1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
Supralittoral isopod (Oniscidea) diversity at three ecoregions along the
Colombian Caribbean: useful data for environmental management
Carlos Mario López-Orozco1,2*; https://orcid.org/0000-0002-3251-7739
Yesenia M. Carpio-Díaz1,2; https://orcid.org/0000-0001-5116-9736
Ricardo Borja-Arrieta1,2; https://orcid.org/0000-0002-5064-5080
Ivanklin Soares Campos-Filho3; https://orcid.org/0000-0001-6139-8241
Carlos Taboada-Verona4; https://orcid.org/0000-0002-0341-4845
Gabriel R. Navas-S.5; https://orcid.org/0000-0001-9554-6345
1. Laboratório de Estudos Subterrâneos, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil; clopezo1610@
gmail.com (*Correspondence), ycarpiodiaz@gmail.com; rborjaa@unicartagena.edu.co
2. Grupo de Investigación en Biología Descriptiva y Aplicada, Universidad de Cartagena, Programa de Biología, Campus
San Pablo, Cartagena de Indias, Colombia.
3. Department of Biological Sciences, University of Cyprus, Lefkosia (Nicosia), Cyprus; ivanklin.filho@gmail.com
4. Universidad de Sucre, Sincelejo, Colombia; carlostaboada87@gmail.com
5. Grupo de Investigación Hidrobiología, Universidad de Cartagena, Programa de Biología, Campus San Pablo,
Cartagena de Indias, Colombia; gnavass@unicartagena.edu.co
Received 30-I-2024. Corrected 23-V-2024. Accepted 12-VIII-2024.
ABSTRACT
Introduction: Terrestrial isopods (Oniscidea) play important roles in the ecological processes of the soil in tropi-
cal ecosystems and are employed as indicators of environmental impact. Despite their importance, studies on the
ecology of this suborder in the Neotropics are scarce.
Objective: To assess spatial changes in alpha and beta diversity of Oniscidea in the supralittoral zone across
Archipiélagos Coralinos (ARCO), Magdalena (MAG), and Morrosquillo (MOR) ecoregions in the Colombian
Caribbean.
Methods: We conducted Direct Intuitive Searches of specimens and measured soil temperature and moisture in
19 transects with logs, leaf litter, coral remains, and decomposing plant material.
Results: A total of 1 970 individuals representing 17 species were collected, with Tylidae, Halophilosciidae,
and Ligiidae being the most abundant families. Alpha diversity orders were higher in ARCO than MAG and
MOR ecoregions. MAG and MOR differed in observed richness. The structure of the assemblage varied in
dominant species and abundances. In ARCO, the indicator species were Tylos niveus, Littorophiloscia denticu-
lata, Halophiloscia trichoniscoides, and Ligia baudiniana; in MOR, it was Tylos marcuzzii, and in MAG, it was
Littorophiloscia tropicalis. High beta diversity (> 60 %), with significant differences in the assemblage structure
among ecoregions, was confirmed by the NMDS, which distinctly separated each group. CCA analysis revealed
a negative relationship between most species with soil temperature and moisture, with a positive relationship
observed with T. marcuzzii.
Conclusions: This is the first effort to describe spatial changes in the diversity of oniscideans in the supralittoral
zone of the Neotropical region, providing a baseline for future studies. This information could be instrumental
in identifying priority areas for conservation efforts.
Key words: terrestrial isopods; woodlice; coastal ecosystems; Caribbean ecoregions; spatial diversity.
https://doi.org/10.15517/rev.biol.trop..v72i1.58577
CONSERVATION
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
INTRODUCTION
Knowledge of Colombias marine biodi-
versity has improved in recent decades due to
expeditions in the Colombian Caribbean rang-
ing from 20 to 900 m (Díaz & Acero, 2003).
These efforts have significantly contributed to
our understanding of marine biodiversity, espe-
cially in deeper areas. Several studies along this
coastal zone revealed a high species richness
within taxonomic groups like corals, crusta-
ceans, mollusks, and echinoderms (Benavides-
Serrato et al., 2011; Díaz & Puyana, 1994;
Lemaitre, 1981; Martínez-Campos et al., 2017;
Núñez et al., 1999; Reyes et al., 2010). However,
there are still gaps in information regarding the
spatial patterns of diversity in the assemblages
of other faunal groups along the marine coast of
the Caribbean and the Colombian Pacific, par-
ticularly those associated with the supralittoral
zone (Batista-Morales & Díaz-Sánchez, 2011).
This zone is defined as the area of the coastline
above the high tide line, including the high tide
berm where plant material and debris deposited
by the sea accumulate. The supralittoral zone
extends up to the cliffs, dunes, coastal ridges,
and both rocky and sandy coastlines (Ceballos-
Fonseca, 2009). In this area, various types of
microhabitats favorable for edaphic fauna may
be found, including decomposing plant mate-
rial (such as logs, leaf litter, algae), bark of living
trees and their roots, herbaceous plants, rocks,
coral remains, and sand (Núñez et al., 1999;
Schultz, 1972).
Terrestrial isopods (Oniscidea) are a
unique lineage among crustaceans, adapting
entirely to terrestrial habitats and considered
an important detritivore component of the
edaphic fauna, particularly in tropical habitats
(Leistikow, 2001; Schmalfuss, 2003; Hornung,
2011; Richardson & Araujo, 2015; Taiti, 2018).
The group encompasses over 4,000 described
species in more than 500 genera within 38 or
39 families, distributed across almost all terres-
trial environments, making it one of the richest
groups within Isopoda (Campos-Filho & Taiti,
2021; Dimitriou et al., 2019; Lins et al., 2017;
Sfenthourakis & Taiti, 2015).
RESUMEN
Diversidad de isópodos supralitorales (Oniscidea) en tres ecorregiones
a lo largo del Caribe colombiano: datos útiles para la gestión ambiental
Introducción: Los isópodos terrestres (Oniscidea) juegan un papel importante en los procesos ecológicos del
suelo en ecosistemas tropicales y han sido empleados como indicadores de impacto ambiental. A pesar de su
importancia, los estudios sobre la ecología de este suborden en el Neotrópico son escasos.
Objetivo: Evaluar los cambios espaciales en la diversidad alfa y beta de Oniscidea en la zona supralitoral en
las ecorregiones Archipiélagos Coralinos (ARCO), Magdalena (MAG) y Morrosquillo (MOR) en el Caribe
colombiano.
Métodos: Realizamos Búsquedas Intuitivas Directas de especímenes y medimos la temperatura y la humedad del
suelo en 19 transectos con troncos, hojarasca, restos de coral y material vegetal en descomposición.
Resultados: Recolectamos un total de 1 970 individuos representando 17 especies, siendo Tylidae, Halophilosciidae
y Ligiidae las familias más abundantes. Los órdenes de diversidad alfa fueron mayores en ARCO, en comparación
con las ecorregiones MAG y MOR. MAG y MOR difirieron en la riqueza observada. La estructura del ensam-
blaje varió en especies dominantes y sus abundancias. En ARCO las especies indicadoras fueron Tylos niveus,
Littorophiloscia denticulata, Halophiloscia trichoniscoides y Ligia baudiniana; en MOR fue Tylos marcuzzii y en
MAG fue Littorophiloscia tropicalis. El NMDS confirmó una alta diversidad beta (> 60%), con diferencias en la
estructura del ensamblaje entre ecorregiones, que separó claramente cada grupo. El ACC reveló una relación
negativa entre la mayoría de las especies con la temperatura y humedad del suelo, observándose una relación
positiva con T. marcuzzii.
Conclusiones: Este es el primer esfuerzo por describir los cambios espaciales en la diversidad de oniscídeos en la
zona supralitoral de la región Neotropical, proporcionando una línea base para futuros estudios. Esta información
podría ser fundamental para identificar áreas prioritarias para los esfuerzos de conservación.
Palabras clave: isópodos terrestres; cochinillas; ecosistemas costeros; ecorregiones del Caribe; diversidad espacial.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
Alongside other members of the edaphic
fauna, the oniscideans play a key role in soil for-
mation and nutrient recycling (Abd El-Wakeil,
2015; Ŝpaldoňová & Frouz, 2014; Zimmer &
Topp, 1999). Many species within this group are
utilized as model organisms in research on ecol-
ogy (Hamaïed & Charfi-Cheikhrouha, 2004;
Sfenthourakis et al., 2005; Sghaïer & Charfi-
Cheikhrouha, 2002), reproduction (Araujo &
Bond-Buckup, 2005), and physiology (Lesěr
et al., 2008), and they are considered valuable
indicators of environmental impact (Longo et
al., 2013; Paoletti & Hassall, 1999; Solomou et
al., 2019). The dynamics of terrestrial isopod
populations and assemblages are significantly
influenced by environmental factors such as
temperature and humidity, impacting their sur-
vival, growth, and reproduction (Leistikow,
2001; Messina et al., 2016; Rushton & Hassall,
1987; Solomou et al., 2019; Zimmer, 2005).
While studies on distribution patterns and
spatial changes in terrestrial isopods diversity
have been conducted in the Palearctic region,
particularly in mountainous areas, oases, and
wetlands (e.g., Gabsi et al., 2024; Khemaissia et
al., 2012a, Khemaissia et al., 2016, Khemaissia
et al., 2017; Sfenthourakis, 1993, Sfenthourakis,
1996a, Sfenthourakis, 1996b; Sfenthourakis &
Legakis, 2001; Sfenthourakis & Triantis, 2009;
Sfenthourakis et al., 2008), the research con-
ducted in the Neotropical supralittoral zone has
primarily focused on taxonomy, with no prior
investigations into the spatial patterns of this
groups assemblage (e.g., López-Orozco et al.,
2022; Paoletti & Stinner, 1989; Schultz, 1972;
Schultz 1984; Schultz & Johnson, 1984; Taiti et
al., 2018). Similarly, there is a limited number
of studies investigating distribution patterns of
species in the different marine ecoregions of
the country within the supralittoral zone. Most
studies conducted in the region have focused
on the slope and continental shelf at depths
ranging from 20 to 1 000 meters and in some
cases, there are no known works on groups
that inhabit the supralittoral zone (e.g., Bena-
vides-Serrato & Borrero-Pérez, 2010; Merchán-
Cepeda et al., 2009; Navas et al., 2010; Navas et
al., 2013; Vides, 2011).
This study aims to evaluate the spatial
changes in alpha and beta diversity within
the terrestrial isopod assemblage across three
marine ecoregions of the Colombian Caribbe-
an. Additionally, it seeks to examine abundance
gradients in relation to soil temperature and
moisture. The obtained information will serve
as a key input for proposing plans dedicated to
the conservation, management, and sustainable
use of this group of organisms, representing
opportunities to provide insights into the com-
position, structure, function, and dynamics of
ecological systems.
MATERIAL AND METHODS
Study area: The Colombian Caribbean
coast spans from 11°50’ N-71°18’ W in Cas-
tilletes to 08°42’ N- 7°19’ W in Cabo Tiburón,
covering an approximate length of 1 600 km
(Fig. 1). IDEAM et al. (2007) assert that the
Colombian Caribbean Sea Province is locat-
ed in the Marine Biogeographic Region of
the Western Tropical Atlantic (Spalding et al.,
2007), encompassing two ecozones (Carib-
bean Continental Shelf and Caribaná Talud).
These represent uniform sectors of the seabed,
characterized by significant geomorphological
features that group distinct biota types. The
marine coast of the Colombian Caribbean is
divided into eight ecoregions, the lowest level
of regionalization for marine systems. Ecore-
gions are delimited based on factors includ-
ing the degree of continental influence, coast
geomorphology, sediment types, water masses
outcrops, wave energy levels, presence of eco-
logical units, biological productivity of the
water column, and type of coastal ecosystems,
and are located in the ecozone Caribbean Con-
tinental Shelf (Fig. 1) (Díaz & Acero, 2003).
This study focuses on three ecoregions in
the central part of the Colombian Caribbean
(Fig. 1): 1. Coral Archipelagos (ARCO), char-
acterized by clear waters, hosting a high species
richness, and feature diverse habitats, including
coral reefs, seaweed beds, bioclastic sand flats,
and mangroves on some islands; 2. Magdalena
(MAG), highly influenced by the discharges of
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
the Magdalena River, characterized by strong
sediment loads and low salinity levels; and,
3. Gulf of Morrosquillo (MOR), affected by
continental discharges through the Canal del
Dique and the Sinú River, characterized by
fine sediments and mangrove ecosystems (Díaz
& Acero, 2003). Three sampling stations in
each ecoregion were stablished, selected a
priori based on Google Earth and available
basic cartography maps, following three main
criteria: 1. Existence of cliffs, dunes, coastal
remains, rocky, or sandy coastline; 2. Low level
of anthropic intervention; and 3. Ease of access.
Supplementary Information SMT1 and SMF1
present the characteristics and photographs,
respectively, of the different sampling stations,
and Fig. 1 shows their geographical location.
Sampling and taxonomic identification:
Sampling was conducted between September
and November 2022. At each sampling station,
a visit was made, and Direct Intuitive Searches
(DIS) were performed, which involved search-
ing for terrestrial isopods in key sites or micro-
habitats (such as leaf litter, logs, coral remains,
and decomposing plant material) for 10 min-
utes per observer (two observers) (Karasawa,
2022; Taiti & Wynne, 2015). Ten repetitions
were conducted in each microhabitat, spaced
at least 15 meters apart to ensure data indepen-
dence. This resulted in 1.65 hours of searching
per microhabitat per observer at each station.
The samples were collected manually, and all
search sites were delimited to 1 m2 with a PVC
quadrant. It is important to note that there was
Fig. 1. Sampling stations in each of the ecoregions under study. ARCO, Coralline Archipelagos Ecoregion; MAG, Magdalena
Ecoregion; MOR, Gulf of Morrosquillo Ecoregion. Shapefile from the ecoregions provided by INVEMAR.
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
no delimitation of the microhabitats, and the
sites were selected considering the complete-
ness of the microhabitat greater than 90%
within the sampling station. In each microhabi-
tat, soil temperature and moisture data were
recorded using a YAXU N03654 soil thermohy-
drometer, and substrate information was noted.
Moreover, three replicate measurements per
parameter were conducted.
The material was identified using mor-
phological characters using micropreparations
(microscope glass slides) in Hoyers medium
(Anderson, 1954), following Carpio-Díaz et al.
(2016), Carpio-Díaz et al. (2023), López-Orozco
et al. (2014), López-Orozco et al. (2022), and
Taiti et al. (2018). The collected material was
deposited in the research laboratories of the
Grupo de Investigación Hidrobiología of the
University of Cartagena, Cartagena, Colombia,
with catalog numbers between CBUDC-CRU
408 and CBUDC-CRU 492.
Data analysis: We analyzed three transects
of logs, three of coral remains, and two of leaf
litter in ARCO; three of logs and two of decom-
posing plant material in MAG; and three of
logs, two of decomposing plant material, and
one of leaf litter in MOR. Richness was treated
as the total number of species per transect, and
abundance as the total number of individuals
captured. We evaluated the completeness of the
sampling by applying the approach of Chao et
al. (2014), using extrapolation-interpolation
curves on the rarefaction and coverage of the
sample. This is based on the first-order diver-
sity according to Hill numbers (q = 0), utilizing
the abundance data, following the propos-
als by Chao et al. (2014) and Colwell et al.
(2012). Alpha diversity was evaluated using the
effective numbers of species (q0, q1, and q2)
for each site, representing the three diversity
orders: q0, the number of species observed; q1,
the exponential of the Shannon index; and q2,
the inverse of the Simpson index. For each q
order, 95 % confidence intervals were obtained
with 500 bootstrap pseudoreplicates, and alpha
diversity profiles were constructed. These anal-
yses were performed using RStudio v4.2.0 with
the “iNEXT” package and the online iNEXT
tool (Chao et al., 2016; Hsieh et al., 2016; R
Core Team, 2020). Additionally, to compare
the patterns of richness, abundance, and uni-
formity between sites, rank/abundance curves
were performed with the abundance data trans-
formed using Log10, following the proposal of
Whittaker (1972).
Following the proposal of Moreno et al.
(2011), the q values were compared based on
the magnitude of their differences (MD) with
the modifications of Cultid-Medina & Escobar
(2016) and Cultid-Medina & Escobar (2019),
taking into account that the values obtained
for the completeness of the sampling in each of
the sites according to the coverage curves (100
% in each case). This method considers that it
is possible to compare diversity estimates (qD
± 95 % CI) under the same sampling cover-
age, allowing the principle of replication to be
respected and to calculate how many times one
assemblage is more or less diverse than another.
This measurement is calculated in percentage
terms using the following equation: % MD =
100 – [(qD sample 2 * 100) / qD sample 1].
In that sense, when sample 1 is more diverse
than sample 2, the MD percentage will be posi-
tive; otherwise, it will be negative. MD varies
between 0 (no change in pairwise diversity)
and ± 100 % (completely different diversity).
The MD values were compared visually, and the
interpretation of the comparisons is comple-
mentary to that of the 95% confidence interval
(Cultid-Medina & Escobar, 2016; Cultid-Medi-
na & Escobar, 2019).
Beta diversity and its components were
evaluated using the proposal of (Baselga, 2010;
Baselga, 2013; Baselga, 2017), implementing
the functions beta.multi.abund and beta.pair.
abund, with the Bray-Curtis index through
the “betapart” package in RStudio (Baselga,
2013; Baselga, 2017; Baselga & Orme, 2012; R
Core Team, 2020). To determine if there were
significant differences in the composition and
abundance of the species assemblage between
the ecoregions, a Permutational Analysis of
Variance (PERMANOVA) of one-way was per-
formed based on the similarities of Bray-Curtis
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
index with 999 permutations in the software
PAST v4.12 (Anderson, 2001; Hammer et al.,
2001). Additionally, the matrix of abundances
by transects was transformed to the square root
to reduce the weight of the dominant species,
and a similarity matrix was calculated using the
Bray-Curtis index, and an ordination was car-
ried out using a Non-metric Multidimensional
Scaling analysis (NMDS), to explore possible
relationships between transects per ecoregion.
This analysis was performed using RStudio
v4.2.0 with the package “vegan” (Oksanen et
al., 2014; R Core Team, 2020). Graphics of
alpha and beta diversity were performed in
RStudio v4.2.0 using the “ggplot2” package
(Wickham, 2016).
Characteristic or indicator species of the
ecoregions were identified using the indica-
tor species analysis (IndVal %). This method
consists of determining the species’ affinity for
a specific environment, site, or habitat. The
measure is based on fidelity (relative frequency)
and specificity (relative abundance) and obtains
its maximum value (100 %) when a species is
found only at one site and in all its samples
(Dufrêne & Legendre, 1997). Species with Ind-
Val ≥ 50 % and with statistical significance (P
< 0.05) were considered as indicators. These
analyses were performed in the software PAST
v4.12 (Hammer et al., 2001).
A non-parametric Kruskall-Wallis test was
performed (after confirmation of normality
using the Shapiro-Wilk test and homogeneity
of variances using the Levene test), to iden-
tify possible differences between the ecore-
gions regarding soil temperature and moisture
(P < 0.05). Subsequently, to identify between
which pairs of ecoregions the differences exist-
ed, a Wilcoxon post-hoc test was applied (P
< 0.05). This analysis was performed in RStu-
dio v4.2.0 (R Core Team, 2020). Canonical
Correspondence Analysis (CCA) was used to
detect possible relationships between species
and environmental variables (soil moisture and
temperature), following the procedures of Leg-
endre & Legendre (1998) in the software PAST
v4.12, using type 2 scaling, which emphasizes
the relationship between species and variables.
The P-values for each eigenvalue were obtained
using 999 permutations (Braak & Verdon-
schot, 1995; Hammer et al., 2001; Legendre &
Legendre, 1998). Species with an abundance of
fewer than 20 individuals were excluded from
this analysis.
RESULTS
We collected 1 970 individuals, distributed
across three ecoregions: ARCO (1 166), MOR
(533), and MAG (271), representing nine fami-
lies and 17 species, two of which are classified
as Incertae sedis (Table 1). The families with
the greatest richness were Tylidae (N = 1 109,
56.3 %), Halophilosciidae (N = 598, 30.3 %),
and Detonidae (N = 43, 2.2 %), each with three
species. The genera Tylos Audouin, 1826 and
Armadilloniscus Uljanin, 1875 presented the
highest number of species, each with three.
However, Tylos contributed 56.3 %, and Arma-
dilloniscus 2.2 % in terms of abundance.
Sampling coverage was 100 % in each
ecoregion, indicating a high efficiency of the
implemented methodology in capturing ter-
restrial isopods (Fig. 2A). Rarefaction and
extrapolation curves, based on the number of
individuals, revealed that doubling the sample
size would yield the same sampling complete-
ness in MAG and MOR ecoregions. However,
for the ARCO ecoregion, there would possibly
be one more species (16.2 estimated) with a 95
% confidence interval. Additionally, richness
exhibited consistent behavior across ecoregions
(Fig. 2B).
In terms of species richness, ARCO
revealed 10 additional species compared to
MOR and eight more than MAG. Moreover,
ARCO boasts 2.8 and 3.5 more effective species
than MAG and MOR, respectively. Regarding
dominant effective species, ARCO outpaced
MAG by 1.8 and MOR by 2.2. Consequently,
ARCO demonstrated superior richness, diversi-
ty, and dominance. Additionally, MAG yielded
two more species than MOR, with comparable
values in terms of effective and dominant spe-
cies (Fig. 2C). Pairwise differences were con-
sistently positive for ARCO across all diversity
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
orders, being greater between ARCO and MOR
(q0 = 66.7 %, q1 = 63.1 %, q2 = 59.9 %), than
between ARCO and MAG (q0 = 53.3 %, q1 =
49.6 %, q2 = 49.2 %). Between MAG and MOR,
the greatest difference was observed in terms of
richness (q0 = 28.6 %), with no clear differences
in terms of Shannons exponential (q1 = 26.7 %)
and inverse of Simpsons (q2 = 21.2 %).
The assemblage in ARCO has four domi-
nant species, differing from MAG and MOR,
where one species had the greatest number
of individuals. The species with the highest
abundances were Tylos niveus, Littorophilos-
cia tropicalis, Halophiloscia trichoniscoides, and
Ligia baudiniana in ARCO ecoregion; Tylos
marcuzzii in MOR; and L. tropicalis in MAG
(Fig. 2D). The abundance of these species rep-
resents 84.4 % of the total.
We found that total beta diversity between
ecoregions (βBC = 82.7 %), was modulated to
Table 1
Composition and abundance of terrestrial isopod assemblages in the Coralline Archipelagos (ARCO), Magdalena (MAG),
and Gulf of Morrosquillo (MOR) ecoregions.
Family/Species ARCO-
E1
ARCO-
E2
ARCO-
E3
MOR-
E1
MOR-
E2
MOR-
E3
MAG-
E1
MAG-
E2
MAG-
E3
Ligiidae
Ligia baudiniana Milne-Edwards, 1840 31 60 24 _ 10 _ 20 5 _
Tylidae
Tylos marcuzzii Giordani Soika, 1954 _ _ 11 389 1 40 _ 4 _
Tylos negroi López-Orozco,
Carpio-Díaz & Campos-Filho, 2022 4 31 20 18 23 _ 20 7 _
Tylos niveus Budde-Lund, 1885 438 26 77 _ _ _ _ _ _
Stenoniscidae
Stenoniscus nestori López-Orozco,
Taiti & Campos-Filho, 2022 1________
Detonidae
Armadilloniscus luisi Carpio-Díaz,
Taiti & Campos-Filho, 2022 _ 5 3 _ _ _ _ _ _
Armadilloniscus ninae Schultz, 1984 _ 2 3 _ _ _ _ _ _
Armadilloniscus caraibicus Paoletti & Stinner, 1989 1 _ 29 _ _ _ _ _ _
Halophilosciidae
Halophiloscia trichoniscoides (Vandel, 1973) 41 _ 91 _ _ _ _ _ _
Littorophiloscia denticulata (Ferrara & Taiti, 1982) 13 35 17 _ _ _ 7 _ _
Littorophiloscia tropicalis Taiti & Ferrara, 1986 36 91 49 17 3 5 121 36 36
Platyarthridae
Trichorhina bermudezae Carpio-Díaz,
López-Orozco & Campos-Filho, 2018 21________
Trichorhina heterophthalma Lemos de Castro, 1964 1________
Porcellionidae
Porcellionides pruinosus (Brandt, 1833) 3________
Armadillidae
Ctenorillo tuberosus (Budde-Lund, 1904) _ _ _ _ 27 _ 3 _ _
Incertae sedis
Buchnerillo neotropicalis Taiti,
Montesanto & Vargas, 2018 _ _ _ _ _ _ 10 _ 2
Buchnerillo sp. _ 1 1 _ _ _ _ _ _
Abundance 590 251 325 424 64 45 181 52 38
Richness 11 8 11 3 5 2 6 4 2
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
a greater extent by the balanced variation in
abundance (βBC:BAL = 67.6 %) than the abun-
dance gradient (βBC:GRA = 15.1 %). Beta diver-
sity among ecoregions exceeded 60 %, with the
greatest dissimilarity observed between ARCO
and MOR (βbc = 0.89), primarily determined
by balance. Similarly, between MAG and MOR
(βbc = 0.83), dissimilarity was modulated by
balance, and between ARCO and MAG (βbc
= 0.65), it was determined by the gradient
(Fig. 3A). Assemblage structure differed signifi-
cantly between ecoregions (FPermanova = 3.706; P
= 0.001), with significant differences observed
between ARCO and MAG (FPermanova = 3.923;
P < 0.01), ARCO and MOR (FPermanova = 4.305;
P < 0.001), and MAG and MOR (FPermanova =
2.761; P < 0.05). The NMDS confirmed the
PERMANOVA results, clearly separating the
structure of the assemblages between the ecore-
gions (Fig. 3B).
Six indicator species were identified (IndVal
≥ 50 %, P < 0.05). L. denticulata, L. baudiniana, T.
niveus, and H. trichoniscoides are indicator spe-
cies for ARCO ecoregion; L. tropicalis for MAG;
and T. marcuzzii for MOR (Fig. 4).
The highest average soil temperatures were
found in MAG (29.7 ± 0.3), while the lowest
were in ARCO (28.3 ± 0.1). Concerning soil
moisture, the highest values were observed in
MOR (75.4 ± 2), and the lowest in MAG (64.2
± 1.9). These two variables differ significantly
between ecoregions (temperature: H = 17.725;
P < 0.001; moisture: H = 17.573; P < 0.001).
Soil temperature differences were observed
among all ecoregions, whereas soil moisture
showed significant differences between ARCO
and MAG, without differences between ARCO
and MOR (Fig. 5).
Canonical Correspondence Analysis
revealed a positive relationship between the two
Fig. 2. A. Coverage-based rarefaction and extrapolation sampling curves of the assemblage of terrestrial isopods for
ecoregion. B. Species interpolation/extrapolation rarefaction curves based on number of individuals and richness (q0) for
ecoregion. C. Diversity profiles for each ecoregion, with CI 95% for each q order. D. Rank abundance (Whittaker curves) of
the assemblage of terrestrial isopods for ecoregion. ARCO, Coralline Archipelagos Ecoregion; MAG, Magdalena Ecoregion;
MOR, Gulf of Morrosquillo Ecoregion.
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
Fig. 3. A. Beta diversity partitioning values calculated with the Bray-Curtis index between the ecoregions studied in the
Colombian Caribbean. βbc.bal: balanced variation component of Bray-Curtis dissimilarity; βbc.gra: abundance gradient
component of Bray-Curtis dissimilarity. B. Non-metric Multidimensional Scaling (NMDS) ordination analysis based on
Bray-Curtis index of similarities of the terrestrial isopods assemblage between ecoregions. ARCO, Coralline Archipelagos
Ecoregion; MAG, Magdalena Ecoregion; MOR, Gulf of Morrosquillo Ecoregion.
Fig. 4. Indicator species analysis (IndVal%) of the terrestrial isopod assemblage in the three ecoregions. Gray boxes denote
species with significances (P < 0.05) of IndVal. ARCO, Coralline Archipelagos Ecoregion; MAG, Magdalena Ecoregion;
MOR, Gulf of Morrosquillo Ecoregion. Species: L.b, Ligia baudiniana; T.m, Tylos marcuzzii; T.ne, T. negroi; T.n, T. niveus;
A.c, Armadilloniscus caraibicus; A.n, A. ninae; A.l, A. luisi; H.t, Halophiloscia trichoniscoides; L.d, Littorophiloscia denticulata;
L.t, Littorophiloscia tropicalis; T.b, Trichorhina bermudezae; T.h, T. heterophthalma; C.t, Ctenorillo tuberosus; B.n, Buchnerillo
neotropicalis; B.sp., Buchnerillo sp.; S.n, Stenoniscus nestori; P.p, Porcellionides pruinosus.
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
variables and the first axis, explaining 100 % of
the variation (P < 0.05). This axis was positively
associated with the abundance of T. marcuzzii,
displaying a marked distribution towards the
MOR transects, indicating that this species is
linked to high values of soil temperature and
moisture. The other species included in the
analysis exhibited negative relationships with
the two variables (L. baudiniana, T. negroi,
T. niveus, A. caraibicus, H. trichoniscoides, L.
denticulata, L. tropicalis, T. bermudezae, and C.
tuberosus) (Fig. 6).
Fig. 5. Box-plot of soil temperature (A) and soil moisture (B) in the study area. Different letters indicate statistically
significant differences (P < 0.05). ARCO, Coralline Archipelagos Ecoregion; MAG, Magdalena Ecoregion; MOR, Gulf of
Morrosquillo Ecoregion.
Fig. 6. Ordination diagram of Canonical Correspondence Analysis (CCA) showing distribution of abundance data for taxa,
transects and environmental variables (red arrows). S_M, soil moisture; S_T, soil temperature. Squares, transects of Gulf of
Morrosquillo Ecoregion; triangles, transects of Magdalena Ecoregion; circles, transects of Coralline Archipelagos Ecoregion.
Species: L.b, Ligia baudiniana; T.m, Tylos marcuzzii; T.ne, Tylos negroi; T.n, Tylos niveus; A.c, Armadilloniscus caraibicus; H.t,
Halophiloscia trichoniscoides; L.d, Littorophiloscia denticulata; L.t, Littorophiloscia tropicalis; T.b, Trichorhina bermudezae; C.t,
Ctenorillo tuberosus.
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
DISCUSSION
In our study, we identified 17 species of
terrestrial isopods in the supralittoral zone
across the three evaluated ecoregions. Cur-
rently, Colombia boasts the highest number of
species recorded from the coastal environment
in the Neotropical region (Carpio-Díaz et al.,
2016; López-Orozco et al., 2022). Furthermore,
additional surveys in coastal areas outside the
supralittoral zone in the ARCO, MOR, and
MAG ecoregions have unveiled the presence
of species not previously documented from
Colombia, including Rhyscotus sphaerocepha-
lus Budde-Lund, 1893, Littorophiloscia culebrae
Moore, 1901, and Alloniscus buckupi Campos-
Filho & Cardoso, 2018.
The taxonomic composition and abun-
dance observed in the assessed ecoregions
closely resemble findings in other tropical
countries (Mexico, Cuba, Belize, Costa Rica,
Venezuela, and Brazil), featuring common spe-
cies of the genera Ligia Fabricius, 1798, Tylos,
Armadilloniscus, Littorophiloscia Hatch, 1947,
and Stenoniscus Aubert & Dollfus, 1890 being
common (Boone, 1934; López-Orozco et al.,
2022; Paoletti & Stinner, 1989; Schultz, 1972;
Schultz, 1984; Schultz & Johnson, 1984; Taiti &
Ferrara, 1986; Taiti et al., 2018). Schultz (1972),
Schultz (1984), Schultz & Johnson (1984), and
Taiti et al. (2018) documented up to 13 species
in the supralittoral zone of Caribbean coun-
tries. In contrast, López-Orozco et al. (2022)
reported 17 terrestrial isopod species on Isla
Grande (Colombian Caribbean), with 16 in the
coastal environment.
The results for richness and abundance
analysis in the supralittoral zone of the three
evaluated ecoregions were highest in ARCO.
This pattern is likely attributed to the avail-
ability and quality of microhabitats in this
ecoregion. Conversely, the lower availability of
microhabitats, coupled with the influence of
discharges from the Magdalena and Sinú rivers
in the MAG and MOR ecoregions, could be
influencing the establishment of certain spe-
cies with more stringent physiological require-
ments. López-Victoria et al. (2004) mentioned
that the specific composition in the rocky coast-
lines of the Colombian Caribbean is primarily
determined by substrate type, waves, and slope.
While the latter two variables were similar
across all stations, differences in microhabitat
availability (substrates) were noted. Therefore,
the species richness of terrestrial isopods in the
supralittoral zone of the Colombian Caribbean
is related to the availability of microhabitats.
The structure and composition of the ter-
restrial isopod assemblage vary among the
evaluated ecoregions, with high beta diversity
values. Faunistic assemblages respond to abiotic
environmental variables (Messina et al., 2016;
Navas et al., 2010), and their distribution is
determined by the environmental conditions
and the organisms’ capacity to adapt. The dis-
tribution patterns of terrestrial isopods in the
supralittoral zone of the Colombian Caribbean
align with the zoning of marine ecoregions,
each presenting unique characteristics such as
geomorphology, the influence of continental
discharges, and ecosystems, among others. In
general, there is a scarcity of published works on
the structure and composition of species in the
supralittoral zone of the Colombian Caribbean.
Ligia baudiniana, T. niveus, H. trichonis-
coides, and L. denticulata were recognized as
indicator species for the ARCO ecoregion, with
T. marcuzzii in the MOR ecoregion, and L. trop-
icalis in MAG. Ligia baudiniana, known for its
runner’ habit, is distributed along all coasts of
America and has been found in river transport
boats, potentially contributing to its expanded
distribution (Com. Per. C.M. López-Orozco).
Tylos niveus, a species with limited mobility,
benefits from local community transportation
of coastal materials favoring its local distribu-
tion in ARCO. Halophiloscia trichoniscoides is
an endemic species in the Caribbean region
(López-Orozco et al., 2022; Vandel, 1973), and
was found in all ARCO stations. Littorophi-
loscia denticulata and L. tropicalis are circum-
tropical species (Leistikow, 2000; López-Orozco
et al., 2022; Taiti & Ferrara, 1986). Accord-
ing to our results, L. tropicalis is distributed
along the marine coasts of the ARCO, MOR
and MAG ecoregions.
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
High values of soil temperature and mois-
ture correlated with low abundance of the
terrestrial isopod assemblage. In contrast, T.
marcuzzii exhibited high abundance and fre-
quency, with increasing values of these two vari-
ables. Generally, terrestrial isopod populations
are associated with increasing values of these
two variables (Solomou et al., 2019; Zimmer,
2005). Rushton & Hassall (1987) highlighted
that temperature and humidity influence the
growth, survival, and reproduction of these
organisms leading to population peaks under
optimal conditions (Fingini, 2008). However,
Preciado & Martínez (2014) found no relation-
ship between factors such as soil temperature,
ambient temperature, and relative humidity
with the abundance of the evaluated species,
suggesting that soil characteristics may be more
influential in determining the abundance of
terrestrial isopod species in a given habitat.
Considering this, evaluating the response of
terrestrial isopod populations in the supralit-
toral zone of the Colombian Caribbean to these
variables, along with other potential determi-
nants, is essential. In addition, it is necessary to
include other variables in order to determine
their influence, which, in some cases, might
be decisive (Gabsi et al., 2024; Hamaïed-Melki
et al., 2010; Khemaissia et al., 2012a; Khe-
maissia et al., 2012b; Khemaissia et al. 2016;
Zimmer, 2005).
Terrestrial isopods have been employed
in the evaluation and monitoring of environ-
mental impacts stemming from heavy met-
als, urbanization, and agricultural processes,
among other factors (Longo et al., 2013; Paoletti
& Hassall, 1999; Solomou et al., 2019; Szlavecz
et al., 2018). The observed differences in assem-
blage structure among the evaluated ecore-
gions underscore the potential utility of these
organisms in devising strategies for the con-
servation, management, and sustainable uti-
lization of resources within the supralittoral
zone of the Neotropical region. Furthermore,
the taxonomic composition discovered exhib-
its unique characteristics that distinguish the
evaluated areas, featuring indicator species with
specific requirements.
Our results provide evidence for the high
species richness of Oniscidea in the supralitto-
ral zone of the Colombian Caribbean. However,
given the diverse orographic and physiographic
conditions of the coastal zone and the lack of
exploration in other ecoregions (Darién, Tay-
rona, Palomino, and Guajira), knowledge on
the taxonomic composition of the terrestrial
isopods in the coastal area remains incomplete.
Collaborative efforts are needed to understand
the biology of species with specific adaptations
and low abundance. Moreover, considering the
threats to the supralittoral zone, such as ero-
sion, environmental and climate change, and
human intervention, species in this area are at
risk of disappearing. This scenario is alarming
for the group, because their ecosystem roles
are not yet known, which may have long-term
repercussions on conservation strategies.
Finally, similar challenges are observed in
other countries, where knowledge of coastal
terrestrial isopod species is nearly nonexistent.
Therefore, investing in personnel training and
interdisciplinary projects is crucial for a better
understanding of the diversity, ecology, and
biology of Oniscidea in the coastal areas of the
Caribbean region.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
See supplementary material a43v72n1-MS1
ACKNOWLEDGMENTS
The present work was financially sup-
ported by Vicerrectoría de Investigaciones and
Grupo de Investigación en Biología Descriptiva
y Aplicada (Acta de Compromiso N° 053-2022);
to project entitled “Biodiversity of terrestrial
isopods (Crustacea, Isopoda, Oniscidea) from
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
Cyprus in the light of integrative taxonomy”, for
the postdoctoral fellowship granted to ISC-F,
ONISILOS Research Program-2018”, funded
by the University of Cyprus. To INVEMAR for
providing the cartography of the marine ecore-
gions from the Colombian Caribbean. To Car-
los Sierra for his help in collecting material. We
appreciate the contributions and suggestions
of the anonymous reviewers, which helped
improve the manuscript.
REFERENCES
Abd El-Wakeil, K. F. (2015). Effects of terrestrial isopods
(Crustacea: Oniscidea) on leaf litter decomposition
processes. The Journal of Basic & Applied Zoology,
69, 10–16. https://doi.org/10.1016/j.jobaz.2015.05.002
Anderson, L. E. (1954). Hoyer’s solution as a rapid perma-
nent mounting medium for Bryophytes. The Bryolo-
gist, 57. https://doi.org/10.2307/3240091
Anderson, M. J. (2001). A new method for non-para-
metric multivariate analysis of variance. Aus-
tral Ecology, 26, 32–46. https://doi.org/10.1111
/j.1442-9993.2001.01070.pp.x
Araujo, P. B., & Bond-Buckup, G. (2005). Population struc-
ture and reproductive biology of Atlantoscia floridana
(Van Name, 1940) (Crustacea, Isopoda, Oniscidea) in
southern Brazil. Acta Oecologica, 28, 289–298. https://
doi.org/10.1016/j.actao.2005.05.005
Baselga, A. (2010). Partitioning the turnover and nest-
edness components of beta diversity. Global Ecol-
ogy and Biogeography, 19, 134–143. https://doi.
org/10.1111/j.1466-8238.2009.00490.x
Baselga, A. (2013). Separating the two components of
abundance-based dissimilarity: balanced changes
in abundance vs. abundance gradients. Methods
in Ecology and Evolution, 4, 552–557. https://doi.
org/10.1111/2041-210X.12029
Baselga, A. (2017). Partitioning abundance-based multiple-
site dissimilarity into components: Balanced variation
in abundance and abundance gradients. Methods
in Ecology and Evolution, 8(7),799–808. https://doi.
org/10.1111/2041-210X.12693
Baselga, A., & Orme, C. D. L. (2012). betapart: an R
package for the study of beta diversity. Methods
in Ecology and Evolution, 3, 808–812. https://doi.
org/10.1111/j.2041-210X.2012.00224.x
Batista-Morales, A. M., & Díaz-Sánchez, C. M. (2011).
Litoral Rocoso. In E. Zarza-González (Ed.), El entorno
ambiental del Parque Nacional Natural Corales del
Rosario y San Bernardo (PNNCRSB) (pp. 136–147).
Bogotá, Colombia: Parques Nacionales Naturales de
Colombia.
Benavides-Serrato, M., & Borrero-Pérez, G. H. (2010).
Equinodermos de la plataforma y la franja supe-
rior del talud continental del Caribe colombiano. In
INVEMAR (Eds.), Biodiversidad del margen conti-
nental del Caribe colombiano (pp. 255–281). Serie de
Publicaciones Especiales del INVEMAR N° 20.
Benavides-Serrato, M., Borrero-Pérez, G. H., & Diaz-
Sánchez, C. M. (2011). Equinodermos del Caribe
colombiano I: Crinoidea, Asteroidea y Ophiuoridea.
Serie de Publicaciones Especiales de INVEMAR N°
22. Santa Marta.
Boone, L. (1934). New and rare Cuban and Haitian ter-
restrial Isopoda. Bulletin of the American Museum of
Natural History, 66, 567–598.
Braak, C. J. F., & Verdonschot, P. F. M. (1995). Canoni-
cal correspondence analysis and related multivariate
methods in aquatic ecology. Aquatic Sciences, 57(3),
255–289. https://doi.org/10.1007/BF00877430
Campos-Filho, I. S., & Taiti, S. (2021). Oniscidea taxonomy:
present and future. Abstract book of the 11th Inter-
national Symposium on Terrestrial Isopod Biology.
Ghent: Spinicornis. https://spinicornis.be/istib2021/
Carpio-Díaz, Y. M., López-Orozco, C. M., Borja-Arrieta, R.,
Navas, G. R., Bermúdez, A., Neita, J. C., & Campos-
Filho, I. S. (2023). New records of terrestrial isopods
(Crustacea, Isopoda, Oniscidea) from Colombia.
Arthropoda Selecta, 32(4), 399–408. https://doi.
org/10.15298/arthsel.32.4.04
Carpio-Díaz, Y. M., López-Orozco, C. M., Herrera-Medina,
Y., Navas, G. R., & Bermúdez, A. (2016). Primer
registro de Tylos niveus y nuevo reporte de Porcellio-
nides pruinosus (Oniscidea: Tylidae y Porcellionidae)
para Colombia. Revista de la Academia Colombiana
de Ciencias Exactas Físicas y Naturales, 40(156),
433–437. https://doi.org/10.18257/raccefyn.343
Ceballos-Fonseca, C. (2009). Estado de las playas en
Colombia. In INVEMAR (Eds.), Informe del estado
de los Ambientes Marinos y Costeros en Colombia:o
2008 (pp. 149–156). Serie de Publicaciones Periódicas
No. 8. Santa Marta, Colombia.
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H.,
Colwell, R. K., & Ellison, A. M. (2014). Rarefaction
and extrapolation with Hill numbers: a framework
for sampling and estimation in species diversity stud-
ies. Ecological Monographs, 84(1), 45–67. https://doi.
org/10.1890/13-0133.1
Chao, A., Ma, K. H., & Hsieh, T. C. (2016). A Brief Intro-
duction to iNEXT Online: software for interpolation
and extrapolation of species diversity. Institute of
Statistics, National Tsing Hua University, TAIWAN
30043. https://chao.shinyapps.io/iNEXTOnline/
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
Colwell, R., Chao, A., Gotelli, N., Lin, S.-Y., Mao, C.-X.,
Chazdon, R. L., & Jhon, T. L. (2012). Models and esti-
mators linking individual-based and sample-based
rarefaction, extrapolation and comparison of assem-
blages. Journal of Plant Ecology, 5(1), 3–21. https://
doi.org/10.1093/jpe/rtr044
Cultid-Medina, C. A., & Escobar, F. (2016). Assessing the
ecological response of dung beetles in an agricultural
landscape using number of individuals and biomass
in diversity measures. Environmental Entomology,
45(2), 310–319. https://doi.org/10.1093/ee/nvv219
Cultid-Medina, C. A., & Escobar, F. (2019). Pautas para la
estimación y comparación estadística de la diversidad
biológica (qD). In C. E. Moreno (Ed.) La biodiversi-
dad en un mundo cambiante: fundamentos teóricos y
metodológicos para su estudio (pp. 175–202). Univer-
sidad Autónoma del Estado de Hidalgo, Libermex,
Ciudad de México.
Díaz, J. M., & Acero, A. (2003). Marine biodiversity in
Colombia: achievements, status of knowledge, and
challenges. Gayana, 67(2), 261–274. http://dx.doi.
org/10.4067/S0717-65382003000200011
Díaz, J. M., & Puyana, M. (1994). Moluscos Marinos del
Caribe Colombiano: un Catálogo Ilustrado. COL-
CIENCIAS-FUNDACIÓN NATURA-INVEMAR.
Editoral Presencia.
Dimitriou, A. C., Taiti, S., & Sfenthourakis, S. (2019).
Genetic evidence against monophyly of Oniscidea
implies a need to revise scenarios for the origin of
terrestrial isopods. Scientific Reports, 9. https://doi.
org/10.1038/s41598-019-55071-4
Dufrêne, M., & Legendre, P. (1997). Species assemblages
and indicator species: the need for a flexible asym-
metrical approach. Ecological Monographs, 67(3),
345–366. https://doi.org/10.1890/00129615(1997)067
[0345:SAAIST]2.0.CO;2
Fingini, E. (2008). Diversidad y abundancia de los isópodos
terrestres (Crustacea) en ambiente natural versus
ambiente laboreado en el Partido de Balcarce, Provin-
cia de Buenos Aires (Tesis de Pregrado). Universidad
Nacional de Mar del Plata, Mar del Plata, Argentina.
Gabsi, F., Ehsine, M., Laifi, N., Ouni, A., & Medini-Bouaziz,
L. (2024). Terrestrial isopod diversity and species-area
relations in Tunisian traditional oases. Biologia, 1–11.
https://doi.org/10.1007/s11756-023-01524-1
Hamaïed, S., & Charfi-Cheikhrouha, F. (2004). Life cycle
and Population dynamic of Armadillidium pelagi-
cum Arcangeli, 1955 (Isopoda, Oniscidea) at Aouina.
Comptes Rendus Biologies, 327, 343–352. https://doi.
org/10.1016/j.crvi.2004.02.005
Hamaïed-Melki, S., Achouri, M. S., Aroui, O. E., Bohli,
D., & Charfi-Cheikhrouha, F. (2010). Terrestri-
al isopod diversity in the wadi Moula-Bouterfess
catchment area (Kroumirie, north-west of Tunisia).
African Journal of Ecology, 49(1), 31–39. https://doi.
org/10.1111/j.1365-2028.2010.01227.x
Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST:
Paleontological Statistics software package for edu-
cation and data analysis. Available at http://palaeo-
electronica.org/
Hornung, E. (2011). Evolutionary adaptation of oniscidean
isopods to terrestrial life: Structure, physiology and
behaviour. Terrestrial Arthropod Review, 4, 95–130.
https://doi.org/10.1163/187498311x576262
Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT:
an R package for rarefaction and extrapolation of
species diversity (Hill numbers). Methods in Ecol-
ogy and Evolution, 7(12), 1451–1456. https://doi.
org/10.1111/2041-210X.12613
IDEAM, IGAC, IAvH, INVEMAR, SINCHI, & IIAP.
(2007). Ecosistemas continentales, costeros y marinos
de Colombia. Instituto Geográfico Agustín Codazzi.
Karasawa, S. (2022). Comparison of isopod assemblages
(Crustacea: Isopoda: Oniscidea) among four different
habitats-Evergreen forest, exotic bamboo plantation,
grass and urban habitat. Journal of Soil Ecology, 91-92,
1–7. https://doi.org/10.1016/j.pedobi.2022.150805
Khemaissia, H., Jelassi, R., Souty-Grosset, C., & Nasri-
Ammar, K. (2012b). Diversity of terrestrial isopods in
the supralittoral zone of Ghar El Melh lagoon (Tuni-
sia). African Journal of Ecology, 51, 348–357. https://
doi.org/10.1111/aje.12043
Khemaissia, H., Jelassi, R., Souty-Grosset, C., & Nasri-
Ammar, K. (2017). Faunistic data and biogeogra-
phy of terrestrial isopods from Tunisian wetlands.
African Journal of Ecology, 56(1), 38–50. https://doi.
org/10.1111/aje.12415
Khemaissia, H., Jelassi, R., Touihri, M., Souty-Grosset,
C., & Nasri-Ammar, K. (2016). Diversity of ter-
restrial isopods in the northern Tunisian wetlands.
African Journal of Ecology, 55(2), 176–187. https://doi.
org/10.1111/aje.12337
Khemaissia, H., Touihri, M., Jelassi, R., Souty-Grosset, C., &
Nasri-Ammar, K. (2012a). A preliminary study of ter-
restrial isopod diversity in coastal wetlands of Tunisia.
Vie et Milieu, 62, 203–211.
Legendre, P., & Legendre, L. (1998). Numerical Ecology,
2nd English ed. Elsevier.
Leistikow, A. (2000). Terrestrial Isopoda from Guate-
mala and Mexico (Crustacea: Oniscidae: Crinocheta).
Revue suisse de Zoologie, 107, 283–323. https://doi.
org/10.5962/bhl.part.80131
Leistikow, A. (2001). Phylogeny and biogeography of South
American Crinocheta, traditionally placed in the fam-
ily “Philosciidae” (Crustacea: Isopoda: Oniscidea).
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
Organisms, Diversity & Evolution, 4, 1–85. https://doi.
org/10.1078/1439-6092-00020
Lemaitre, R. (1981). Shallow-water crabs (Decapoda,
Brachyura) collected in the southern Caribbean near
Cartagena, Colombia. Bulletin of Marine Science,
31(2), 234–266.
Lesěr, V., Drobne, D., Vilhar, B., Kladnik, A., Žnidaršič, N.,
& Štrus, J. (2008). Epithelial thickness and lipid drop-
lets in the hepatopancreas of Porcellio scaber (Crus-
tacea: Isopoda) in different physiological conditions.
Zoology, 111, 419–432. https://doi.org/10.1016/j.
zool.2007.10.007
Lins, L. S. F., Ho, S. Y. W., & Lo, N. (2017). An evolutionary
timescale for terrestrial isopods and a lack of molecu-
lar support for the monophyly of Oniscidea (Crusta-
cea: Isopoda). Organisms, Diversity and Evolution, 17,
813–820. https://doi.org/10.1007/s13127-017-0346-2
Longo, G., Trovato, M., Mazzei, V., Ferrante, M., & Conti,
G. (2013). Ligia italica (Isopoda, Oniscidea) as Bio-
indicator of Mercury Pollution of Marine Rocky
Coasts. PLoS ONE, 8. https://doi.org/10.1371/journal.
pone.0058548
López-Orozco, C. M., Bermúdez, A., & Navas, G. R. (2014).
Primer registro de Ligia baudiniana (Crustacea: Isop-
oda: Oniscidea) para el Caribe Colombiano. Boletín
de Investigaciones Marinas y Costeras, 43(1), 195–200.
https://doi.org/10.25268/bimc.invemar.2014.43.1.41
López-Orozco, C. M., Carpio-Díaz, Y. M., Borja-Arrieta, R.,
Navas-S, G. R., Campos-Filho, I. S., Taiti, S., Mateos,
M., Olazaran, A., Caballero, I. C., Jotty, K., Gómez-
Estrada, H., & Hurtado, L. A. (2022). A glimpse
into a remarkable unknown diversity of oniscideans
along the Caribbean coasts revealed on a tiny island.
European Journal of Taxonomy, 793, 1–50. https://doi.
org/10.5852/ejt.2022.793.1643
López-Victoria, M., Cantera, J. R., Díaz, J. M., Rozo, D. M.,
Posada, B. O., & Osorno, A. (2004). Estado de los
litorales rocosos en Colombia: acantilados y playas
rocosas. In Informe del estado de los Ambientes Mari-
nos y Costeros en Colombia: Año 2003 (pp. l71–182).
INVEMAR. Serie de Publicaciones Periódicas No. 8.
Santa Marta, Colombia.
Martínez-Campos, B., Campos, N. H., & Lemaitre, R.
(2017). Catálogo de los cangrejos ermitaños del
Caribe colombiano. Serie de Publicaciones Especiales
del INVEMAR N° 32. Santa Marta.
Merchán-Cepeda, A., Campos, N. H., Franco, A., & Ber-
múdez, A. (2009). Distribución y datos biológicos de
los cangrejos ermitaños (Decapoda: Anomura) del
mar Caribe colombiano colectados por la Expedición
INVEMAR-MACROFAUNA II. Boletín de Investiga-
ciones Marinas y Costeras, 38(1), 121–142. https://doi.
org/10.25268/bimc.invemar.2009.38.1.165
Messina, G., Cazzolla, R., Sciandrello, S., & Lombardo,
B. M. (2016). The influence of coastal zonation and
meteorological variables on terrestrial isopod popu-
lations: a case study in western Sicily (Italy). Italian
Journal of Zoology, 83(4), 571–578. https://doi.org/10.
1080/11250003.2016.1222558
Moreno, C. E., Barragán, F., Pineda, E., & Pavón, N. P.
(2011). Reanálisis de la diversidad alfa: alternati-
vas para interpretar y comparar información sobre
comunidades ecológicas. Revista Mexicana de Bio-
diversidad, 82, 1249–1261. https://doi.org/10.22201/
ib.20078706e.2011.4.745
Navas, G. R., Bermúdez, A., Ángel-Yunda, C., & Cam-
pos, N. H. (2013). Afinidades biogeográficas de los
galateoideos (Decapoda: Anomura) del Caribe y
Pacífico Colombiano. Revista MVZ Córdoba, 18(2),
3501–3511. https://doi.org/10.21897/rmvz.174
Navas, G. R., Vides, M. P., & Díaz-Ruiz, M. C. (2010).
Ensamblajes faunísticos de la plataforma y talud
superior del mar Caribe colombiano. In INVEMAR
(Eds.) Biodiversidad del margen continental del Caribe
colombiano (pp. 355–390). Serie de Publicaciones
Especiales del INVEMAR N° 20.
Núñez, S. G., López, N. H., García, C. B., & Navas, G. R.
(1999). Caracterización y comportamiento bimensual
de la comunidad sésil asociada con el litoral rocoso de
Bocachica, Isla de Tierra Bomba, Caribe colombiano.
Ciencias Marinas, 25, 629–646.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P.,
Minchin, P. R., O’Hara, R. B., Simpson, G. L., Soly-
mos, P., Stevens, M. H. H., & Wagner, H. (2014).
Vegan: Community Ecology Package. R Package Ver-
sion 2.2-0. http://CRAN.Rproject.org/package=vegan
Paoletti, M. G., & Stinner, B. R. (1989). Two new terrestrial
Isopoda (Oniscidea) from coralline cays of Venezu-
elas Caribbean coast. Proceedings of the Entomological
Society of Washington, 91(1), 71–80. Available from
https://biostor.org/reference/56403
Paoletti, M., & Hassall, M. (1999). Woodlice (Isopoda:
Oniscidea): their potential for assessing sustainability
and use as bioindicators. Agriculture, Ecosystems and
Environment, 74, 157–165. https://doi.org/10.1016/
S0167-8809(99)00035-3
Preciado, A. F., & Martínez, J. W. (2014). Estudio de isópo-
dos terrestres (Crustacea: Isopoda: Oniscidea) en tres
localidades de Boyacá, Colombia. Revista de Ciencias
Agrícolas, 31(2), 14–23.
R Core Team. (2020). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. https://www.r-project.
org/
Reyes, J., Santodomingo, N., & Flórez, P. (2010). Corales
Escleractinios de Colombia. INVEMAR Serie de Pub-
licaciones Especiales, No. 14. Santa Marta.
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
Richardson, A., & Araujo, P. B. (2015). Lifestyles of ter-
restrial crustaceans. In M. Thiel, & L. Watling (Eds.),
The natural history of the Crustacea. Lifestyles and
feeding biology (p. 299–336). Oxford University Press,
Oxford, U.K.
Rushton, S. P., & Hassall, M. (1987). Effects of food quality
on isopod population dynamics. Funcional Ecology,
1(4), 359–367. https://doi.org/10.2307/2389792
Schmalfuss, H. (2003). World catalog of terrestrial iso-
pods (Isopoda: Oniscidea). Stuttgarter Beiträge zur
Naturkunde, 654, 1–341.
Schultz, G. A. (1972). Ecology and systematics of ter-
restrial isopod Crustaceans from Bermuda. Crusta-
ceana Supplement, 3, 79–99. https://www.jstor.org/
stable/25027410
Schultz, G. A. (1984). Three new and five other species of
Oniscoidea from Belize, Central America (Crustacea,
Isopoda). Journal of Natural History, 18, 3–14. https://
doi.org/10.1080/00222938400770021
Schultz, G. A., & Johnson, C. (1984). Terrestrial isopod
crustaceans from Florida (Oniscoidea). Tylidae, Ligi-
idae, Halophilosciidae, Philosciidae and Rhyscotidae.
Journal of Crustacean Biology, 4(1), 154–171. https://
doi.org/10.2307/1547904
Sfenthourakis, S. (1993). Terrestrial isopods (Crustacea:
Oniscidea) from remote Greek islands Antikithira
and its surrounding islets. Revue Suisse de Zoologie,
100, 613–626.
Sfenthourakis, S. (1996a). A biogeographical analysis of
terrestrial isopods (Isopoda, Oniscidea) from central
Aegean islands (Greece). Journal of Biogeography, 23,
687–698. https://doi.org/10.1111/j.1365-2699.1996.
tb00029.x
Sfenthourakis, S. (1996b). The species-area relationship of
terrestrial isopods (Isopoda; Oniscidea) from Aegean
archipelago (Greece): a comparative study. Global
Ecology and Biogeography Letters, 5, 149–157. https://
doi.org/10.2307/2997397
Sfenthourakis, S., & Legakis, K. A. (2001). Hotspots of
endemic terrestrial invertebrates in southern Greece.
Biodiversity and Conservation, 10, 1387–1417. https://
doi.org/10.1023/A:1016672415953
Sfenthourakis, S., & Taiti, S. (2015). Patterns of taxonomic
diversity among terrestrial isopods. ZooKeys, 515,
13–25. https://doi.org/10.3897/zookeys.515.9332
Sfenthourakis, S., & Triantis, K. A. (2009). Habitat diver-
sity, ecological requirements of species and Small
Island Effect. Diversity and Distributions, 15, 131–140.
https://www.jstor.org/stable/20532077
Sfenthourakis, S., Anastasiou, I., & Strutenschi, T.
(2005). Altitudinal terrestrial isopod diversity.
European Journal of Soil Biology, 41, 91–98. https://
doi.org/10.1016/j.ejsobi.2005.09.006
Sfenthourakis, S., Orfanou, V., & Anastastiou, Y. (2008). A
comparative study of isopod assemblages of elevated
habitats on Five mountains of Peloponnisos península
(Greece). In M. Zimmer, F. Charfi-Cheikhrouha & S.
Taiti (Eds.), Proceedings of the International Sympo-
sium of Terrestrial Isopod Biology (pp. 8–175). Tunisia:
Shaker Verlag.
Sghaïer, M., & Charfi-Cheikhrouha, F. (2002). Biologie et
dynamique de population de Porcellionides sexfas-
ciatus (Crustacea, Isopoda, Oniscidea). Comptes Ren-
dus Biologies, 325, 605–616. https://doi.org/10.1016/
S1631-0691(02)01462-2
Solomou, A. D., Sfugaris, A. I., & Sfendourakis, S. (2019).
Terrestrial isopods as bioindicators for environmental
monitoring in olive groves and natural ecosystems.
Journal of Natural History, 53(27-28), 1721–1735.
https://doi.org/10.1080/00222933.2019.1658821
Spalding, M. D., Fox, H. E., Allen, G. R., Davison, N., Fer-
daña, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A.,
Lombana, A., Lourie, S. A., Martin, K. D., Mcmanus,
E., Molnar, J., Recchia, C. A., & Robertson, J. (2007).
Marine Ecoregions of the World: A Bioregionaliza-
tion of Coastal and Shelf Areas. BioScience, 57(7),
573–583. https://doi.org/10.1641/B570707
Ŝpaldoňová, A., & Frouz, J. (2014). The role of Armadil-
lidium vulgare (Isopoda: Oniscidea) in litter decom-
position and soil organic matter stabilization. Applied
Soil Ecology, 83, 186–192. https://doi.org/10.1016/j.
apsoil.2014.04.012
Szlavecz, K., Vilisics, F., Tóth, Z., & Hornung, E. (2018).
Terrestrial isopods in urban environments: an over-
view. ZooKeys, 801, 97–126. https://doi.org/10.3897/
zookeys.801.29580
Taiti, S. (2018). Biologia e biogeografia degli isopodi ter-
restri (Crustacea, Isopoda, Oniscidea). Atti Acca-
demia Nazionale Italiana di Entomologia, Anno LXV,
83–90.
Taiti, S., & Ferrara, F. (1986). Taxonomic revision of the
genus Littorophiloscia Hatch, 1947 (Crustacea, Isop-
oda, Oniscidea) with description of six new species.
Journal of Natural History, 20, 1347–1380. https://doi.
org/10.1080/00222938600770911
Taiti, S., & Wynne, J. (2015). The terrestrial Isopoda (Crus-
tacea, Oniscidea) of Rapa Nui (Easter Island), with
descriptions of two new species. ZooKeys, 515, 27–49.
https://doi.org/10.3897/zookeys.515.9477
Taiti, S., Montesanto, G., & Vargas, J. A. (2018). Terrestrial
Isopoda (Crustacea, Oniscidea) from the coasts of
Costa Rica, with descriptions of three new species.
Revista de Biología Tropical, 66(1), 187–210. https://
doi.org/10.15517/rbt.v66i1.33296
17
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72: e58577, enero-diciembre 2024 (Publicado Ago. 22, 2024)
Vandel, A. (1973). Les isopodes terrestres et cavernicoles de
l’île de Cuba. In T. Orghidan, A. Núñez, L. Botosane-
anu, V. Decou, Ş. Negrea, & N. Viña (Eds.), Résultats
des Expéditions biospéologiques cubanoroumaines à
Cuba, vol. 1 (pp. 153–188). Editura Academiei Repub-
licii Socialiste România, Bucharest.
Vides, M. P. (2011). Distribución de la megafauna bentóni-
ca del Caribe colombiano asociado a variables del
fondo marino. Boletín de Investigaciones Marinas y
Costeras, 40(2), 249–270.
Whittaker, R. H. (1972). Evolution and measurement of
species diversity. Taxon, 21, 213–251. https://doi.
org/10.2307/1218190
Wickham, H. (2016). Ggplot2: Elegant graphics for data
analysis. 2nd ed. Cham, Switzerland: Springer Inter-
national Publishing.
Zimmer, M. (2005). Effects of temperature and precipita-
tion on a flood plain isopod community: A field
study. European Journal of Soil Biology, 40, 139–146.
https://doi.org/10.1016/j.ejsobi.2005.02.001
Zimmer, M., & Topp, W. (1999). Relationships between
woodlice (Isopoda: Oniscidea) and microbial density
and activity in the field. Biology and Fertility of Soils,
30, 117–123. https://doi.org/10.1007/s003740050597