
19
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e57971, enero-diciembre 2025 (Publicado Mar. 19, 2025)
García-Puerta, Y. E., Vásquez-Brenes, P. A., Calvo-Alpízar,
J. G., Barboza-Chinchilla, L. A., Sánchez-Peña, F.
A., Rivas-Chaves, T., Mery-Valdovinos, G. A., &
Pérez-Rosales, M. D. (2023). Modelos matemáticos y
análisis estadísticos implementados para el estudio de
Covid19 en Costa Rica. Organización Panamericana
de la Salud.
Grantz, K. H., Lee, E. C., McGowan, L. D., Lee, K. H.,
Metcalf, C. J. E., Gurley, E. S., & Lessler, J. (2021).
Maximizing and evaluating the impact of test-trace-
isolate programs: A modeling study. PLoS Medici-
ne, 18(4), e1003585. https://doi.org/10.1371/journal.
pmed.1003585
Haigh, K. Z., & Gandhi, M. (2021). COVID-19 Mitigation
with appropriate safety measures in an essential
workplace: lessons for opening work settings in the
United States during COVID-19. Open Forum Infec-
tious Diseases, 8(4), ofab086. https://doi.org/10.1093/
ofid/ofab086
He, X., Lau, E. H. Y., Wu, P., Deng, X., Wang, J., Hao, X.,
Lau, Y. C., Wong, J. Y., Guan, Y., Tan, X., Mo, X., Chen,
Y., Liao, B., Chen, W., Hu, F., Zhang, Q., Zhong, M.,
Wu, Y., Zhao, L., … Leung, G. M. (2020). Temporal
dynamics in viral shedding and transmissibility of
COVID-19. Nature Medicine, 26, 672–675 https://doi.
org/10.1038/s41591-020-0869-5
Huang, C., Wang, M., Rafaqat, W., Shabbir, S., Lian, L.,
Zhang, J., Lo, S., & Song, W. (2022). Data-driven
test strategy for COVID-19 using machine learning:
A study in Lahore, Pakistan. Socio-Economic Plan-
ning Sciences, 80, 101091. https://doi.org/10.1016/j.
seps.2021.101091
Jehi, L., Ji, X., Milinovich, A., Erzurum, S., Rubin, B. P.,
Gordon, S., Young, J. B., & Kattan, M. W. (2020).
Individualizing risk prediction for positive coronavi-
rus disease 2019 testing: results from 11 672 patients.
Chest, 158(4), 1364–1375. https://doi.org/10.1016/j.
chest.2020.05.580
Kırkızlar, E., Faissol, D. M., Griffin, P. M., & Swann, J. L.
(2010). Timing of testing and treatment for asymp-
tomatic diseases. Mathematical Biosciences, 226(1),
28–37. https://doi.org/10.1016/j.mbs.2010.03.007
Larremore, D. B., Wilder, B., Lester, E., Shehata, S., Burke,
J. M., Hay, J. A., Tambe, M., Mina, M. J., & Parker, R.
(2021). Test sensitivity is secondary to frequency and
turnaround time for COVID-19 screening. Science
Advances, 7(1), eabd5393. https://doi.org/10.1126/
sciadv.abd5393
Mercer, T. R., & Salit, M. (2021). Testing at scale during
the COVID-19 pandemic. Nature Reviews Gene-
tics, 22(7), 415–426. https://doi.org/10.1038/
s41576-021-00360-w
Millioni, R., & Mortarino, C. (2021). Test Groups, not
individuals: A review of the pooling approaches for
SARS-CoV-2 diagnosis. Diagnostics, 11(1), 68. https://
doi.org/10.3390/diagnostics11010068
Ministerio de Salud Costa Rica. (2021a). Informe de Gestión
2020-2021. Ministerio de Salud (MINSA).
Ministerio de Salud Costa Rica. (2021b). LS-SS-012. Linea-
mientos generales para el uso de pruebas alternativas
(antígeno, pruebas moleculares isotérmicas) al estándar
de oro (RT- PCR) para el diagnóstico de COVID-19.
Ministerio de Salud (MINSA).
Ministerio de Salud Costa Rica. (2022). LS-VS-001. Linea-
mientos Nacionales para la Vigilancia de la enfermedad
COVID-19 (versión 26) (LS-VS-001-26). Ministerio de
Salud (MINSA).
Nagura-Ikeda, M., Imai, K., Tabata, S., Miyoshi, K., Mura-
hara, N., Mizuno, T., Horiuchi, M., Kato, K., Imoto, Y.,
Iwata, M., Mimura, S., Ito, T., Tamura, K., & Kato, Y.
(2020). Clinical evaluation of self-collected saliva by
quantitative reverse transcription-PCR (RT-qPCR),
direct RT-qPCR, reverse transcription-loop-mediated
isothermal amplification, and a rapid antigen test
to diagnose COVID-19. Journal of Clinical Micro-
biology, 58(9), e01438-20. https://doi.org/10.1128/
JCM.01438-20
Núñez-Corrales, S., & Jakobsson, E. (2020). The epi-
demiology workbench: A tool for communities to
strategize in response to COVID-19 and other infec-
tious diseases. medRxiv, 2020, 20159798. https://doi.
org/10.1101/2020.07.22.20159798
Oran, D. P., & Topol, E. J. (2020). Prevalence of asymptoma-
tic SARS-CoV-2 infection: A narrative review. Annals
of Internal Medicine, 173(5), 362–367. https://doi.
org/10.7326/M20-3012
Oran, D. P., & Topol, E. J. (2021). The proportion of SARS-
CoV-2 infections that are asymptomatic: A systematic
review. Annals of Internal Medicine, 174(5), 655–662.
https://doi.org/10.7326/M20-6976
Österdahl, M. F., Lee, K. A., Lochlainn, M. N., Wilson, S.,
Douthwaite, S., Horsfall, R., Sheedy, A., Goldenberg,
S. D., Stanley, C. J., Spector, T. D., & Steves, C. J.
(2020). Detecting SARS-CoV-2 at point of care: Pre-
liminary data comparing loop-mediated isothermal
amplification (LAMP) to polymerase chain reaction
(PCR). BMC Infectious Diseases, 20, 783. https://doi.
org/10.1186/s12879-020-05484-8
Peeling, R. W., Olliaro, P. L., Boeras, D. I., & Fongwen,
N. (2021). Scaling up COVID-19 rapid antigen
tests: Promises and challenges. The Lancet Infectious
Diseases, 21(9), e290–e295. https://doi.org/10.1016/
S1473-3099(21)00048-7
Plantes, P. J., Fragala, M. S., Clarke, C., Goldberg, Z. N.,
Radcliff, J., & Goldberg, S. E. (2021). Model for
mitigation of workplace transmission of COVID-19
through population-based testing and surveillance.