–206.
Davis, M. A., Chew, M. K., Hobbs, R. J., Lugo, A. E., Ewel,
J. J., Vermeij, G. J., Brown, J. H., Rosenzweig, M. L.,
Gardener, M. R., Carroll, S. P., Thompson, K., Pickett,
S. T. A., Stromberg, J. C., Del Tredici, P., Suding, K. N.,
Ehrenfeld, J. G., Grime, J. P., Mascaro, J., & Briggs, J.
C. (2011). Don’t judge species on their origins. Nature,
474(7350), 153–154. https://doi.org/10.1038/474153a
De la Peña, M. R. (2002). Nuevas observaciones en la
alimentación de las aves. Revista FAVE, 1(2), 59–64.
https://doi.org/10.14409/favecv.v1i2.1377
Delucchi, G. (2006). Las especies vegetales amenazadas
de la Provincia de Buenos Aires: Una actualización.
APRONA Boletín Científico, 39, 19–31.
Doumecq, M. B., & Arenas, P. M. (2018). ¿Qué madera
es buena para leña? Conocimiento botánico local
en “leñeras” del partido de La Plata (Buenos Aires,
Argentina). Boletín Sociedad Argentina de Botánica,
53(3), 491–506. https://doi.org/10.31055/1851.2372.
v53.n3.21322
Franco, M. G., Plaza-Behr, M. C., Medina, M., Pérez, C.,
Mundo, I. A., Cellini, J. M., & Arturi, M. F. (2018).
Talares del NE bonaerense con presencia de Ligus-
trum lucidum: Cambios en la estructura y la dinámica
del bosque. Ecología Austral, 28(3), 502–512. https://
doi.org/10.25260/EA.18.28.3.0.684
Frediani, J. C. (2013). La problemática del hábitat informal
en áreas periurbanas del partido de La Plata. Revista
Universitaria de Geografía, 22(1-2), 43–67.
Fontes, C. (2015). Control de Ligustro y otras leñosas en
el área protegida Humedales de Santa Lucía. En A.
Aber, S. Zerbino, J. F. Porcile, R. Seguí, & R. Balero
(Eds.), Especies exóticas invasoras leñosas: experiencias
de control (pp. 38–42). Comité de Especies Exóticas
Invasoras, MVOTMA.
19
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
Fundación de Historia Natural Félix de Azara. (2006a).
Conclusiones de la comisión: Talares del SE de la pro-
vincia de Buenos Aires. Jornadas por la conservación
de los talares bonaerenses 2004. En E. Mérida, & J.
Athor (Eds.), Talares bonaerenses y su conservación
(pp. 35–36). Fundación de Historia Natural Félix de
Azara.
Fundación de Historia Natural Félix de Azara. (2006b).
Conclusiones de la comisión: Áreas prioritarias para
la conservación de talares. Jornadas por la conserva-
ción de los talares bonaerenses 2004. En E. Mérida, &
J. Athor (Eds.), Talares bonaerenses y su conservación
(pp. 102–105). Fundación de Historia Natural Félix
de Azara.
Goya, J. F., Placci, L. G., Arturi, M. F., & Brown, A. D.
(1992). Distribución y características estructurales de
los talares de la Reserva de Biosfera “Parque Costero
del Sur”. Revista de la Facultad de Agronomía de La
Plata, 68(1), 53–64.
Guerrero, E. L. (2019). Los talares de Zárate (provincia
de Buenos Aires, Argentina). Una historia de pér-
didas y un futuro comprometido. Revista del Museo
Argentino de Ciencias Naturales, 21(1), 29–44. https://
ri.conicet.gov.ar/bitstream/handle/11336/119335/
CONICET_Digital_Nro.9dddba8f-936d-4349-a9b5-
f6646ab69df1_A.pdf?sequence=2&isAllowed=y
Guidetti, B. Y. (2020). Servicios ecosistémicos brindados
por aves frugívoras dispersoras de semillas en bosques
con ganadería extensiva del Espinal de la provincia de
Entre Ríos. [Tesis doctoral, Universidad Nacional del
Nordeste]. Repositorio Institucional UNNE. https://
repositorio.unne.edu.ar/handle/123456789/27734
Hobbs, R. J., Higgs, E. S., & Hall, C. M. (2013). Defining
novel ecosystems. In R. J. Hobbs, E. S. Higgs, & C. M.
Halls (Eds.), Novel ecosystems: intervening in the new
ecological world order (pp. 58–60). Wiley-Blackwell.
https://doi.org/10.1002/9781118354186.ch6.
Instituto Nacional de Estadística y Censos. (2012a). Censo
Nacional de Población, Hogares y Viviendas 2010:
Censo del Bicentenario: Resultados definitivos, Serie B
nº2. Tomo 1.
Instituto Nacional de Estadística y Censos. (2012b). Censo
nacional de población, hogares y viviendas 2010: censo
del Bicentenario: resultados definitivos, Serie B nº2.
Tomo 2 .
Instituto Nacional de Estadística y Censos. (2016). Anuario
Estadístico de la República Argentina 2016 (1a ed.
Adaptada).
Lugo, A. E. (1997). The apparent paradox of reestablishing
richness species on degraded lands with tree monocul-
tures. Forest Ecology and Management, 99(1-2), 9–19.
https://doi.org/10.1016/S0378-1127(97)00191-6
Manuel-Navarrete, D., Gallopin, G., & Blanco, M.
(2009). Multi-causal and integrated assessment of
sustainability: the case of agriculturization in the
Argentine Pampas. Environment, Development & Sus-
tainability, 11, 621–638. http://dx.doi.org/10.1007/
s10668-007-9133-0
Matteucci, S. D. (2012). Ecorregión Pampa. En J. Morello,
S. D. Matteucci, A. F. Rodríguez, & M. E. Silva (Eds.),
Ecorregiones y Complejos Ecosistémicos de Argentina
(pp. 391–445). Orientación Gráfica Editora.
Matteucci, S. D., & Morello, J. (2009). Environmental con-
sequences of exurban expansion in an agricultural
area: the case of the argentinian Pampas ecorre-
gion. Urban Ecosystems, 12, 287–310. http://dx.doi.
org/10.1007/s11252-009-0093-z
Mazzolarri, A. C., Comparatore, V. M., & Bedmar, F. (2011).
Control of elmleaf blackberry invasion in a natural
reserve in Argentina. Journal for Nature Conser-
vation, 19(3), 185–191. http://dx.doi.org/10.1016/j.
jnc.2010.12.002
Miller, J. R., & Bestelmeyer, B. T. (2016). Whats wrong with
novel ecosystems, really? Restoration Ecology, 24(5),
577–582. https://doi.org/10.1111/rec.12378
Morello, J. (2006). Acciones urbanas y conservación de
talares: Un marco de negociación. En E. Mérida, &
J. Athor (Eds.), Talares bonaerenses y su conservación
(pp. 16–31). Fundación de Historia Natural Félix de
Azara.
Morello, J., & Mateucci, S. D. (2000). Singularidades territo-
riales y problemas ambientales en un país asimétrico y
terminal. Realidad Económica, 169, 70–93.
Murriello, S., Arturi, M. F., & Brown, A. D. (1993). Feno-
logía de las especies arbóreas de los talares del este
de la provincia de Buenos Aires. Ecología Austral,
3(1), 25–31.
Paleo, M. C., Páez, M. M., & Pérez-Meroni, M. (2002). Con-
diciones ambientales y ocupación humana durante el
Holoceno tardío en el litoral fluvial bonaerense. En
D. Mazzanti, M. Berón, & F. Oliva (Eds.), Del Mar a
los Salitrales (pp. 365–376). Universidad Nacional de
Mar del Plata.
Parodi, L. R. (1940). La distribución geográfica de los
talares en la Provincia de Buenos Aires. Darwiniana,
4(1), 33–56.
Parrotta, J. A. (1992). The role of plantation forest in reha-
bilitating degraded tropical ecosystems. Agriculture,
Ecosystems & Environment, 41(2), 115–133. https://
doi.org/10.1016/0167-8809(92)90105-K
Pinkas, L. (1971). Food habits study. In L. Pinkas, M. S.
Oliphant, & I. L. K. Iverson (Eds.), Fish Bulletin 152.
Food habits of albacore, bluefin tuna, and bonito in
California waters (pp. 5–10). State of California:
Department of Fish and Game.
20 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57706, enero-diciembre 2024 (Publicado Dic. 02, 2024)
Plaza-Behr, M. C., Pérez, C. A., Goya, J. F., Azcona, M.,
& Arturi, M. F. (2016). Plantación de Celtis ehren-
bergiana como técnica de recuperación de bosques
invadidos por Ligustrum lucidum en los talares del
NE de Buenos Aires. Ecología Austral, 26(2), 171–
177.https://doi.org/10.25260/EA.16.26.2.0.176
Pochettino, M. L., Paleo, M. C., Paez, M. M., Doumecq, M.
B., Ghiani, E., & Naiquen, M. (2014). Dos mil años
de historia del litoral bonaerense relatados por el tala.
Abordaje interdisciplinar del Celtis ehrenbergiana
(Klotzsch) Liebm. como patrimonio biocultural a
través del tiempo en el litoral bonaerense (República
Argentina). En F. H. Molina, J. A. Hurrel, F. Tarifa-
García, & J. E. Hernández-Bermejo (Eds.), Huellas
inéditas del VI Congreso Internacional de Etnobotánica
(pp. 159–171). Editorial Universidad de Córdoba.
Ribichich, A. M. (1996). Celtis tala PLANCHON (Ulmaceae
s.l.) seedling establishment on contrasting soils and
microdisturbances: A greenhouse trial concerning
adults’ field distribution pattern. Flora, 191(4), 321–
327. https://doi.org/10.1016/S0367-2530(17)30734-X
Ribichich, A. M., & Protomastro, J. (1998). Woody vege-
tation structure of xeric forest stands under different
edaphic site conditions and disturbance histories
in the Biosphere Reserve “Parque Costero del Sur”,
Argentina. Plant Ecology, 139, 189–201. https://doi.
org/10.1023/A:1009718819857
Seastedt, T. R., Hobbs, R. J., & Suding, K. N. (2008). Mana-
gement of novel ecosystems: are novel approaches
required? Frontiers in the Ecology and the Environ-
ment, 6(10), 547–553. https://doi.org/10.1890/070046
Simberloff, D. (2011). Non-natives: 141 scientists object.
Nature, 475, 36. https://doi.org/10.1038/475036a
Sosa, B., Caballero, N., Fernández, G., & Achkar, M. (2015).
Control de la especie invasora Gleditsia triacanthos
en el Parque Nacional Esteros de Farrapos e Islas del
Río Uruguay. En A. Aber, S. Zerbino, J. F. Porcile, R.
Seguí, & R. Balero (Eds.), Especies exóticas invasoras
leñosas: experiencias de control (pp. 31–35). Comité de
Especies Exóticas Invasoras: Ministerio de Vivienda,
Ordenamiento Territorial y Medio Ambiente.
StatSoft. (2007). STATISTICA (Version 8.0) [Data analysis
software system]. StatSoft. https://www.statsoft.com
Systat Software. (2006). SigmaPlot for Windows (Version
10.0) [Computer software]. Systat Software. https://
www.systat.com
Torres-Robles, S. S. (2009). Variación geográfica de la com-
posición y riqueza de plantas vasculares en los talares
bonaerenses y su relación con el clima, sustrato, estruc-
tura del paisaje y uso. [Tesis doctoral, Universidad
Nacional de La Plata]. Repositorio Institucional de la
UNPL. https://doi.org/10.35537/10915/55171
Torresin, J., Zamboni, A., Pamela, L., Sione, W. F., Rodri-
guez, E. E., & Aceñolaza, P. G. (2013). Modelado de
la distribución espacial de árboles exóticos invasores
(AEI) en el Parque Nacional Pre-Delta (Entre Ríos,
Argentina). Multequina, 22(1), 3–13.
Traveset, A. (2015). Impacto de las especies exóticas
sobre las comunidades mediado por interacciones
mutualistas. Ecosistemas, 24(1), 67–75. https://doi.
org/10.7818/ECOS.2015.24-1.11
Vargas-Monter, J. (2012). Tecnologías alimenticias a base
de morera (Morus spp.) en los sistemas de producción
animal. En A. Rodríguez-Ortega, J. Vargas-Monter, A.
Ventura-Maza, A. Martínez-Menchaca, J. Rodríguez-
Martínez, M. Ehsan, & F. M. Lara-Viveros (Eds.),
Tópicos selectos de sericultura: Memoria de los talleres
del proyecto Fomix-Hídalgo 2009-131264 (pp. 41–56).
Universidad Politécnica de Francisco I. Madero.
Vergara-Tabares, D. L., Blendinger, P. G., Tello, A., Peluc,
S. I., & Tecco, P. A. (2022). Fleshy-fruited invasive
shrubs indirectly increase tree see dispersal. Oikos,
(2), 1–9. https://doi.org/10.1111/oik.08311
Weyland, F., Baudry, J., & Ghersa, C. M. (2014). Rolling
Pampas agroecosystem: which landscape attributes
are relevant for determining bird distributions. Revis-
ta Chilena de Historia Natural, 87(1), 1–12. http://
dx.doi.org/10.1186/0717-6317-87-1
Wilcox, M. (2000). Tree privet (Ligustrum lucidum) a con-
troversial plant. Auckland Botanical Society Journal,
55(2), 72–74.
Zagel, M. A. (2006). Situación de los talares de la barranca
del Paraná, desde el partido de Escobar hasta el par-
tido de San Pedro. En E. Mérida, & J. Athor (Eds.),
Talares bonaerenses y su conservación (pp. 92–97).
Fundación de Historia Natural Félix de Azara.