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ABSTRACT
Introduction: Costa Rica is committed to addressing environmental issues by involving a range of strategies and 
policies, with goals of sustainability and conservation. Nonetheless, addressing many challenges remains neces-
sary, with the prominent issue of illegal activities, such as logging and land use change. 
Objective: To evaluate the direct detection capacity of tree cover losses caused by logging within the various 
land uses of the landscape, and their relationship with physical variables of the environment such as slope and 
proximity to the road network using remote sensing techniques. 
Methods: Tree cover losses were detected using time series analysis of the Normalized Difference Vegetation 
Index (NDVI) from Landsat and Sentinel images (S2) through the Breaks for Additive Season and Trend 
(BFAST) algorithm in The Golfo Dulce Forest Reserve (RFGD) and the Amistosa Biological Corridor (CBA). 
Selected sites where logging was detected were physically visited in the field and inspected using Unmanned 
Aerial Vehicles (UAVs). The results were analyzed through confusion matrices to determine the algorithms 
accuracy to detect illegal logging. 
Results: The study highlighted a significant relationship between NDVI change and logging activities on the 
ground. In areas with major NDVI changes (less than -500), the model accuracy was greater than 75 %. In addi-
tion, there is a significant relationship between logged areas and slope, and distance to roads. 
Conclusions: The proposed methodological approach allows identifying forest cover logging activities in space 
and time. It could be adopted and complement field operations to improve monitoring of illegal logging.
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RESUMEN
Cambios espacio-temporales para la conservación de recursos naturales y el monitoreo de la tala ilegal 

mediante el algoritmo Quiebres por temporada y tendencia aditiva (BFAST) en Costa Rica

Introducción: Costa Rica es un país comprometido en tratar temas ambientales, involucrando estrategias y polí-
ticas con objetivos de sostenibilidad y conservación. Sin embargo, aún se requiere trabajar en soluciones a varios 
problemas, entre los que se destacan actividades ilegales como la tala y el cambio de uso de suelo. 
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INTRODUCTION

Costa Rica has set ambitious targets for 
protecting its environment and strong emphasis 
on preserving its rich biodiversity. With around 
702 366 hectares of secondary forest (Sistema 
Nacional de Áreas de Conservación [SINAC], 
2015) and more than 25 % of its territory allo-
cated to protected areas (Marx et al., 2017), 
Costa Rica is internationally recognized as an 
example for environmental protection. As for 
example, the national system for Payment for 
Environmental Services serves as a model for 
other countries seeking to balance economic 
development with environmental conservation 
(Le Coq et al., 2015). However, to consolidate 
the progress of national resources conserva-
tion, it is necessary to work on solutions to 
several problems, among which the prevalence 
of illegal activities such as logging and land use 
change and structural problems in territories 
where the rural population is concentrated and 
where nature conservation is a priority (Minis-
terio de Ambiente y Energía [MINAE], 2015).

In recent years, technical advances in the 
field of remote sensing and earth observation 
allowed the development and use of revolu-
tionary methods for monitoring forest cover 
dynamics and landscape changes (Cipta et al., 

2019; Marx et al., 2017; Yin et al., 2018). Among 
the technologies used, Synthetic Aperture Radar 
sensors (Hoekman et al., 2020), optical sensors 
(Coulter et al., 2016), data fusion of both types 
and the use of time series (Muñoz et al., 2020) 
have been successfully implemented and dem-
onstrated useful results. On the other hand, 
among the data used today, the Normalized 
Difference Vegetation Index (NDVI) stands out 
for its importance, since it allows analyzing the 
vigor of the vegetation as well as monitoring 
and predicting the dynamics of the vegetation 
(Huang et al., 2021; Zhang et al., 2016).

When analyzing the NDVI through time 
series, it is possible to identify three categories 
of changes: seasonal, gradual and abrupt (Ver-
besselt et al., 2010). The seasonal changes are 
due to the natural variability of the reflectance 
according to the phenological cycles of the 
plants. Gradual changes occur due to slow envi-
ronmental events, such as climate change, pest 
and diseases or anthropogenic actions such as 
“socola” (Wu et al., 2018). Finally, abrupt chang-
es are due to sudden events that affect coverage, 
such as landslides or forest exploitation.

The detecting and monitoring land use/
land cover (LULC) changes is crucial (Ngadi, 
et al., 2023). These changes can be detected by 
the algorithm of Breaks for Additive Season 

Objetivo: Evaluar la capacidad de detección directa de las pérdidas de cobertura arbórea dentro de los diversos 
usos de suelo de un paisaje debido a la tala, y su relación con variables físicas del entorno como pendiente y 
proximidad a la red vial mediante técnicas de teledetección. 
Métodos: Las pérdidas de cobertura arbórea se detectaron mediante series temporales del Índice de Vegetación 
de Diferencia Normalizada (NDVI) en imágenes Landsat y Sentinel a través del algoritmo Breaks for Additive 
Season and Trend (BFAST) en la Reserva Forestal Golfo Dulce (RFGD) y el Corredor Biológico Amistosa (CBA). 
Los sitios seleccionados donde se detectó tala fueron visitados físicamente en el campo e inspeccionados utili-
zando vehículos aéreos no tripulados (UAVs). Los resultados se analizaron mediante matrices de confusión para 
determinar la precisión del algoritmo en detectar la tala ilegal. 
Resultados: El estudio resaltó que existe una relación entre el cambio de NDVI detectado y la existencia de tala 
en campo. En las áreas con cambios en el NDVI inferiores a -500 se obtuvo una precisión global superior al 75 % 
de modelo. Además, existe una relación entre las áreas taladas y la pendiente del terreno, así como su distancia 
a las vías de acceso. 
Conclusiones: La metodología propuesta permite identificar actividad de tala de la cobertura forestal en espacio 
y tiempo. Adoptar esta metodología e integrarla en las labores de monitoreo dentro de las instituciones guberna-
mentales permitirá un seguimiento más eficiente de la tala ilegal.

Palabras clave: deforestación; cambio de uso de la tierra; SEPAL; NDVI; sensores remotos.
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and Trend (BFAST) which allows the analysis 
of time series by decomposing them into trend 
and seasonality components to detect and char-
acterize changes in a definite period of time 
(Anoma-Kouassi et al., 2022). BFAST itera-
tively estimates the time and number of abrupt 
changes within time series and characterizes 
the change by its magnitude and direction (Ver-
besselt et al, 2010). Using this algorithm, time 
series can be analyzed from various sensors 
(for example, Landsat and Sentinel) and can be 
applied to disciplines such as hydrology, clima-
tology, and econometrics (Geng et al., 2019).

BFAST method detects significant seasonal 
changes in dense satellite image time series 
(SITS) by combining a high-speed algorithm 
with a time series similarity metric. Tested on 
various datasets, BFASTm-L2 effectively identi-
fies changes, especially those caused by large-
scale land acquisitions, outperforming existing 
algorithms in accuracy and speed crucial (Ngadi 
et al., 2023). BFAST can provide analysis of for-
est disturbances and resilience (Zhu et al., 2024) 
indicating that 20 % of forests in East, South, 
and Southeast Asia experienced disturbances 
from 2000 to 2022, with Southeast Asia being 
most affected. Notably, 95 % of forests showed 
robust resilience, often recovering within a few 
decades, with stronger resilience observed in 
forests experiencing greater disturbances.

This study evaluates the capacity of remote 
sensing applications to detect tree cover losses, 
logging and illegal logging in different land uses 
and landscapes by integrating time series analy-
sis of the Normalized Difference Vegetation 
Index from Landsat and Sentinel (S2) using the 
Breaks for Additive Season and Trend (BFAST) 
algorithm and field data. In addition, the study 
explores the potential of using remote sens-
ing information and physical variables such as 
slope and accessibility, to predict areas that are 
more vulnerable to illegal logging and then may 
benefit from stronger field and remote sensing 
monitoring. This aims at supporting national 
entities in their effort to prevent illegal logging 
and improve nature conservation.

MATERIALS AND METHODS

Study site: The study area corresponds to 
the Golfo Dulce Forest Reserve (RFGD), locat-
ed in the Osa conservation area (ACOSA) and 
the Amistosa Biological Corridor (CBA), that 
connects the Osa conservation area (ACOSA) 
and the Amistad-Pacific conservation area 
(ACLA-P) (Fig. 1). The RFGD (8º23’37”-
8º49’45” N & 83º15’53”-83º43’42” W) has an 
official extension of 59 915 ha. The climate of 
this area is characterized by an average annual 
temperature between 26 and 28 °C (Tapia, 
2011a) and an average annual rainfall that 
varies between 3 000 and 6 000 mm (Tapia, 
2011b). In the less humid parts, up to a dry 
month can be recorded.

As for the CBA (5º33’31”-9º01’32” N & 
83º13’46”-82º49’17” W), with an area of 92 913 
ha (SINAC, 2018), the climate in the corridor 
is characterized by an average annual tempera-
ture between 20 and 28 °C (Tapia, 2011a) and 
an average annual rainfall that varies between 
1 500 and 6 000 mm (Tapia, 2011b). In the dri-
est parts, from one month up to three months 
of dry season has been reported.

On the other hand, forestry activities are 
intense in both study sites since the diagnoses 
of the regulatory plans define this region as 
an area of great forest wealth, with more than 
40 timber species. According to field data 
campaigns, this caused 16 % of the forest to be 
logged between 1980 and 1995, further dividing 
an additional 3 %; being this area in great risk 
of being deforested (Roman & Angulo, 2013; 
Rosero-Bixby et al., 2002).

Implementation of the BFAST algorithm 
in SEPAL for change detection: Through the 
Sepal platform (Tondapu et al., 2018), a tempo-
ral analysis of the study area was carried out, in 
the period between June 1st, 2019 and Decem-
ber 31st, 2020 using the BFAST algorithm 
implemented through the BFAST GPU plugin. 
In the present study, a combined analysis was 
carried out between the Sentinel-2 and Landsat 
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8 images and the algorithm was programmed 
to detect monthly changes in the Normalized 
Vegetation Index (NDVI) on the surface of the 
area of study.

Random selection of sampling polygons 
and field control: Based on the results obtained 
by the algorithm, a review of the areas identi-
fied in SEPAL was carried out through the 
NICFI platform, which allows access to PLAN-
ET image mosaics. Based on this review, three 
categories of change were detected: Perma-
nence of tree cover, loss of non-tree vegetation 
and loss of tree cover. For each of the classes, a 
random selection of the polygons with a nega-
tive change in NDVI was carried to determine 
the sample that was field visited. Then, the 
formula recommended by Chuvieco (2010) to 
establish a validation sample for a quantitative 
variable was used, to calculate the number of 
polygons to visit in each class.

Once the negative polygons were deter-
mined, a random selection of the positive poly-
gons was carried out using the same number 
obtained for the negative areas. In total, 228 
polygons were selected within RFGD with a 
total area of 133.98 ha (Fig. 1), which represents 
2.81 % of the total area of the polygons identi-
fied by the algorithm in RFGD. In the case of 
CBA, 276 polygons with a total area of 216.78 
ha were selected (Fig. 1), which represents a 
sampling of 1.32 % of the total area of the poly-
gons identified by the algorithm.

Field measurements: Once the sampling 
areas were defined, each of the polygons to be 
checked in the field were visited by means of 
photogrammetric flights with UAVS at 120 m to 
determine the existence of logging signs within 
each area. According to the existence of infra-
structures for forest exploitation and reduc-
tion of the canopy in the field, each polygon 

Fig. 1. Location of the study sites. A. Golfo Dulce Forest Reserve (RFGD) located in the Osa conservation area (ACOSA). B. 
the Amistosa Biological Corridor (CBA).
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was assigned a damage category according 
to Table 1.

Algorithm validation and data analy-
sis: The results of the BFAST algorithm were 
validated using error matrices according to 
the results of the field control polygons. Any 
negative change in the NDVI detected by the 
algorithm was considered as a warning of loss 
of tree cover, while positive changes were con-
sidered as permanence or increase in canopy in 
each area. From the error matrices, the accu-
racy of the producer and the user was calcu-
lated for both classes, in addition to the total 
accuracy of each study area.

To determine the variables that influ-
ence the identification of areas where log-
ging was carried out, various factors between 
field aspects and computational data were ana-
lyzed. The relationship between the changes in 
the NDVI detected by the BFAST algorithm 
and the results obtained in the field was ana-
lyzed. For this, the mode of the pixels of the 
raster obtained after the implementation of 
the algorithm was calculated using QGIS 3.18 
(QGIS.org, 2021).

This information was compared with the 
information obtained in the field on the pres-
ence of logging signs in the polygon using a 
T-Test for independent samples in “R”. In order 
to study the relationship between the presence 
of logging in the field and the land use prior to 

logging, a supervised classification was carried 
out on the SEPAL platform of a mosaic gener-
ated for the 2019 year on the same platform and 
the results were compared using contingency 
tables and the calculation of Pearson’s Chi 
square statistic in “R” (R Core Team, 2021). 
Then, differences between land uses and dam-
age categories were analyzed through changes 
in NDVI using Analysis of Variances (ANO-
VAS) tests in “R”.

In order to contrast the distance from the 
polygon to the routes and access roads and the 
presence of signs of logging in these areas, said 
distance was and classified into three different 
categories: from 0 to 500 meters, from 500 to 1 
000 meters and more than 1 000 meters. With 
this classification, the distribution of frequen-
cies of the polygons with and without logging 
signs in said categories is compared using con-
tingency tables and the calculation of Pearson’s 
Chi-square statistic in “R”.

To determine the relationship between 
the polygons with logging signs and the slope 
percentage in these areas, firstly, the slope per-
centages were calculated from a Digital Eleva-
tion Model (DEM) obtained on the Copernicus 
platform. Then the mode of the raster pixels 
was associated with the slopes. Finally, it was 
compared with the information obtained in 
the field on the presence of logging signs in 
the polygon, using a T Test for independent 
samples in “R” (R Core Team, 2021).

Table 1
Diagrammatic scale of damage assessment.

Severity 
categories

Damage types

1 Place without loss of tree cover, there are no signs of any forest exploitation

2 There is a loss of tree cover due to the felling of individuals, there are signs of forest exploitation such as 
clearings and logging tracks

3 There is a loss of tree cover due to the felling of individuals and the creation of forest exploitation 
structures. Clearings, extraction tracks, skid trails and storage yards are observed

4 There is a loss of tree cover due to the felling of individuals and the creation of forest exploitation 
structures. Clearings, extraction tracks, skid trails and storage yards, loading yards and truck roads are 
observed.

5 The loss of tree cover causes a total change in land use in the area and the disappearance of the forest.
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RESULTS

Algorithm validation: The results show 
that for the Amistosa Biological Corridor 
(CBA), a general accuracy of 54.51 % was 
obtained by the algorithm, while for the Golfo 
Dulce Forest Reserve (RFGD) the accuracy was 
64.63 % when all negative changes detected in 
the NDVI were considered as lost in tree cover.

For the CBA, 35 polygons that were origi-
nally considered as polygons with loss of forest 
cover, in the field had indeed suffered type 2, 3, 
4 or 5 damage (Fig. 2A) and 103 did not suffer 
changes and had remained as forest cover. In 
the case of RFGD, of the 114 polygons classified 
by the algorithm as loss of forest cover, 46 have 
actually suffered changes, which were verified 
in the field, and 68 remained unchanged.

The cases presented where the algorithm 
detected a negative change in the NDVI, but 
no cut signs were found in the field, can be 
explained due to various changes in the reflec-
tivity of the canopy for reasons such as stress, 
seasonality, factors associated with the index, 
among others. The accuracy of the user of the 
tree cover loss class obtained for both CBA 
(25.36 %) and RFGD (40.35 %) shows that high 
possibilities are obtained of considering poly-
gons that have not suffered damage as logging 
areas when only the direction of change of the 
NDVI is taken into account. On the other hand, 
the accuracy of the user (92.45 %) of the class 
“no change” indicates that there are low prob-
abilities of classifying a polygon where a cut was 
carried out as “no change”.

Regarding the accuracy of the producer, 
there is a 51.24 % probability in CBA and a 
43.59 % probability in RFGD of incorrect-
ly classifying polygons that did not present 
changes within the logging class, when only 
taking into account the direction of change in 
the NDVI. However, despite the limitations 
presented, the algorithm is able to identify the 
logging of trees in various land uses such as 
wooded pastures (Fig. 2B).

Relation of the changes in the NDVI and 
the presence of logging in the field: There 
were differences between the polygons with 
and without signs of logging according to the 
direction and magnitude of the change in the 
NDVI for both CBA (p-value = 0.0002) and 
RFGD (p-value < 0.0001). The polygons where 
logging was carried out present much higher 
negative magnitudes of change compared to the 
polygons without change (Fig. 3).

Similarly, there are significant differences 
between the categories of damage observed in 
the field and the change in the NDVI calculated 
by the algorithm in both study areas (p-value 
= <0.0001). The greatest magnitude of change 
detected was present in the polygons under 
category 3 (Fig. 4).

Fig. 4 shows how the detected NDVI 
change increases from category 1 to category 
3 and then decreases from category 4 to 5. This 

Fig. 2. Polygon with signs of logging detected in the field. 
A. Logging signs in forest polygon. B. Logging signs in 
wooded pastures.
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may be due to the fact that categories 4 and 5 
have almost or completely lost their tree cover, 
which means that they have a reflectance simi-
lar to non-forested areas and that the change in 
NDVI is more stable and tends towards 0.

Most of the categories that imply the pres-
ence of logging (2, 3, 4 and 5) show NDVI 
changes below -500, which implies that areas 
with a value above -500 are more likely to 
represent polygons without changes (Fig. 4). 
Therefore, a validation was carried out again, 
considering as classified with the possibility of 
logging only those polygons where the algo-
rithm detected a negative change in the NDVI 
below -500. Using this new limit, the global 
accuracy increases to 75.82 % in the case of 
CBA and up to 75.82 % in the case of RFGD.

Relation of physical variables of the envi-
ronment and the presence of logging: There 

are no significant differences between the pres-
ence or not of logging according to the land 
use of each polygon (CBA: p-value = 0.8008, 
RFGD: p-value = 0.1205); however, the fre-
quency distribution shows that most of the cuts 
detected in the field occur within the forest 
category, followed by the pasture class.

The study shows that there is a significant 
relationship between logging and the distance 
to the roads in CBA (p-value= <0.0159) and 
RFGD (p-value= <0.0001) (Table 2).

The areas with the presence of logging 
decrease as the distance to the access roads 
increases, which coincides with the dynamics of 
logging on the site, since vehicle access is neces-
sary to carry out the extraction of the wood.

When analyzing the behavior within the 
class from 0 to 500 m, the same trend is 
observed in both zones, since the majority of 
polygons with presence of logging are located 

Fig. 3. Changes in the average NDVI according to the presence of logging signs. A. Amistosa Biological Corridor. B. Golfo 
Dulce Forest Reserve.

Fig. 4. Changes in the average NDVI according to damage category. A. Amistosa Biological Corridor. B. Golfo Dulce Forest 
Reserve.
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between 0 and 100 m, decreasing the frequency 
as the distance to the tracks increases (Fig. 5).

Regarding the relationship between the 
percentage of slope and tree cuts, the p-value 
obtained (< 0.0001) allows us to determine that 
land with a lower slope is more likely to be log 
(Fig. 6).

DISCUSSION

By associating the information generat-
ed through the methodology exposed in this 
paper, with the logging licenses granted in the 
area, it would be possible to create a digital 
monitoring system that allows to determine 
loggings that were carried out illegally. This sys-
tem could even include the information from 
the date of logged detected by the methodology, 
to the period of each logging license, so that it 
can be determined if, once the time of a license 
expires, illegal logging continues and could 
result in a possible change of land use.

Efforts to create similar systems are 
recorded worldwide. For example, Miomir et 

al. (2018), worked with the Minister of Science 
and Technological Development of the Repub-
lic of Serbia on forest inventories and illegal 
logging prevention in this country by analyzing 
NDVI changes in Landsat images from 2006 to 
2014. Also, Isaienkov et al. (2020), used Deep 
Learning in Sentinel 2 images to detect regular 
changes in Ukrainian forest ecosystems which 

Fig. 5. Relationship of the presence of signs of logging and distance from the area to the access roads within the category of 
0 to 500 m. A. Amistosa Biological Corridor. B. Golfo Dulce Forest Reserve.

Fig. 6. Percentage of average slope according to the presence 
of signs of logging.

Table 2
Relationship between the presence of logging and the distance to roads.

Distance from roads
CBA RFGD

Logging No changes Total Logging No changes Total
0 - 500 m 32 104 136 39 63 102
500 – 1 000 m 6 35 41 7 22 29
More than 1 000 m 5 62 67 5 71 76
Total 43 201 244 51 156 207
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develop in periodical and effective monitoring 
of changes in forest cover.

On the other hand, it is important to 
understand the limits of remote sensing tech-
nologies. While the models have the potential 
to be adopted and offer operational functions, 
it is important to highlight some characteristics 
and interpretation of NDVI in different condi-
tions. For example, that the algorithm detected 
negative changes in NDVI without trees being 
cut may be due to the seasonality of the area, 
that is, the changes that occur in the trees such 
as the loss of leaves, flowering and fruiting, 
depending on the season of the year in which 
it is found among other climatic and phys-
iographic characteristics (Olivares & López-
Beltrán, 2019). In addition, under drought and 
pest vegetation stress (Rimkus et al., 2017), 
the reflectance is changing (Sun et al., 2018). 
Therefore, this difference in spectral response 
can lead to negative changes in NDVI over time 
(Díaz, 2015). In addition, the spatial heteroge-
neity of the NDVI values in a particular region 
could also be influenced by the topography and 
environmental variables (Gómez, 2019).

Related to the factors associated with the 
index that can cause the identification of log-
ging that have not undergone any change, is 
that the NDVI has the drawback of being sen-
sitive to different climatic and environmental 
factors (Dong et al., 2021) like the reflectivity 
of the soil on which the vegetation is located, 
which limits its discrimination potential. For 
example, in an area with low density of veg-
etation, the reflectivity of a pixel would be 
determined mainly by the ground, with a small 
variation due to the presence of vegetation. In 
fact, this problem occurs more frequently when 
the vegetation cover is less than 50 % (Muñoz, 
2013). This would explain some of the cases 
where negative NDVI values were obtained 
in polygons where the trees had considerable 
distances, for example, in wooded pastures, or 
there were natural clearings within the forest, 
but no cutting of trees was detected in the field.

However, despite some limitations, the 
algorithm was able to identify tree logging even 
within wooded pastures. This shows why the 

NDVI continues to be recommended and is 
widely used to describe the spatio-temporal 
variation of vegetation cover in different ter-
restrial ecosystems (Meera et al., 2015), due 
to the long time series and global coverage, 
which makes this index one of the most suit-
able for characterizing the vegetation cover of 
a particular area (Ayhan et al., 2020) and also 
allows identifying changes and trends in a given 
period (Gómez, 2019; Usman et al., 2015).

At last, by integrating different data sourc-
es such as road network and terrain slope, it is 
possible to equip illegal monitoring activities 
with models that helps cost-effective methods 
and approaches and support nature conserva-
tion. In terms of the relation between forestry 
use and the distance to the road network, this 
study shows that most logged areas appear on a 
range from 0 m to 500 m which coincides with 
the average travel distance of 500 m necessary 
for an average productivity in wood harvesting 
labor (Cadei et al., 2020). The results obtained 
also coincides with López-Alegría et al. (2018), 
who analyzed and modeled spatial patterns of 
deforestation in the La Unión micro-basin in 
the municipality of Chiapa de Corzo, Chiapas, 
Mexico; and determined that there is a rela-
tionship between the distance of the roads and 
the probability of logging, since, the greater 
the road network, the greater the population 
density and therefore greater pressure on the 
production of the forests. This study also coin-
cides with that published by Pérez (2021), who 
determined that there is a relation between the 
distance to the road network and deforestation 
in the Pómac Forest Historic Sanctuary, Peru; 
and its buffer zone.

In terms of the relation between forestry 
use and the terrain slope, this study coincides 
with that reported by Putz et al. (2019), who 
studied the behavior of forest harvesting pro-
cesses in Indonesia, Gabon, Democratic Repub-
lic of Congo, Republic of Congo, Suriname and 
Mexico and determined that loggers tend to 
avoid steep slopes, largely due to the fact that 
said topography increases exploitation costs 
by requiring techniques and machinery that 
allow overcoming gravitational forces. Also, 
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Quispe (2021), studied deforestation patterns 
in the district of Nueva Requena (Peru) and 
coincide with this study since he determined 
that on slopes less than 20 % there was greater 
deforestation, with the trend on slopes being 
even more evident in areas with less than 11 %.

In conclusion, this study demonstrates how 
the implementation of the BFAST algorithm in 
the SEPAL platform allows for repeated infor-
mation on the location and period of forest 
cover logging in the study areas. The integra-
tion of the methodology used in this paper 
in the monitoring labors within institutions 
such as the National System of Conservation 
Areas of Costa Rica would allow governments 
to carry out more efficient monitoring of log-
ging within conservation areas and therefore 
decrease the country’s deforestation rate.

Ethics statement: the authors declare that 
they all agree with this publication and that 
they have made contributions that justify their 
authorship; that there is no conflict of interest 
of any kind; and that they have complied with 
all relevant ethical and legal requirements and 
procedures. All funding sources are fully and 
clearly detailed in the acknowledgments sec-
tion. The respective signed legal document is in 
the archives of the magazine.

ACKNOWLEDGMENTS

We thank the Regional of the Osa Con-
servation Area (ACOSA) from the National 
Conservation Areas System (SINAC) for the 
valuable accompaniment and assistance in the 
field. The SEPAL team for the assistance and 
development of the base code. The FAO costar-
ican country office for doing the link between 
PRIAS and the Forestry Office and FAO for the 
financing of this project.

REFERENCES

Anoma-Kouassi, C., Khan, D., Achille, L., Omifolaji, J. 
K., Espoire, M. M., Zhang, K., & Yang, X. (2022) 
Assessing change of Lamto Reserve Area Based on 
the MODIS time series data and bioclimatic factors 
using BFAST algorithms. American Journal of Plant 

Sciences, 13(4), 517–540. https://doi.org/10.4236/
ajps.2022.134034

Ayhan, B., Kwan, C., Budavari, B., Kwan, L., Lu, Y., Perez, 
D., Li, J., Skarlatos, D., & Vlachos, M. (2020). Vegeta-
tion detection using deep learning and conventional 
methods. Remote Sensing, 12(15), 2502. https://doi.
org/10.3390/rs12152502

Cadei, A., Mologni, O., Röser, D., Cavalli, R., & Grigolato, 
S. (2020). Forwarder productivity in salvage logging 
operations in difficult terrain. Forests, 11(3), 341. 
https://doi.org/10.3390/f11030341

Cipta, S., Suprihatin, S., Tarigan, S., & Effendi, H. (2019). 
Land use classification based on object and pixel using 
Landsat 8 OLI in Kendari City, Southeast Sulawesi 
Province, Indonesia. IOP Conference Series: Earth and 
Environmental Science, 284, 012019. https://doi.org 
/10.1088/1755-1315/284/1/012019

Coulter, L., Stow, D., Tsai, Y., Ibanez, N., Shih, H., Kerr, 
A., Benza, M., Weeks, J. R., & Mensah, F. (2016). 
Classification and assessment of land cover and land 
use change in Southern Ghana using dense stacks of 
landsat 7 ETM+ imagery. Remote Sensing of Envi-
ronment, 184, 396–409. https://doi.org/10.1016/j.
rse.2016.07.016

Chuvieco, E. (2010). Teledetección ambiental: La observa-
ción de la Tierra desde el espacio. Editorial Ariel.

Díaz, J. (2015). Estudio de índices de vegetación a partir de 
imágenes aéreas tomadas desde UAS/RPAS y aplicacio-
nes de estos a la agricultura de precisión [Master’s tesis] 
Universidad Complutense de Madrid. España.

Dong, Y., Yin, D., Li, X., Huang, J., Su, W., Li, X., & Wang, 
H. (2021). Spatial–temporal evolution of vegetation 
NDVI in association with climatic, environmental 
and anthropogenic factors in the Loess Plateau, China 
during 2000–2015: Quantitative analysis based on 
geographical detector model. Remote Sensing, 13(21), 
4380. https://doi.org/10.3390/rs13214380

Geng, L., Che, T., Wang, X., & Wang, H. (2019). Detec-
ting spatiotemporal changes in vegetation with the 
BFAST model in the Qilian mountain region during 
2000–2017. Remote Sensing, 11(2), 103. https://doi.
org/10.3390/rs11020103

Gómez, D. (2019). Variación espacial y temporal de la 
vegetación en Baja California Sur, con énfasis en Áreas 
Naturales Protegidas [Master’s tesis]. Centro de Inves-
tigaciones Biológicas del Noroeste, México.

Hoekman, D., Kooij, B., Quiñones, M., Vellekoop, S., 
Carolita, I., Budhiman, S., Arief, R., & Roswintiarti, 
O. (2020). Wide-area near-real-time monitoring of 
tropical forest degradation and deforestation using 
Sentinel-1. Remote Sensing, 12(19), 3263. https://doi.
org/10.3390/rs12193263



11Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e58329, enero-diciembre 2024 (Publicado Dic. 11, 2024)

Huang, S., Tang, L., Hupy, J., Wang, Y., & Shao, G. (2021). 
A commentary review on the use of normalized diffe-
rence vegetation index (NDVI) in the era of popular 
remote sensing. Journal of Forestry Research, 32, 1–6. 
https://doi.org/10.1007/s11676-020-01155-1

Isaienkov, K., Yushchuk, M., Khramtsov, V., & Seliverstov, 
O. (2020). Deep learning for regular change detection 
in Ukrainian forest ecosystem with sentinel-2. IEEE 
Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 14, 364–376.

Le Coq, J.-F., Froger, G., Pesche, D., Legrand, T., & Saenz, 
F. (2015). Understanding the governance of the 
Payment for Environmental Services Programme 
in Costa Rica: A policy process perspective. Ecosys-
tem Services, 16, 253–265. https://doi.org/10.1016/j.
ecoser.2015.10.003

López-Alegría, A., Ríos, M. J., Flamenco-Sandoval, A., & 
Farfán-Gutiérrez, M. (2018). Análisis y modelación 
espacial de los patrones de deforestación (2005-2025) 
en la microcuenca La Unión del municipio de Chia-
pa de Corzo, Chiapas. Sociedad y Ambiente, 18(7), 
117–143.

Marx, A., McFarlane, D., & Alzahrani, A. (2017). UAV 
data for multi-temporal Landsat analysis of historic 
reforestation: a case study in Costa Rica. International 
Journal of Remote Sensing, 38(8), 1–18. https://doi.org
/10.1080/01431161.2017.1280637

Meera, G., Parthiban, S., Thummalu, N., & Christy, A. 
(2015). NDVI: Vegetation change detection using 
remote sensing and Gis-A case study of Vellore 
district. Procedia Computer Science, 57, 1199–1210, 
https://doi.org/10.1016/j.procs.2015.07.415 

Ministerio de Ambiente y Energía. (2015). Estrategia Nacio-
nal REDD+ Costa Rica. MINAE, Costa Rica.

Miomir, J. M., Milanović, M. M., & Vračarević, B. R. (2018). 
Comparing NDVI and corine land cover as tools for 
improving national forest inventory updates and pre-
venting illegal logging in Serbia. In A. Sebata (Ed.), 
Vegetation (pp. 1–22). InTech.

Muñoz, P. (2013). Apuntes de teledetección: Índices de vege-
tación. Centro de Información de Recursos Naturales, 
Chile.

Muñoz, E., Zozaya, A., & Lindquist, E. (2020). Satellite 
remote sensing of forest degradation using NDFI 
and the BFAST algorithm. IEEE Latin America Tran-
sactions, 18(07), 1288–1295. https://doi.org/10.1109/
TLA.2020.9099771 

Ngadi, Y., Lebourgeois, V., Laques, A. E., Dieye, M., Bour-
goin, J., & Bégué, A. (2023). BFASTm-L2, an unsu-
pervised LULCC detection based on seasonal change 
detection-An application to large-scale land acqui-
sitions in Senegal. International Journal of Applied 
Earth Observation and Geoinformation, 121, 103379. 
https://doi.org/10.1016/j.jag.2023.103379

Olivares, B., & López-Beltrán, M. (2019). Índice de Vege-
tación Normalizada aplicado al territorio indígena 
agrícola de Kashaama, Venezuela. UNED Research 
Journal, 11(2), 112–121.

Pérez, N. (2021). Estimación de la deforestación en el 
Santuario Histórico Bosque de Pómac y su zona 
de amortiguamiento mediante modelos estocásticos 
y teledetección [Undergraduate’s tesis]. Universidad 
Nacional Mayor de San Marcos, Perú.

Putz, F. E., Baker, T., Griscom, B. W., Gopalakrishna, T., 
Roopsind, A., Umunay, P. M., Zalman, J., Ellis, A. 
E., Ruslandi, & Ellis, P. W. (2019). Intact forest in 
selective logging landscapes in the tropics. Frontiers 
in Forests and Global Change, 2, 30. https://doi.
org/10.3389/ffgc.2019.00030

QGIS.org (2021). QGIS geographic information system. 
Open-Source Geospatial Foundation Project. http://
qgis.org

Quispe, M. (2021). Simulación geoespacial de la tasa de 
deforestación al 2030 en el distrito de Nueva Requena-
Ucayali [Undergraduate’s tesis]. Universidad Agraria 
de la Selva, Perú.

R Core Team. (2021). R: A language and environment 
for statistical computing (Software). R Foundation 
for Statistical Computing. Vienna, Austria. https://
www.R-project.org/

Rimkus, E., Stonevicius, E., Kilpys, J., Maciulyte, V., & 
Valiukas, D. (2017). Drought identification in the 
eastern Baltic region using NDVI. Earth System 
Dynamics, 8(3), 627–637. https://doi.org/10.5194/
esd-8-627-2017

Roman, M., & Angulo, J. (2013). Panorama socioeconómico 
de los cantones de Osa y Golfito: tendencias y desafíos 
para el desarrollo sostenible. Stanford Woods Institute 
for the Environment.

Rosero-Bixby, L., Maldonado-Ulloa, T., & Bonilla-Carrión, 
R. (2002). Bosque y población en la Península de 
Osa, Costa Rica. Revista de Biología Tropical, 50(2), 
585–598.

Sistema Nacional de Áreas de Conservación. (2015). Car-
tografía base para el Inventario Forestal Nacional de 
Costa Rica 2013–2014. SINAC, Costa Rica.

Sistema Nacional de Áreas de Conservación. (2018). Corre-
dor Biológico Amistosa: Plan de Gestión 2018–2027. 
SINAC, Costa Rica.

Sun, Y., Ren, H., Zhang, T., Zhang, C., & Qin, Q. (2018). 
Crop leaf area index retrieval based on inverted 
difference vegetation index and NDVI. IEEE Geos-
cience and Remote Sensing Letters, 15(11), 1662–1666. 
https://doi.org/10.1109/lgrs.2018.2856765

Tapia, A. (2011a). Mapa digital de temperaturas promedio 
para Costa Rica. Instituto Meteorológico Nacional.



12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e58329, enero-diciembre 2024 (Publicado Dic. 11, 2024)

Tapia, A. (2011b). Mapa digital de precipitaciones promedio 
para Costa Rica. Instituto Meteorológico Nacional.

Tondapu, G., Markert, K., Lindquist, E. J., Wiell, D., Díaz, 
A. S. P., Johnson, G., Ashmall, W., Chishtie, F., Ate, 
P., Tenneson, K., Patterson, M. S., Ricci, S., Fonta-
narosa, R., & Saah, D. (2018). A SERVIR FAO open 
source partnership: Co-development of open source 
web technologies using Earth Observation for Land 
Cover Mapping. American Geophysical Union, 2018, 
IN21B-27

Usman, M., Liedl, R., Shahid, M. A., & Abbas, A. (2015). 
Land use/land cover classification and its change 
detection using multi-temporal MODIS NDVI data. 
Journal of Geographical Sciences, 25(12), 1479–1506. 
https://doi.org/10.1007/s11442-015-1247-y

Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, 
D. (2010). Detecting trend and seasonal changes in 
satellite image time series. Remote Sensing of Envi-
ronment, 114(1), 106–115. https://doi.org/10.1016/j.
rse.2009.08.014

Wu, Q., Liu, K., Song, C., Wang, J., Ke, L., Ma, R., Zhang, W., 
Pan, H., & Deng, X. (2018). Remote sensing detection 
of vegetation and landform damages by coal mining 
on the Tibetan Plateau. Sustainability, 10(11), 3851. 
https://doi.org/10.3390/su10113851

Yin, H., Pflugmacher, D., Li, A., Li, Z., & Hostert, P. (2018). 
Land use and land cover change in inner Mongolia-
understanding the effects of china’s re-vegetation pro-
grams. Remote Sensing of Environment, 204, 918–930. 
https://doi.org/10.1016/j.rse.2017.08.030 

Zhang, X., Wu, S., Yan, X., & Chen, Z. (2016). A global 
classification of vegetation based on NDVI, rainfall 
and temperature. International Journal of Climatology, 
37(5), 2318–2324. https://doi.org/10.1002/joc.4847

Zhu, Y., Wang, H. & Zhang, A. (2024). Satellite remote 
sensing reveals overwhelming recovery of forest from 
disturbances in Asia. Atmospheric and Oceanic Scien-
ce Letters, 2024, 100511. https://doi.org/10.1016/j.
aosl.2024.100511


