10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e57898, enero-diciembre 2024 (Publicado Set. 17, 2024)
De Smet, J., Wynants, E., Cos, P., & Van Campenhout, L.
(2018). Microbial Community Dynamics during Rea-
ring of Black Soldier Fly Larvae (Hermetia illucens)
and Impact on Exploitation Potential. Applied and
Environmental Microbiology, 84(9).
Dehghani, R., Asadi, M. A., Charkhloo, E., Mostafaie, G.,
Saffari, M., Mousavi, G. A., Pourbabaei, M., Dehgha-
ni, R., Asadi, M. A., Charkhloo, E., Mostafaie, G.,
Saffari, M., Mousavi, G. A., & Pourbabaei, M. (2012).
Identification of Fungal Communities in Producing
Compost by Windrow Method. Journal of Environ-
mental Protection, 3(1), 61–67.
Deshpande, V., Wang, Q., Greenfield, P., Charleston, M.,
Porras-Alfaro, A., Kuske, C. R., Cole, J. R., Midgley,
D. J., & Tran-Dinh, N. (2016). Fungal identification
using a Bayesian classifier and the Warcup training set
of internal transcribed spacer sequences. Mycologia,
108(1), 1–5.
Di Piazza, S., Houbraken, J., Meijer, M., Cecchi, G., Kraak,
B., Rosa, E., & Zotti, M. (2020). Thermotolerant and
Thermophilic Mycobiota in Different Steps of Com-
post Maturation. Microorganisms, 8(6), 880.
Diener, S., Zurbrügg, C., & Tockner, K. (2009). Conversion
of organic material by black soldier fly larvae: esta-
blishing optimal feeding rates. Waste Management &
Research, 27(6), 603–610.
El Hayany, B., El Fels, L., Kouisni, L., Yasri, A., & Hafidi,
M. (2022). An insight into role of microorganisms
in composting and its applications in agriculture.
Microbial Biotechnology for Sustainable Agriculture,
1, 1185–203.
Fletcher, E., Feizi, A., Kim, S. S., Siewers, V., & Nielsen, J.
(2015). RNA-seq analysis of Pichia anomala reveals
important mechanisms required for survival at low
pH. Microbial Cell Factories, 14(1), 1–11.
França, R. C., Conceição, F. R., Mendonça, M., Haubert, L.,
Sabadin, G., de Oliveira, P. D., Amaral, M. G., Silva,
W. P. da, & Moreira, Â. N. (2015). Pichia pastoris X-33
has probiotic properties with remarkable antibacterial
activity against Salmonella Typhimurium. Applied
Microbiology and Biotechnology, 99(19), 7953–7961.
Furtado, J., Siles, X., & Campos, H. (2009). Carotenoid
concentrations in vegetables and fruits common to
the Costa Rican diet. International Journal of Food
Sciences and Nutrition, 55(2), 101–113.
Gabriel, R., Mueller, R., Floerl, L., Hopson, C., Harth, S.,
Schuerg, T., Fleissner, A., & Singer, S. W. (2021).
CAZymes from the thermophilic fungus Thermoas-
cus aurantiacus are induced by C5 and C6 sugars.
Biotechnology for Biofuels, 14(1), 169.
Gil-Rodríguez, A. M., & Garcia-Gutierrez, E. (2021). Anti-
microbial mechanisms and applications of yeasts.
Advances in Applied Microbiology, 114, 37–72.
Golubev, W. I. (2006). Antagonistic Interactions Among
Yeasts. In G. Péter, C. Rosa (Eds.), Biodiversity and
Ecophysiology of Yeasts (197–219). Springer.
Guilhot, R., Xué, A., Lagmairi, A., Olazcuaga, L., & Fellous,
S. (2023). Microbiota acquisition and transmission in
Drosophila flies. ISCIENCE, 26, 107656.
Guo, G., Tian, F., Zhao, Y., Tang, M., Liu, W., Liu, C., Xue, S.,
Kong, W., Sun, Y., & Wang, S. (2019). Aerobic deco-
lorization and detoxification of Acid Scarlet GR by a
newly isolated salt-tolerant yeast strain Galactomyces
geotrichum GG. International Biodeterioration & Bio-
degradation, 145, 104818.
Gusmão, D. S., Santos, A. V., Marini, D. C., Bacci, M.,
Berbert-Molina, M. A., & Lemos, F. J. A. (2010).
Culture-dependent and culture-independent charac-
terization of microorganisms associated with Aedes
aegypti (Diptera: Culicidae) (L.) and dynamics of
bacterial colonization in the midgut. Acta Tropica,
115(3), 275–281.
Hamby, K. A., Hernández, A., Boundy-Mills, K., & Zalom,
F. G. (2012). Associations of yeasts with spotted-wing
Drosophila (Drosophila suzukii; Diptera: Drosophili-
dae) in cherries and raspberries. Applied and Environ-
mental Microbiology, 78(14), 4869–4873.
Hemidat, S., Jaar, M., Nassour, A., & Nelles, M. (2018).
Monitoring of Composting Process Parameters: A
Case Study in Jordan. Waste and Biomass Valoriza-
tion, 9(12), 2257–2274.
IJdema, F., De Smet, J., Crauwels, S., Lievens, B., & Van
Campenhout, L. (2022). Meta-analysis of larvae of
the black soldier fly (Hermetia illucens) microbiota
based on 16S rRNA gene amplicon sequencing. FEMS
Microbiology Ecology, 98(9).
Jiang, C. L., Jin, W. Z., Tao, X. H., Zhang, Q., Zhu, J., Feng,
S. Y., Xu, X. H., Li, H. Y., Wang, Z. H., & Zhang, Z.
J. (2019). Black soldier fly larvae (Hermetia illucens)
strengthen the metabolic function of food waste
biodegradation by gut microbiome. Microbial Biote-
chnology, 12(3), 528–543.
Joosten, L., Lecocq, A., Jensen, A. B., Haenen, O., Schmitt,
E., & Eilenberg, J. (2020). Review of insect pathogen
risks for the black soldier fly (Hermetia illucens) and
guidelines for reliable production. Entomologia Expe-
rimentalis et Applicata, 168(6–7), 432–447.
Kannan, M., Vitenberg, T., Ben-Mordechai, L., Khatib, S., &
Opatovsky, I. (2023). Effect of yeast supplementation
on growth parameters and metabolomics of black
soldier fly larvae, Hermetia illucens (L.) (Diptera:
Stratiomyidae). Journal of Insects as Food and Feed,
19(1), 1–12.
Kaya, C., Generalovic, T. N., Ståhls, G., Hauser, M., Sama-
yoa, A. C., Nunes-Silva, C. G., Roxburgh, H., Wohl-
fahrt, J., Ewusie, E. A., Kenis, M., Hanboonsong, Y.,
Orozco, J., Carrejo, N., Nakamura, S., Gasco, L., Rojo,