1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
Recent molecular techniques to strengthen
ecological studies in echinoderms
Ruber Rodríguez-Barreras *1; http://orcid.org/0000-0001-7790-6108
1. Department of Biology, University of Puerto Rico, Mayagüez campus; PO Box 9000, Mayagüez, Puerto Rico; ruber.
rodriguez@upr.edu (*Correspondence)
Received 04-VI-2023. Corrected 07-IX-2023. Accepted 25-XI-2023.
ABSTRACT
Introduction: Echinoderms, an integral component of marine ecosystems worldwide, have captivated sci-
entific interest for centuries. Despite this longstanding attention, comprehending key facets such as trophic
relationships, diet composition, and host-microbiota relationships still represents a challenge using traditional
techniques. Recent years, however, have witnessed a transformative shift, thanks to the emergence of advanced
molecular techniques, offering new approaches to strengthen ecological studies in echinoderms.
Objective: Explore how recent advancements in molecular tools have impacted ecological research on echino-
derms. Specifically, we aim to investigate the potential of these tools to shed light on trophic interactions, diet
composition, and the characterization of gut microbial communities in these organisms.
Methods: Available literature was used to clarify how novel molecular techniques can improve ecological studies.
The focus is diet, trophic relationships, and gut microbiota.
Results: Traditionally, studies of stomach contents using compound microscopy have provided an idea of ingest-
ed material; nevertheless, sometimes a simple magnified visualization of dietary content does not allow exhaus-
tive identification of the entire food spectrum, as it is limited due to the rapid digestion and maceration of food
items within the echinoderms digestive tract. The use of DNA-metabarcoding, targeting specific DNA regions,
such as the mitochondrial COI gene, has allowed us to enhance the accuracy and precision of diet characteriza-
tion by enabling the identification of prey items down to the species or even genetic variant level, providing valu-
able insights into specific dietary preferences. Another approach is the use of stable isotopes, particularly carbon
and nitrogen, which provide a powerful tool to trace the origin and flow of nutrients through food webs. By
analyzing the isotopic signatures in muscular tissues and food items, we can discern the sources of their primary
food items and gain insights into their trophic position within the ecosystem. Lastly, a third new technique used
to elucidate the characterization of the prokaryotic community is 16S rRNA sequencing. This method allows us
to explore the composition and dynamics of the digestive tract microbial communities.
Conclusions: This is a promising era for ecological research on echinoderms, where advances of molecular tools
have enabled an unprecedented level of detail, resolving longstanding challenges in comprehending their trophic
interactions, diet composition, and host-microbiota relationships, and opening new avenues of investigation in
ecological studies.
Key words: echinoderms; stable isotopes; 16S rRNA; DNA-metabarcoding; ecology; review.
RESUMEN
Técnicas moleculares recientes que fortalecen los estudios ecológicos de equinodermos
Introducción: Los equinodermos, un componente integral de los ecosistemas marinos en todo el mundo, han
captado el interés científico durante siglos. A pesar de esta prolongada atención, el comprender facetas clave
https://doi.org/10.15517/rev.biol.trop..v72iS1.58880
SUPPLEMENT
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
INTRODUCTION
The use of novel technologies in eco-
logical studies on echinoderms and other
marine organisms has significantly advanced
our understanding of ecology, physiology, and
interactions within marine ecosystems. Among
these techniques, stable isotope analysis pro-
vides valuable insights into trophic relationships
and nutrient flow within marine ecosystems
(Phillips & Gregg, 2003). The use of stable iso-
topes in ecological studies has its origins in the
field of geochemistry, where isotopic analysis
was initially used to understand the composi-
tion and age of rocks and minerals (OConnell
et al., 2012). The application of stable isotopes
in ecology began in the 1960s when researchers
realized that isotopic signatures could be used
to trace the movement of elements through
ecosystems, using stable carbon isotopes to
study the carbon cycle and its impact on climate
change (Keeling et al., 1995). Since then, stable
isotopes have become valuable tools in the
study of ecological processes, such as trophic
interactions, nutrient cycling, and migration
patterns. The development of new analytical
techniques and advancements in mass spec-
trometry have further enhanced the application
of stable isotopes in the field of ecology. The
Isotope ratio mass spectrometry (IRMS) meth-
od allows researchers to measure the ratios of
isotopes in a sample with high precision and
accuracy (Godin & McCullagh, 2011; Hayes,
2001). The development of compound-specific
isotope analysis (CSIA) has allowed researchers
to examine isotopic signatures at the molecular
level, providing more detailed insights into
ecological processes (Chikaraishi et al., 2007).
These advancements have opened new avenues
for studying ecological dynamics and have
como las relaciones tróficas, la composición de la dieta y las relaciones huésped-microbiota todavía representa un
desafío utilizando técnicas tradicionales. Sin embargo, los últimos años han sido testigos de un cambio transfor-
mador, gracias a la aparición de técnicas moleculares avanzadas, que ofrecen nuevos enfoques para fortalecer los
estudios ecológicos en equinodermos.
Objetivo: Explorar cómo los avances recientes en herramientas moleculares han impactado la investigación
ecológica sobre equinodermos. Específicamente, nuestro objetivo es investigar el potencial de estas herramientas
para arrojar luz sobre las interacciones tróficas, la composición de la dieta y la caracterización de las comunidades
microbianas intestinales en estos organismos.
Métodos: Se utilizó la literatura disponible para aclarar cómo las nuevas técnicas moleculares pueden mejorar los
estudios ecológicos. La atención se centra en la dieta, las relaciones tróficas y la microbiota intestinal.
Resultados: Tradicionalmente, los estudios del contenido estomacal mediante microscopía compuesta han pro-
porcionado una idea del material ingerido; Sin embargo, a veces una simple visualización ampliada del contenido
dietético no permite una identificación exhaustiva de todo el espectro alimentario, ya que está limitado debido a
la rápida digestión y maceración de los alimentos dentro del tracto digestivo del equinodermo. El uso de meta-
barcoding de ADN, dirigidos a regiones específicas del ADN, como el gen COI mitocondrial, nos ha permitido
mejorar la exactitud y precisión de la caracterización de la dieta al permitir la identificación de presas hasta el
nivel de especie o incluso de variante genética, lo que proporciona valiosos resultados sobre preferencias dietéticas
específicas. Otro enfoque es el uso de isótopos estables, en particular carbono y nitrógeno, que proporcionan una
poderosa herramienta para rastrear el origen y el flujo de nutrientes a través de las redes alimentarias. Al analizar
las firmas isotópicas en los tejidos musculares y los alimentos, podemos discernir las fuentes de sus alimentos
primarios y obtener información sobre su posición trófica dentro del ecosistema. Por último, una tercera técnica
nueva utilizada para dilucidar la caracterización de la comunidad procariótica es la secuenciación del ARNr
16S. Este método nos permite explorar la composición y dinámica de las comunidades microbianas del tracto
digestivo.
Conclusiones: Esta es una era prometedora para la investigación ecológica sobre equinodermos, donde los
avances de las herramientas moleculares han permitido un nivel de detalle sin precedentes, resolviendo desafíos
de larga data en la comprensión de sus interacciones tróficas, composición de la dieta y relaciones huésped-
microbiota, y abriendo nuevas vías de investigación. en estudios ecológicos.
Palabras clave: equinodermos; isótopos estables; ARNr 16S; metabarcoding de ADN; ecología; revisión.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
contributed significantly to our understanding
of complex ecological systems.
Another powerful technique that has sig-
nificantly advanced ecological studies involv-
ing echinoderms is the application of DNA
sequencing methods for prokaryotic and
eukaryotic organisms. This molecular tool
allows researchers to explore the diversity and
composition of microbial communities associ-
ated with echinoderms (Leray & Knowlton,
2016; Silva et al., 2021). The use of 16S rRNA in
ecological studies has its origins in genetics and
molecular biology. 16S rRNA is a ribosomal
RNA sequence present in the DNA of prokary-
otic and some eukaryotic cells, which encodes
for structural components of the ribosome. In
the 1980s, the technique of 16S rRNA sequenc-
ing was first used to investigate the diversity
and phylogenetic relationships among different
bacterial species (Oren, 2004; Whitman et al.,
2022). This approach revolutionized the field
of microbial ecology by providing a molecular
tool to identify and classify microorganisms
based on their genetic relatedness. By compar-
ing the sequences of 16S rRNA genes from dif-
ferent organisms, researchers can reconstruct
the evolutionary history of bacteria and infer
their ecological roles in various ecosystems.
Advancements in DNA sequencing technolo-
gies have further propelled the use of 16S
rRNA in ecological studies. The development
of high-throughput sequencing platforms, such
as next-generation sequencing, has enabled
researchers to analyze large volumes of 16S
rRNA sequences from environmental samples
in a cost-effective and time-efficient manner
(Caporaso et al., 2010; Muhamad-Rizal et al.,
2020). This has facilitated the exploration of
microbial diversity and community composi-
tion in several ecological settings, ranging from
soil and marine environments to the human
gut microbiome. Additionally, bioinformatics
tools and databases specifically designed for
16S rRNA analysis, such as QIIME (Quanti-
tative Insights Into Microbial Ecology) and
Greengenes, have emerged, providing research-
ers with computational resources to process
and interpret vast amounts of sequencing data
(DeSantis et al., 2006; Gilbert et al., 2014).
DNA metabarcoding, is a third novel tech-
nique that has emerged as a transformative tool
for ecological studies in echinoderms. This
technique allows for high-throughput identi-
fication of species based on DNA sequences
extracted from environmental samples (Leray
& Knowlton, 2015). By targeting specific DNA
regions, such as the mitochondrial COI gene,
researchers can rapidly assess echinoderm
diversity, community structure, and species
interactions in various marine habitats (Leray
& Knowlton, 2016; Leray et al., 2013). DNA
metabarcoding involves the amplification and
sequencing of specific DNA regions, such as the
barcode regions, to identify and quantify the
diversity of organisms present in environmen-
tal samples. The concept of DNA barcoding
was initially proposed to identify species based
on short, standardized DNA sequences (Antil
et al., 2023; Hebert et al., 2003). However, it
was soon realized that this approach could be
extended to ecological studies by simultane-
ously sequencing multiple DNA samples and
generating large datasets for species identifica-
tion and community analysis. The develop-
ment of next-generation sequencing platforms,
such as Illumina sequencing, provided the
technological capacity to process a massive
number of DNA sequences at a reasonable
cost, making DNA metabarcoding a powerful
tool in ecological research (Hassan et al., 2022;
Pawlowski et al., 2022). By targeting differ-
ent barcode regions, DNA metabarcoding can
provide a comprehensive and high-resolution
assessment of biological communities. Fur-
thermore, it can be applied to other organ-
isms, including plants, animals, prokaryotes,
and microeukaryotes by selecting appropriate
barcode regions. The interpretation of DNA
metabarcoding data relies on reference data-
bases that contain known DNA sequences from
a wide range of organisms. These databases,
such as GenBank and the Barcode of Life Data
Systems (BOLD), allow for the identification
and taxonomic assignment of the sequenced
DNA fragments (Taberlet et al., 2012). With
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
advances in bioinformatics tools and analytical
pipelines designed specifically for DNA metab-
arcoding analysis, researchers can now extract
valuable ecological information from complex
and diverse environmental samples (Hassan et
al., 2022; Zhang et al., 2023).
These novel techniques and their multiple
variations have important implications for con-
servation and ecosystem management, con-
tributing to our understanding of echinoderm
species and their roles within marine ecosys-
tems. Therefore, the main goal of this review
is to analyze the fast advance of new molecular
tools that allows a level of detail never seen
before, clarifying old doubts, and opening new
research avenues in ecological studies.
Stable isotopes
The complexity of trophic relationships
exceeds common perception. Simply exam-
ining the contents of an organisms stomach
does not reveal which specific items are being
absorbed by the consumer (Peterson & Fry,
1987; Phillips et al., 2014). Stable isotopes
have emerged as a valuable tool for studying
the ecology and physiology of echinoderms, a
marine group of invertebrates that includes sea
lilies, brittle stars, starfish, sea urchins, and sea
cucumbers, providing insights into the trophic
interactions, migration patterns, and habitat
preferences of echinoderms (Fry & Sherr, 1984;
Sturbois et al., 2022). Carbon, nitrogen, oxygen,
and sulfur isotopes are commonly employed
to unravel several aspects of echinoderm biol-
ogy (Cabanillas-Terán et al., 2016; Rodríguez-
Barreras et al., 2015; Wangensteen et al., 2011).
In recent years, stable isotope analysis has been
extensively used to examine the trophic ecology
of echinoderms, shedding light on their feed-
ing preferences, diet breadth, and interactions
with other organisms (Cabanillas-Terán et al.,
2019; Pérez-Posada et al., 2023). For instance,
Rodríguez-Barreras et al. (2016) presented the
ellipses-based metrics of niche width for five
Caribbean sea urchins based on habitat prefer-
ences where each species displayed a particu-
lar isotopic signature of carbon and nitrogen
indicating no food overlapping among them,
despite of species from the same habitat can be
found inhabiting close to each other (Fig. 1).
Among stable isotopes, Carbon, and par-
ticularly carbon-13 (δ13C), play a crucial role
in understanding the feeding ecology of echi-
noderms (Purcell et al., 2007). By analyzing
the carbon isotopic signatures in muscular
tissues, researchers can decipher the primary
carbon sources they consume, providing valu-
able information about their dietary prefer-
ences and trophic positions within marine food
webs (Burton et al., 2011; Carney, 2010; Gale
et al., 2013). Moreover, nitrogen isotopes, such
as nitrogen-15 (δ15N), have proven instrumen-
tal in studying the trophic levels and nutrient
sources (Hobson et al., 1995; Nilsen et al.,
2008). The δ15N values in their tissues increase
with higher trophic positions, offering insights
into their position in the food chain and poten-
tial dietary shifts (Gurney et al., 2001). Fur-
thermore, stable nitrogen isotopes have been
also used to explore the effects of anthropo-
genic nutrient inputs on echinoderm commu-
nities and to assess the ecological impacts of
Fig. 1. Results of the ellipses-based metrics of niche width
for two echinoids groups based on habitat preferences
where circles represent the potential niche of each species.
A. Represents three species from reefs biotopes, and B.
represents two species from seagrass beds.
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
eutrophication (Radabaugh et al., 2013; Yatsuya
& Nakahara, 2004). The ratios of 13C to 12C and
15N to 14N in the tissues compared to their algae
food resources is referred to as Trophic Enrich-
ment Factor (Parnell et al., 2010). Thus, we can
also calculate the trophic level for every indi-
vidual, using the equation proposed by Hobson
and Welch (1992).
Additionally, oxygen isotopes, such as oxy-
gen-18 (δ18O), are employed to determine the
thermal history and evolutionary patterns of
dispersal (Gerringer 2019; Zenteno et al., 2013).
Changes in δ18O values in skeletal structures
can indicate temperature changes or move-
ments across different water conditions (Kill-
ingley & Rex, 1985). This isotope also provides
insights into the thermal ecology and habi-
tat preferences, helping to understand their
responses to climate change and oceanographic
processes (Luo et al., 2023; Tiwari et al., 2013;
Zhao et al., 2020). The fourth most common
used stable isotope are sulfur isotopes, particu-
larly sulfur-34 (δ34S), contribute to understand-
ing the nutrient sources and sulfur cycling in
food webs (Connolly et al., 2004). The δ34S
values in their tissues can reflect the use of dif-
ferent sulfur sources, such as marine organic
matter or sulfide-rich sediments (Vaslet et al.,
2012), but also, researchers can gain insights
into the influence of the prokaryotic commu-
nity in the diet of echinoderms (Mendes et al.,
1963; Pascal et al., 2017).
Stable isotopes have also proven valuable
for studying the physiology and metabolic pro-
cesses of echinoderms. For example, carbon
isotopes have been used to investigate metabolic
rates and energy allocation in these organisms
(Sun et al., 2012). By tracing the input of isoto-
pically labeled compounds, obtaining insights
into nutrient uptake, assimilation, and utiliza-
tion (Walters et al., 2021). Thus, stable isotope
analysis has also been employed to study the
reproductive biology and larval ecology of echi-
noderms. Nitrogen isotopes have been used to
trace the transfer of maternal nutrients to devel-
oping embryos and larvae (Reitzel & Miner,
2007). By analyzing the isotopic composition of
different life stages, marine ecologist can gain
insights into larval dispersal patterns, connec-
tivity between populations, and the influence of
local versus distant sources of larvae (Lester et
al., 2007; Levin, 2006). Lastly, the combination
of stable isotope analysis with other techniques,
such as fatty acid analysis and genetic markers,
has provided a comprehensive understanding
of the feeding ecology and population structure
in echinoderms (McKenzie et al., 2000; North
et al., 2019). These integrated approaches allow
researchers to examine the dietary preferences
of different echinoderm species, identify poten-
tial competition among species, and investigate
the drivers of population dynamics (Howell et
al., 2003; Rossi & Elias-Piera, 2018).
Eukaryotic DNA-metabarcoding
This method provides a comprehensive
and efficient approach to studying the biodi-
versity and ecological patterns of echinoderms,
aiding in conservation efforts, and inform-
ing ecosystem management strategies (Leray
& Knowlton, 2015; Leray et al., 2013; Ric-
cioni et al., 2022). DNA metabarcoding, a
high-throughput sequencing technique, has
revolutionized the field of biodiversity assess-
ment and ecological studies (Barnes & Turn-
er, 2016). This powerful tool allows for the
rapid identification of species and the analysis
of complex biological communities based on
DNA markers. In recent years, DNA metaba-
rcoding has emerged as a valuable approach
in echinoderm research, enabling scientists
to gain insights into the diversity, community
structure, and ecological roles of these marine
organisms (Licuanan & Matias, 2022; Okanishi
et al., 2023; Rodriguez-Barreras et al., 2020).
This essay aims to explore the applications
of DNA metabarcoding in echinoderm stud-
ies, highlighting its contributions to taxonomy,
community ecology, trophic interactions, and
conservation. In addition, DNA metabarcoding
has proven to be a reliable method for species
identification and taxonomy in echinoderms.
By sequencing specific gene regions, such as the
mitochondrial cytochrome c oxidase subunit I
(COI) gene, researchers can accurately identify
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
and differentiate echinoderm species, includ-
ing cryptic and morphologically similar taxa
(Wangensteen et al., 2018). This non-invasive
approach overcomes the limitations of tradi-
tional morphological identification and has led
to the discovery of new species and the revision
of taxonomic classifications in echinoderms
(Borrero-Pérez et al., 2019; Trivedi et al., 2016).
DNA metabarcoding has also been instru-
mental in elucidating the community struc-
ture and diversity of echinoderm assemblages.
By analyzing environmental DNA (eDNA)
extracted from seawater or sediment samples,
researchers can assess the presence and abun-
dance of different echinoderm species in each
habitat (Deiner et al., 2016; Leray et al., 2013).
This approach provides a comprehensive and
efficient method for studying echinoderm
biodiversity, particularly in hard-to-access or
cryptic habitats and allows for the monitor-
ing of community dynamics and changes over
time (Boissin et al., 2017; Deiner et al., 2016).
Moreover, DNA metabarcoding enables the
identification of rare or endangered species,
contributing to their conservation and manage-
ment. On the other hand, DNA metabarcoding
has shed light on the trophic interactions and
feeding ecology of echinoderms. By analyzing
the gut contents or fecal material of echino-
derms, researchers can identify the prey items
consumed by these organisms and investigate
their dietary preferences and ecological roles
(Jia et al., 2022; Rodríguez-Barreras et al.,
2020). This information is crucial for under-
standing energy flow and nutrient cycling in
marine ecosystems and can contribute to the
assessment of ecosystem health and function-
ing (Bourlat et al., 2013; Compson et al., 2018).
Likewise, DNA metabarcoding can reveal the
occurrence of symbiotic or commensal organ-
isms associated with echinoderms, providing
insights into their ecological interactions and
mutualistic relationships (Kodama et al., 2023;
Toju, 2015).
DNA metabarcoding has proven particu-
larly valuable in studying the trophic ecology
of echinoderms, shedding light on the trophic
interactions and food web dynamics involving
echinoderms (Baure et al., 2023; Redd et al.,
2014). Thus, a recent study described the food
items found in four Caribbean sea urchins
(Rodríguez-Barreras et al., 2020). Authors also
compared diet similarities among species from
the same habitat (Fig. 2). Through the analy-
sis of gut contents from 60 individuals across
three collection sites, we found that these four
sea urchins primarily feed on seaweeds, with
additional consumption of small protists, fungi,
and metazoans. Notably, variations in diet were
observed both between species and among col-
lection sites, suggesting potential inter-specific
competition and niche overlap among these
generalist omnivores. Hence, genetic studies
have been performed in echinoderms (Alcudia-
Catalma et al., 2020; Layton et al., 2016). For
example, the study of 19 sea cucumber species,
finding low genetic variation within most spe-
cies (Alcudia-Catalma et al., 2020). Another
study analyzed the effectiveness of DNA bar-
coding for species identification in a diverse
range of marine invertebrates, including crusta-
ceans, mollusks, polychaetas, and echinoderms.
By analyzing nearly half of the 300 known
Echinodermata species in Canadian waters,
the research highlighted six species requiring
further taxonomic investigation due to their
specimens falling into two or three distinct
sequence clusters. The study also explored the
potential impacts of larval dispersal and glacial
events on genetic diversity patterns in 19 trans-
oceanic species (Layton et al., 2016).
Prokaryotic 16S metabarcoding
Traditional methods used in microbiol-
ogy, such as culture and microscopy, have
provided evidence of the presence of bacte-
ria within the gut microbiota of sea urchins.
Many of these bacteria are associated with
ecological interactions and metabolic processes
(Marangon et al., 2023; McCracken et al., 2023;
Temara et al., 1993). However, recent advance-
ments in molecular sequencing techniques have
emerged as powerful tools that are revolution-
izing the characterization of microbiota in
marine organisms (Hakim et al., 2016; Nelson
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
et al., 2010; Petti et al., 2005; Rodríguez-Bar-
reras et al., 2021). These molecular approaches
have significantly enhanced our understanding
of the microbial communities associated with
echinoderms and other marine invertebrates,
enabling a more comprehensive analysis of
their composition and function.
The 16S ribosomal RNA (16S rRNA),
present in all bacteria and archaea, serves as
a molecular marker to identify and classify
microbial taxa (Hakim et al., 2019). By analyz-
ing the 16S rRNA gene sequences, researchers
can unravel the intricate relationships between
echinoderms and their associated microbial
communities, shedding light on the potential
roles of these microbes in echinoderm health,
nutrition, and overall ecological functioning
(Lima-Mendez et al., 2015; Rodríguez-Barreras
et al., 2023). The 16S rRNA gene is a widely
used molecular marker for studying microbial
diversity and community structure. In recent
years, the application of this marker sequenc-
ing has expanded to include investigations
of microbial associations in various ecosys-
tems, including the marine environment. This
essay explores the applications of 16S rRNA
Fig. 2. A nMDS ordination (Bray–Curtis) for COI samples of four sea urchins Diadema antillarum (Philippi, 1845),
Echinometra lucunter (Linnaeus, 1758), Lytechinus variegatus (Lamarck, 1816) and Tripneustes ventricosus (Lamarck, 1816),
collected from three sites of Puerto Rico. Circles, triangles, and squares identify individuals of each species. In each case,
individuals of the same species are grouped together.
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
sequencing in echinoderm research, highlight-
ing its contributions to understanding the
microbial interactions, symbiosis, and envi-
ronmental adaptations.
The use of 16S rRNA sequencing has
revealed valuable insights into the microbial
communities associated with echinoderms. By
analyzing the V4 region of the 16S rRNA
gene, researchers have identified diverse bac-
terial taxa that inhabit the surfaces, tissues,
and gut of echinoderms (Jackson et al., 2018).
This approach has enabled the characterization
of core microbiomes in echinoderms across
different species, providing a foundation for
understanding the functional roles of microor-
ganisms in echinoderm health, development,
and physiology. In addition, the use of 16S
rRNA sequencing has provided insights into the
microbial contributions to echinoderm physiol-
ogy and environmental adaptations. Studies
have identified specific bacterial taxa associ-
ated with nutrient metabolism, detoxification
processes, and resistance to environmental
stressors in echinoderms (Franzenburg et al.,
2012; Marangon et al., 2021). This knowledge
enhances our understanding of the functional
capabilities of echinoderm-associated micro-
organisms and their potential roles in host
health, resilience, and acclimation to changing
environmental conditions.
Furthermore, through 16S rRNA sequenc-
ing, researchers can decipher intriguing micro-
bial interactions within echinoderms. For
instance, recent studies revealed the occurrence
of potential symbiotic relationships between
echinoderms and specific bacterial taxa, sug-
gesting mutualistic or commensal associations
(Brigmon & De Ridder, 1998; Schuh et al.,
2020). These bacterial partnerships may con-
tribute to nutrient acquisition, defense against
pathogens, and overall host fitness. Under-
standing the dynamics and functional roles of
these symbiotic interactions can provide valu-
able insights into the ecology and evolution of
echinoderms (Carrier et al., 2021). In addition
to symbiotic interactions, 16S rRNA sequencing
has provided insights into the dynamic nature
of the microbiome in echinoderms. Studies
have revealed variations in the microbial com-
munity composition across different devel-
opmental stages, habitats, and environmental
conditions (Ketchum et al., 2021; Marangon
et al., 2023; Rodríguez-Barreras et al., 2023).
These findings suggest that the echinoderm
microbiome is influenced by both intrinsic
factors and extrinsic environmental factors,
highlighting the importance of considering the
context-dependent nature of microbial associa-
tions in echinoderm research.
The study of the microbial diversity asso-
ciated with echinoderms using 16S rRNA
sequencing has also provided valuable insights
into host-microbe interactions and disease
dynamics. By examining the microbiomes of
diseased echinoderms, researchers have identi-
fied shifts in microbial composition and poten-
tial pathogens associated with disease symptoms
(Galac et al., 2016; Marangon et al., 2023). This
knowledge contributes to our understanding of
the etiology and progression of diseases affect-
ing echinoderms, enabling the development of
targeted management strategies and conserva-
tion efforts. Another significant application of
16S rRNA sequencing in echinoderm research
is the investigation of microbial-mediated eco-
logical processes, such as nutrient cycling and
organic matter degradation. By characterizing
the functional potential of the echinoderm-
associated microbiota, researchers can gain
insights into the roles of microorganisms in
nutrient transformations, carbon fluxes, and
the overall functioning of marine ecosystems
(Masasa et al., 2023; Thompson & Polz, 2006).
These findings highlight the interconnected-
ness between echinoderms and their associated
microbiomes in ecosystem processes.
The integration of 16S rRNA sequencing
with other omics approaches, such as metage-
nomics and metatranscriptomics, has further
expanded our understanding of the functional
potential and metabolic activities of inverte-
brates-associated microbiomes (Gudenkauf &
Hewson, 2015). These multi-omics approaches
enable the exploration of gene functions, met-
abolic pathways, and ecological interactions
within the microbial communities associated
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
with echinoderms (Rey-Campos et al., 2022).
By combining different molecular techniques,
researchers can unravel the intricate relation-
ships between echinoderms and their microbial
partners, shedding light on the mechanisms
driving their symbiotic associations and ecolog-
ical contributions (Lowe et al., 2017; Voronov et
al., 2023). On the other hand, the use of 16S
rRNA sequencing has significantly advanced
our understanding of the microbiota residing
in the digestive systems. This novel technique.
For instance, recent study revealed the gut
microbiota of sea cucumbers (Pagán-Jiménez et
al., 2019), revealing distinct microbial profiles
among different species of sea cucumbers, and
suggesting the influence of host-specific factors
in shaping the composition of the gut microbio-
ta. Another study examined the gut microbiota
of a sea star and found the existence of specific
microbial taxa involved in nutrient metabolism
and the breakdown of complex organic com-
pounds, highlighting the symbiotic relationship
between the host and its gut microbiota in the
digestive processes of sea stars (McCracken et
al., 2023). In another study conducted with four
Caribbean sea urchins, authors found similar
gut microbiotas among the species, but one of
them (Lytechinus variegatus) displayed specific
microbiota profiles (Rodríguez-Barreras et al.,
2021) (Fig. 3).
16S rRNA sequencing has also revealed
the diversity and dynamics of the digestive
system microbiota in echinoderms (Masasa et
al., 2021; Masasa et al., 2023). For instance, a
recent study confirmed that the microbiome
of algae-eating sea urchins like Tripneustes gra-
tilla (Linnaeus, 1758) plays a significant role in
digesting fiber-rich seaweed, but also the study
revealed unique characteristics in the microbial
communities, particularly in the esophagus and
Fig. 3. Global analyses comparing the four sea urchin species. A. Bray-Curtis analysis represented in a 2D Principal
Coordinates Analysis (PCoA) using species as metadata categories, depicts distinct species clustering with permanova Pvalue=
0.004; Anosim Pvalue< 0.001, B. Rarefaction curves of Chao1 index demonstrated significant differences between green
(Lytechinus_variegatus) and red (Echinometra_lucunter) sea urchin (Pvalue= 0.006) and between red (Echinometra_lucunter)
and black (Diadema_antillarum) sea urchin (Pvalue= 0.048), C. Species relative abundance at phyla, and D. genus levels are
depicted by the bar plots.
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
intestine, concluding that the shifting microbial
communities within the digestive tract provide
strong evidence supporting the idea of bacteria
playing a crucial role in food digestion (Masasa
et al., 2023). Furthermore, environmental fac-
tors have been shown to influence the composi-
tion of gut microbiota. A study found that the
relative abundance of certain microbial taxa
with changing temperatures, indicating the
sensitivity of the gut microbiota to environ-
mental variations and the potential impact on
host health and physiology (Dong et al., 2021;
Zhang et al., 2013; Zhang et al., 2019). However,
it is important to remark that these powerful
molecular techniques have some limitations.
For example, the 16S rRNA sequencing only
provides information on Bacteria and some
Archae but fails to detect other members of
the microbiota (fungi, viruses, and unicellu-
lar eukaryotes). This limitation is particularly
striking in the recent publication that a ciliated
eukaryote is the culprit of sea urchin mass mor-
tality (Hewson et al., 2023) a finding that would
not have been possible using 16S technology.
DISCUSSION
The integration of stable isotopes, DNA-
metabarcoding, both eukaryotic and prokary-
otic, has revolutionized ecological studies with
echinoderms, providing valuable insights into
their trophic interactions, biodiversity, and
microbial associations. Stable isotopes have
been instrumental in unraveling the trophic
ecology of echinoderms, shedding light on their
feeding habits, diet preferences, and ecological
roles within marine ecosystems (González-De
Zayas et al., 2020; Hobson, 2023). DNA-metab-
arcoding has transformed the way we assess
echinoderm biodiversity, allowing for efficient
species identification and revealing hidden
diversity and community dynamics (Leray et
al., 2013; Sinniger et al., 2016). Additionally,
16S rRNA sequencing has provided a deeper
understanding of the microbial associations
and functional roles of microorganisms associ-
ated with echinoderms, unraveling the intricate
symbiotic relationships and their ecological
contributions (Gara-Aljaro et al., 2017; Web-
ster et al., 2019). By leveraging these advanced
techniques, researchers can gain comprehen-
sive insights into the ecology and conserva-
tion of echinoderms. The knowledge obtained
through stable isotopes, DNA-metabarcoding,
and 16S rRNA sequencing contributes to our
understanding of ecosystem functioning, tro-
phic dynamics, and the impacts of environmen-
tal changes on echinoderm populations. This
information is crucial for effective management
and conservation strategies aimed at protecting
these ecologically important organisms and the
marine habitats they inhabit.
Ethical statement: the author declares that
he agrees with this publication; that there is no
conflict of interest of any kind; and that he fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgements sec-
tion. A signed document has been filed in the
journal archives.
ACKNOWLEDGMENTS
I would like to express my gratitude to the
organizing committee of the 5th Latin American
Echinoderm Conference, specially to Juan José
Alvarado and Jorge Sonnelholzner, for being
invited to the Congress and presenting the lec-
ture on which this paper is based.
REFERENCES
Alcudia-Catalma, M. N., Diaz, M. G. Q., Garcia, R. N.,
Ocampo, P. P., Laurena, A. C., & Tecson-Mendoza, E.
M. (2020). DNA barcoding and diversity analysis of
19 economically important Philippine sea cucumbers
(Holothuroidea). Philippine Journal of Science, 149(2),
335–346.
Antil, S., Abraham, J. S., Sripoorna, S., Maurya, S., Dagar,
J., Makhija, S., Bhagat. P., Gupta, R., Sood, U., &
Toteja, R. (2023). DNA barcoding, an effective tool
for species identification: a review. Molecular Biolo-
gy Reports, 50(1), 761–775. https://doi.org/10.1007/
s11033-022-08015-7
Barnes, M. A., & Turner, C. R. (2016). The ecology of envi-
ronmental DNA and implications for conservation
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
genetics. Conservation Genetics, 17, 1–17. https://doi.
org/10.1007/s10592-015-0775-4
Baure, J. G., Roleda, M. Y., & Juinio-Meñez, M. A. (2023).
Short-term exposure to independent and combined
acidification and warming elicits differential respon-
ses from two tropical seagrass-associated inverte-
brate grazers. Marine Biology, 170, 114. https://doi.
org/10.1007/s00227-023-04262-9
Boissin, E., Hoareau, T. B., Paulay, G., & Bruggemann, J. H.
(2017). DNA barcoding of reef brittle stars (Ophiuroi-
dea, Echinodermata) from the southwestern Indian
Ocean evolutionary hot spot of biodiversity. Ecolo-
gy and Evolution, 7(24), 11197–11203. https://doi.
org/10.1002/ece3.3554
Borrero-Pérez, G. H., Benavides-Serrato, M., Campos, N.
H., Galeano-Galeano, E., Gavio, B., Medina, J., &
Abril-Howard, A. (2019). Echinoderms of the Sea-
flower Biosphere Reserve: state of knowledge and new
findings. Frontiers in Marine Science, 6, 188. https://
doi.org/10.3389/fmars.2019.00188
Bourlat, S. J., Borja, A., Gilbert, J., Taylor, M. I., Davies,
N., Weisberg, S. B., Griffith, J. F., Lettieri, T., Field,
D., Benzie, J., Glöckner, F. O., Rodríguez-Ezpeleta,
N., Faith, P. D., Bean, R. P., & Obst, M. (2013).
Genomics in marine monitoring: new opportunities
for assessing marine health status. Marine Pollu-
tion Bulletin, 74(1), 19–31. https://doi.org/10.1016/j.
marpolbul.2013.05.042
Brigmon, R. L., & De Ridder, C. (1998). Symbiotic relation-
ship of Thiothrix spp. with an echinoderm. Applied
and Environmental Microbiology, 64(9), 3491–3495.
https://doi.org/10.1128/AEM.64.9.3491-3495.1998
Burton, T., Killen, S. S., Armstrong, J. D., & Metcalfe, N.
B. (2011). What causes intraspecific variation in
resting metabolic rate and what are its ecological
consequences? Proceedings of the Royal Society B:
Biological Sciences, 278(1724), 21957133. https://doi.
org/10.1098/rspb.2011.1778
Cabanillas-Terán, N., Loor-Andrade, P., Rodríguez-Barre-
ras, R., & Cortés, J. (2016). Trophic ecology of sea
urchins in coral-rocky reef systems, Ecuador. PeerJ, 4,
e1578. https://doi.org/10.7717/peerj.1578
Cabanillas-Terán, N., Hernández-Arana, H. A., Ruiz-Zára-
te, M. Á., Vega-Zepeda, A., & Sanchez-Gonzalez,
A. (2019). Sargassum blooms in the Caribbean alter
the trophic structure of the sea urchin Diadema
antillarum. PeerJ, 7, e7589. https://doi.org/10.7717/
peerj.7589
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons,
D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N.,
& Knight, R. (2010). Global patterns of 16S rRNA
diversity at a depth of millions of sequences per sam-
ple. Proceedings of the National Academy of Sciences,
108(Suppl. 1), 4516–4522. https://doi.org/10.1073/
pnas.1000080107
Carney, R. S. (2010). Stable isotope trophic patterns in
echinoderm megafauna in close proximity to and
remote from Gulf of Mexico lower slope hydrocar-
bon seeps. Deep Sea Research Part II: Topical Studies
in Oceanography, 57(21–23), 1965–1971. https://doi.
org/10.1016/j.dsr2.2010.09.027
Carrier, T. J., Leigh, B. A., Deaker, D. J., Devens, H. R.,
Wray, G. A., Bordenstein, S. R., Byrne, A. M. &
Reitzel, A. M. (2021). Microbiome reduction and
endosymbiont gain from a switch in sea urchin life
history. Proceedings of the National Academy of Scien-
ces, 118(16), e2022023118. https://doi.org/10.1073/
pnas.2022023118
Chikaraishi, Y., Kashiyama, Y., Ogawa, N. O., Kitazato, H.,
& Ohkouchi, N. (2007). Metabolic control of nitrogen
isotope composition of amino acids in macroalgae
and gastropods: implications for aquatic food web
studies. Marine Ecology Progress Series, 342, 85–90.
https://doi.org/10.3354/meps342085
Compson, Z. G., Monk, W. A., Curry, C. J., Gravel, D.,
Bush, A., Baker, C. J., Al Manir. M. S., Riazanov, A.,
Hajibabaei, M., Shokralla, S., Gibson, J. F., Stefani, S.,
Wright, M., & & Baird, D. J. (2018). Linking DNA
metabarcoding and text mining to create network-
based biomonitoring tools: A case study on Boreal
wetland macroinvertebrate communities. In D. A.
Bohan, A. J. Dumbrell, G. Woodward, & M. Jackson
(Eds.), Advances in ecological research (Vol. 59, pp.
33–74). Academic Press.
Connolly, R. M., Guest, M. A., Melville, A. J., & Oakes, J.
M. (2004). Sulfur stable isotopes separate producers
in marine food-web analysis. Oecologia, 138, 161–167.
https://doi.org/10.1007/s00442-003-1415-0
Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J. C., &
Altermatt, F. (2016). Environmental DNA reveals
that rivers are conveyer belts of biodiversity informa-
tion. Nature Communications, 7, 12544. https://doi.
org/10.1038/ncomms12544
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie,
E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Ander-
sen, G. L. (2006). Greengenes, a chimera-checked 16S
rRNA gene database and workbench compatible with
ARB. Applied and Environmental Microbiology, 72(7),
5069–5072. https://doi.org/10.1128/AEM.03006-05
Dong, Y., Li, Y., He, P., Wang, Z., Fan, S., Zhang, Z., Zhang,
X., & Xu, Q. (2021). Gut microbial composition and
diversity in four ophiuroid species: divergence bet-
ween suspension feeder and scavenger and their sym-
biotic microbes. Frontiers in Microbiology, 12, 645070.
https://doi.org/10.3389/fmicb.2021.645070
Franzenburg, S., Fraune, S., Künzel, S., Baines, J. F.,
Domazet-Lošo, T., & Bosch, T. C. (2012). MyD88-
deficient Hydra reveal an ancient function of TLR
signaling in sensing bacterial colonizers. Proceedings
of the National Academy of Sciences, 110(47), 19374–
19379. https://doi.org/10.1073/pnas.1213110109
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
Fry, B., & Sherr, E. B. (1984). δ^13C measurements as
indicators of carbon flow in marine and freshwater
ecosystems. In P. W., Rundel, J. R. Whleringer, & K. A.
Nagy (Eds.), Stable isotopes in ecological research. Eco-
logical studies, (Vol. 68, pp. 13–47) Springer. https://
doi.org/10.1007/978-1-4612-3498-2_12
Galac, M. R., Bosch, I., & Janies, D. A. (2016). Bacterial
communities of oceanic sea star (Asteroidea: Echino-
dermata) larvae. Marine Biology, 163, 162. https://doi.
org/10.1007/s00227-016-2938-3
Gale, K. S., Hamel, J. F., & Mercier, A. (2013). Trophic eco-
logy of deep-sea Asteroidea (Echinodermata) from
eastern Canada. Deep Sea Research Part I: Ocea-
nographic Research Papers, 80, 25–36. https://doi.
org/10.1016/j.dsr.2013.05.016
García-Aljaro, C., Ballesté, E., Muniesa, M., & Jofre, J.
(2017). Determination of crAssphage in water sam-
ples and applicability for tracking human faecal
pollution. Microbial Biotechnology, 10(6), 1775–
1780. https://doi.org/10.1111/1751-7915.12841
Gerringer, M. E. (2019). On the success of the hadal snail-
fishes. Integrative Organismal Biology, 1(1), obz004.
https://doi.org/10.1093/iob/obz004
Gilbert, J. A., Jansson, J. K., & Knight, R. (2014). The
Earth Microbiome project: successes and aspira-
tions. BMC Biology, 12, 69. https://doi.org/10.1186/
s12915-014-0069-1
Godin, J. P., & McCullagh, J. S. (2011). Review: Current
applications and challenges for liquid chromatogra-
phy coupled to isotope ratio mass spectrometry (LC/
IRMS). Rapid Communications in Mass Spectrometry,
25(20), 3019–3028. https://doi.org/10.1002/rcm.5167
González-De Zayas, R., Rossi, S., Hernández-Fernández, L.,
Velázquez-Ochoa, R., Soares, M., Merino-Ibarra, M.,
Castillo-Sandoval, F. S., & Soto-Jiménez, M. F. (2020).
Stable isotopes used to assess pollution impacts on
coastal and marine ecosystems of Cuba and Méxi-
co. Regional Studies in Marine Science, 39, 101413.
https://doi.org/10.1016/j.rsma.2020.101413
Gudenkauf, B. M., & Hewson, I. (2015). Metatranscripto-
mic analysis of Pycnopodia helianthoides (Asteroi-
dea) affected by sea star wasting disease. PLoS One,
10(5), e0128150. https://doi.org/10.1371/journal.
pone.0128150
Gurney, L. J., Froneman, P. W., Pakhomov, E. A., &
McQuaid, C. D. (2001). Trophic positions of three
euphausiid species from the Prince Edward Islands
(Southern Ocean): implications for the pelagic food
web structure. Marine Ecology Progress Series, 217,
167–174. https://doi.org/10.3354/meps217167
Hakim, J. A., Koo, H., Kumar, R., Lefkowitz, E. J., Morrow,
C. D., Powell, M. L., Watts, S. A., & Bej, A. K. (2016).
The gut microbiome of the sea urchin, Lytechinus
variegatus, from its natural habitat demonstrates
selective attributes of microbial taxa and predictive
metabolic profiles. FEMS Microbiology Ecology, 92(9),
fiw146. https://doi.org/10.1093/femsec/fiw146
Hakim, J. A., Schram, J. B., Galloway, A. W., Morrow, C.
D., Crowley, M. R., Watts, S. A., & Bej, A. K. (2019).
The purple sea urchin Strongylocentrotus purpuratus
demonstrates a compartmentalization of gut bacte-
rial microbiota, predictive functional attributes, and
taxonomic co-occurrence. Microorganisms, 7(2), 35.
https://doi.org/10.3390/microorganisms7020035
Hassan, S., Sabreena, Poczai, P., Ganai, B. A., Almalki, W.
H., Gafur, A., & Sayyed, R. Z. (2022). Environmental
DNA Metabarcoding: A Novel contrivance for docu-
menting terrestrial biodiversity. Biology, 11(9), 1297.
https://doi.org/10.3390/biology11091297
Hayes, J. M. (2001). Fractionation of the isotopes of carbon
and hydrogen in biosynthetic processes. Reviews in
Mineralogy and Geochemistry, 43(1), 225–277. https://
doi.org/10.2138/gsrmg.43.1.225
Hebert, P. D., Cywinska, A., Ball, S. L., & deWaard, J. R.
(2003). Biological identifications through DNA bar-
codes. Proceedings of the Royal Society of London,
Biological Sciences, 270(1512), 313–321. https://doi.
org/10.1098/rspb.2002.2218
Hewson, I., Ritchie, I. T., Evans, J. S., Altera, A., Behringer,
D., Bowman, E., Brandt, M., Budd, K. A., Camacho, R.
A., Cornwell, T. O., Countway, P. D., Croquer, A., Del-
gado, G. A., Derito, C., Duermit-Moreau, E., Francis-
Floyd, R., Gittens Jr., S., Henderson, L., Hylkema, A.,
… Breitbart, M. (2023). A scuticociliate causes mass
mortality of Diadema antillarum in the Caribbean
Sea. Science Advances, 9(16), eadg3200. https://doi.
org/10.1126/sciadv.adg3200
Hobson, K. A. (2023). Stable isotopes and a changing
world. Oecologia, 00, 1–18. https://doi.org/10.1007/
s00442-023-05387-w
Hobson, K. A., & Welch, H. E. (1992). Determination of
trophic relationships within a high Arctic marine
food web using δ 13 C and δ 15 N analysis. Marine
Ecology Progress Series, 84, 9–18.
Hobson, K. A., Ambrose Jr, W. G., & Renaud, P. E. (1995).
Sources of primary production, benthic-pelagic cou-
pling, and trophic relationships within the Northeast
Water Polynya: insights from δ13C and δ15N analy-
sis. Marine Ecology Progress Series, 128, 1–10. https://
doi.org/10.3354/meps128001
Howell, K. L., Pond, D. W., Billett, D. S., & Tyler, P. A. (2003).
Feeding ecology of deep-sea seastars (Echinodermata:
Asteroidea): a fatty-acid biomarker approach. Marine
Ecology Progress Series, 255, 193–206. https://doi.
org/10.3354/meps255193
Jackson, E. W., Pepe-Ranney, C., Debenport, S. J., Buckley,
D. H., & Hewson, I. (2018). The microbial landscape
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
of sea stars and the anatomical and interspecies varia-
bility of their microbiome. Frontiers in Microbiology,
9, 1829. https://doi.org/10.3389/fmicb.2018.01829
Jia, C., Zhang, Y., Xu, Q., Sun, C., Wang, Y., & Gao, F.
(2022). Comparative analysis of in situ eukaryotic
food sources in three tropical sea cucumber species
by metabarcoding. Animals, 12(17), 2303. https://doi.
org/10.3390/ani12172303
Keeling, C. D., Whorf, T. P., Wahlen, M., & Van der Plicht,
J. (1995). Interannual extremes in the rate of rise of
atmospheric carbon dioxide since 1980. Nature, 375,
666–670. https://doi.org/10.1038/375666a0
Ketchum, R. N., Smith, E. G., Vaughan, G. O., McParland,
D., Al-Mansoori, N., Burt, J. A., & Reitzel, A. M.
(2021). Unraveling the predictive role of temperature
in the gut microbiota of the sea urchin Echinome-
tra sp. EZ across spatial and temporal gradients.
Molecular Ecology, 30(15), 3869–3881. https://doi.
org/10.1111/mec.15990
Killingley, J. S., & Rex, M. A. (1985). Mode of lar-
val development in some deep-sea gastro-
pods indicated by oxygen-18 values of their
carbonate shells. Deep Sea Research Part A. Oceano-
graphic Research Papers, 32(7), 809–818. https://doi.
org/10.1016/0198-0149(85)90117-7
Kodama, M., Yamazaki, R., Hayakawa, J., Murata, G.,
Tomikawa, K., Kawamura, T., Kume, G., & Kobari, T.
(2023). Feeding ecology of the obligate urchin sym-
biont Dactylopleustes yoshimurai (Crustacea: Amphi-
poda: Pleustidae) revealed by DNA metabarcoding
analysis [Preprint]. Marine Biology, 00, 1–19. https://
doi.org/10.21203/rs.3.rs-2655652/v1
Layton, K. K., Corstorphine, E. A., & Hebert, P. D. (2016).
Exploring Canadian echinoderm diversity through
DNA barcodes. PloS One, 11(11), e0166118. https://
doi.org/10.1371/journal.pone.0166118
Leray, M., & Knowlton, N. (2015). DNA barcoding and
metabarcoding of standardized samples reveal pat-
terns of marine benthic diversity. Proceedings of the
National Academy of Sciences, 112(7), 2076–2081.
https://doi.org/10.1073/pnas.1424997112
Leray, M., & Knowlton, N. (2016). Censusing marine
eukaryotic diversity in the twenty-first century. Phi-
losophical Transactions of the Royal Society B: Bio-
logical Sciences, 371(1702), 20150331. https://doi.
org/10.1098/rstb.2015.0331
Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N.,
Ranwez, V., Boehm, J. T., & Knowlton, N. (2013). A
new versatile primer set targeting a short fragment
of the mitochondrial COI region for metabarcoding
metazoan diversity: application for characterizing
coral reef fish gut contents. Frontiers in Zoology,
10(1), 34. https://doi.org/10.1186/1742-9994-10-34
Lester, S. E., Ruttenberg, B. I., Gaines, S. D., & Kinlan, B. P.
(2007). The relationship between dispersal ability and
geographic range size. Ecology Letters, 16(6), 742–747.
https://doi.org/10.1111/j.1461-0248.2007.01070.x
Levin, L. A. (2006). Recent progress in understanding larval
dispersal: new directions and digressions. Integrative
and Comparative Biology, 46(3), 282–297. https://doi.
org/10.1093/icb/icj024
Licuanan, A. M., & Matias, A. M. A. (2022). In silico eva-
luation of the taxonomic resolution and coverage of
the COI region and alternative barcode markers for
echinoderms. Philippine Journal of Science, 151(3),
955–968. https://doi.org/10.56899/151.03.14
Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin,
S., Carcillo, F., Chaffron, S., Ignacio-Espinosa, J. C.,
Roux, S., Vincent, F., Bittner, L., Darzi, Y., Wang,
J., Audic, S., Berline, L., Bontempi, G., Cabello, A.
M., Coppola, L., Cornejo-Castillo, F. M., … Raes,
J. (2015). Determinants of community structure in
the global plankton interactome. Science, 348(6237),
1262073. https://doi.org/10.1126/science.1262073
Lowe, E. K., Cuomo, C., & Arnone, M. I. (2017). Omics
approaches to study gene regulatory networks for
development in echinoderms. Briefings in Functional
Genomics, 16(5), 299–308. https://doi.org/10.1093/
bfgp/elx012
Luo, K., Su, M., Liu, S., Shi, J., Wang, C., Chen, H., Yang,
S., Lin, Z., & Wei, L. (2023). Sea-level, climate,
and oceanographic controls on recent deepwater
hyperpycnites: A case example from the shenhu
slope (northern South China Sea). Quaternary Scien-
ce Reviews, 311, 108148. https://doi.org/10.1016/j.
quascirev.2023.108148
Marangon, E., Laffy, P. W., Bourne, D. G., & Webster, N. S.
(2021). Microbiome-mediated mechanisms contribu-
ting to the environmental tolerance of reef inverte-
brate species. Marine Biology, 168(6), 89. https://doi.
org/10.1007/s00227-021-03893-0
Marangon, E., Uthicke, S., Patel, F., Marzinelli, E. M.,
Bourne, D. G., Webster, N. S., & Laffy, P. W. (2023).
Life-stage specificity and cross-generational climate
effects on the microbiome of a tropical sea urchin
(Echinodermata: Echinoidea). Molecular Ecology, 00,
1–16. https://doi.org/10.1111/mec.17124
Masasa, M., Kushmaro, A., Kramarsky-Winter, E., Shpigel,
M., Barkan, R., Golberg, A., Kribus, A., Shashar, N., &
Guttman, L. (2021). Mono-specific algal diets shape
microbial networking in the gut of the sea urchin
Tripneustes gratilla elatensis. Animal Microbiome, 3(1),
1–21. https://doi.org/10.1186/s42523-021-00140-1
Masasa, M., Kushmaro, A., Nguyen, D., Chernova, H.,
Shashar, N., & Guttman, L. (2023). Spatial succession
underlies microbial contribution to food digestion
in the gut of an algivorous sea urchin. Microbiology
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
Spectrum, 11(3), e00514-23. https://doi.org/10.1128/
spectrum.00514-23
McCracken, A. R., Christensen, B. M., Munteanu, D., Case,
B. K. M., Lloyd, M., Herbert, K. P., & Pespeni, M.
H. (2023). Microbial dysbiosis precedes signs of sea
star wasting disease in wild populations of Pycno-
podia helianthoides. Frontiers in Marine Science, 10,
1130912. https://doi.org/10.3389/fmars.2023.1130912
McKenzie, J. D., Black, K. D., Kelly, M. S., Newton, L. C.,
Handley, L. L., Scrimgeour, C. M., Raven, J. A., &
Henderson, R. J. (2000). Comparisons of fatty acid
and stable isotope ratios in symbiotic and non-sym-
biotic brittlestars from Oban Bay, Scotland. Journal
of the Marine Biological Association of the United
Kingdom, 80(2), 311–320.
Mendes, E. G., Abbud, L., & Umiji, S. (1963). Cholinergic
action of homogenates of sea urchin pedicellariae.
Science, 139(3553), 408–409. https://doi.org/10.1126/
science.139.3553.408
Muhamad-Rizal, N. S., Neoh, H. M., Ramli, R., Periyasamy,
P. R., Hanafiah, A., Abdul Samat, M. N., Tan, T. L.,
Wong, K. K., Nathan, S., Chieng, S., Saw, S. H., &
Khor, B. Y. (2020). Advantages and limitations of
16S rRNA next-generation sequencing for pathogen
identification in the diagnostic microbiology labo-
ratory: perspectives from a middle-income coun-
try. Diagnostics, 10(10), 816. https://doi.org/10.3390/
diagnostics10100816
Nelson, L., Blair, B., Murdock, C., Meade, M., Watts,
S., & Lawrence, A. L. (2010). Molecular Analy-
sis of gut microflora in captive-raised sea urch-
ins (Lytechinus variegatus). Journal of the World
Aquaculture Society, 41(5), 807–815. https://doi.
org/10.1111/j.1749-7345.2010.00423.x
Nilsen, M., Pedersen, T., Nilssen, E. M., & Fredriksen,
S. (2008). Trophic studies in a high-latitude fjord
ecosystem—a comparison of stable isotope analyses
(δ13C and δ15N) and trophic-level estimates from
a mass-balance model. Canadian Journal of Fisheries
and Aquatic Sciences, 65(12), 2791–2806. https://doi.
org/10.1139/F08-180
North, C. A., Lovvorn, J. R., Kolts, J. M., Cooper, L. W.,
& Grebmeier, J. M. (2019). Discriminating trophic
niches of carnivorous benthic macroinvertebrates
with gut contents, stable isotopes, and fatty acids.
Marine Ecology Progress Series, 631, 49–66. https://
doi.org/10.3354/meps13161
O’Connell, T. C., Kneale, C. J., Tasevska, N., Kuhnle, G. G.,
& Bilsborough, S. A. (2012). The diet-body offset in
human nitrogen isotopic values: a controlled dietary
study. American Journal of Physical Anthropology, 143,
426–434. https://doi.org/10.1002/ajpa.22140
Okanishi, M., Kohtsuka, H., Wu, Q., Shinji, J., Shibata,
N., Tamada, T., Nakano, T., & Minamoto, T. (2023).
Development of two new sets of PCR primers for
eDNA metabarcoding of brittle stars (Echinodermata,
Ophiuroidea). Metabarcoding and Metagenomics, 7,
e94298. https://doi.org/10.3897/mbmg.7.94298
Oren, A. (2004). Prokaryote diversity and taxonomy:
current status and future challenges. Philosophical
Transactions of the Royal Society of London. Series B:
Biological Sciences, 359(1444), 623–638.
Pagán-Jiménez, M., Ruiz-Calderón, J. F., Dominguez-Bello,
M. G., & García-Arrarás, J. E. (2019). Characteriza-
tion of the intestinal microbiota of the sea cucumber
Holothuria glaberrima. PLoS One, 14(1), e0208011.
https://doi.org/10.1371/journal.pone.0208011
Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010).
Source partitioning using stable isotopes: coping with
too much variation. PloS One, 5(3), e9672. https://doi.
org/10.1371/journal.pone.0009672
Pascal, P. Y., Dubois, S. F., Goffette, A., & Lepoint, G. (2017).
Influences of geothermal sulfur bacteria on a tropical
coastal food web. Marine Ecology Progress Series, 578,
73–85. https://doi.org/10.3354/meps12237
Pawlowski, J., Bruce, K., Panksep, K., Aguirre, F. I., Amal-
fitano, S., Apothéloz-Perret-Gentil, L., Baussant, T.,
Bouchez, A., Carugati, L., Cermakova, K., Cordier, T.,
Corinaldesi, C., Costa, F. O., Danovaro, R., Dell’Anno,
A., Duarte, S., Eisendle, U., Ferrari, B. J. D., Fron-
talini, F., … Fazi, S. (2022). Environmental DNA
metabarcoding for benthic monitoring: A review of
sediment sampling and DNA extraction methods.
Science of the Total Environment, 818, 151783. https://
doi.org/10.1016/j.scitotenv.2021.151783
Pérez-Posada, I., Cabanillas-Terán, N., Rosas-Luis, R., Her-
nández-Arana, H. A., & Sánchez-Gonzalez, A. (2023).
Isotopic niche shift in the sea urchins Echinometra
lucunter and E. viridis after massive arrivals of Sar-
gassum in the Mexican Caribbean. Regional Studies in
Marine Science, 65, 103064. https://doi.org/10.1016/j.
rsma.2023.103064
Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem
studies. Annual Review of Ecology and Systematics,
18(1), 293–320.
Petti, C. A., Polage, C. R., & Schreckenberger, P. (2005).
The role of 16S rRNA gene sequencing in iden-
tification of microorganisms misidentified by
conventional methods. Journal of Clinical Micro-
biology, 43(12), 6123–6125. https://doi.org/10.1128/
jcm.43.12.6123-6125.2005
Phillips, D. L., & Gregg, J. W. (2003). Source partitioning
using stable isotopes: coping with too many sources.
Oecologia, 136(2), 261–269. https://doi.org/10.1007/
s00442-003-1218-3
Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore,
J. W., Parnell, A. C., Semens, B. X., & Ward, E. J.
(2014). Best practices for use of stable isotope mixing
models in food-web studies. Canadian Journal of
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
Zoology, 92(10), 823–835. https://doi.org/10.1139/
cjz-2014-0127
Purcell, J. E., Uye, S. I., & Lo, W. T. (2007). Anthropo-
genic causes of jellyfish blooms and their direct
consequences for humans: a review. Marine Ecology
Progress Series, 350, 153–174. https://doi.org/10.3354/
meps07093
Radabaugh, K. R., Hollander, D. J., & Peebles, E. B. (2013).
Seasonal δ13C and δ15N isoscapes of fish populations
along a continental shelf trophic gradient. Continental
Shelf Research, 68, 112–122. https://doi.org/10.1016/j.
csr.2013.08.010
Redd, K. S., Ling, S. D., Frusher, S. D., Jarman, S., &
Johnson, C. R. (2014). Using molecular prey detection
to quantify rock lobster predation on barrens-forming
sea urchins. Molecular Ecology, 23(15), 3849–3869.
https://doi.org/10.1111/mec.12795
Reitzel, A. M., & Miner, B. G. (2007). Reduced planktotro-
phy in larvae of Clypeaster rosaceus (Echinodermata,
Echiniodea). Marine Biology, 151, 1525–1534. https://
doi.org/10.1007/s00227-006-0591-y
Rey-Campos, M., Ríos-Castro, R., Gallardo-Escárate, C.,
Novoa, B., & Figueras, A. (2022). Exploring the
potential of metatranscriptomics to describe micro-
bial communities and their effects in molluscs. Inter-
national Journal of Molecular Sciences, 23(24), 16029.
https://doi.org/10.3390/ijms232416029
Riccioni, G., Stagioni, M., Manfredi, C., Tinti, F., Piccinet-
ti, C., & Libralato, S. (2022). DNA metabarcoding
suggests dietary niche partitioning in the Adriatic
European hake. Scientific Reports, 12(1), 1343. https://
doi.org/10.1038/s41598-022-05346-0
Rodríguez-Barreras, R., Cuevas, E., Cabanillas-Terán, N.,
& Branoff, B. (2016). Understanding trophic relation-
ships among Caribbean sea urchins. Revista de Biolo-
gía Tropical, 64(2), 837–848. https://doi.org/10.15517/
rbt.v64i2.19366
Rodríguez-Barreras, R., Cuevas, E., Cabanillas-Terán, N.,
& Sabat, A. M. (2015). Potential omnivory in the
sea urchin Diadema antillarum? Regional Studies in
Marine Science, 2, 11–18. https://doi.org/10.1016/j.
rsma.2015.08.005
Rodríguez-Barreras, R., Dominicci-Maura, A., Tosado-
Rodríguez, E. L., & Godoy-Vitorino, F. (2023). The
epibiotic microbiota of wild Caribbean sea urchin
spines is species specific. Microorganisms, 11(2), 391.
https://doi.org/10.3390/microorganisms11020391
Rodríguez-Barreras, R., Godoy-Vitorino, F., Præbel, K.,
& Wangensteen, O. S. (2020). DNA metabarcoding
unveils niche overlapping and competition among
Caribbean sea urchins. Regional Studies in Mari-
ne Science, 40, 101537. https://doi.org/10.1016/j.
rsma.2020.101537
Rodríguez-Barreras, R., Tosado-Rodríguez, E. L., & Godoy-
Vitorino, F. (2021). Trophic niches reflect composi-
tional differences in microbiota among Caribbean
sea urchins. PeerJ, 9, e12084. https://doi.org/10.7717/
peerj.12084
Rossi, S., & Elias-Piera, F. (2018). Trophic ecology of three
echinoderms in deep waters of the Weddell Sea
(Antarctica). Marine Ecology Progress Series, 596,
143–153. https://doi.org/10.3354/meps12544
Schuh, N. W., Carrier, T. J., Schrankel, C. S., Reitzel, A. M.,
Heyland, A., & Rast, J. P. (2020). Bacterial exposure
mediates developmental plasticity and resistance to
lethal Vibrio lentus infection in purple sea urchin
(Strongylocentrotus purpuratus) larvae. Frontiers
in Immunology, 10, 3014. https://doi.org/10.3389/
fimmu.2019.03014
Silva, B., Antunes, C., Andrade, F., Ferreira da Silva, E.,
Grande, J. A., & Luís, A. T. (2021). Prokaryotic and
eukaryotic diversity in hydrothermal continental sys-
tems. Archives of Microbiology, 203(7), 3751–3766.
https://doi.org/10.1007/s00203-021-02416-1
Sinniger, F., Pawlowski, J., Harii, S., Gooday, A. J., Yamamo-
to, H., Chevaldonné, P., Cedhagen, T., Carvalho, G:, &
Creer, S. (2016). Worldwide analysis of sedimentary
DNA reveals major gaps in taxonomic knowledge of
deep-sea benthos. Frontiers in Marine Science, 3, 92.
https://doi.org/10.3389/fmars.2016.00092
Sturbois, A., Cozic, A., Schaal, G., Desroy, N., Riera, P., Le
Pape, O., Le Mao, P., Ponsero, A., & Carpentier, A.
(2022). Stomach content and stable isotope analyses
provide complementary insights into the trophic
ecology of coastal temperate bentho-demersal assem-
blages under environmental and anthropogenic pres-
sures. Marine Environmental Research, 182, 105770.
https://doi.org/10.1016/j.marenvres.2022.105770
Sun, Z. L., Gao, Q. F., Dong, S. L., Shin, P. K., & Wang, F.
(2012). Estimates of carbon turnover rates in the sea
cucumber Apostichopus japonicus (Selenka) using
stable isotope analysis: the role of metabolism and
growth. Marine Ecology Progress Series, 457, 101–112.
https://doi.org/10.3354/meps09760
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C.,
& Willerslev, E. (2012). Towards next-generation
biodiversity assessment using DNA metabarcoding.
Molecular Ecology, 21(8), 2045–2050. https://doi.
org/10.1111/j.1365-294X.2012.05470.x
Temara, A., De Ridder, C., Kuenen, J. G., Robertson, L. A.
(1993). Sulfide-oxidizing bacteria in the burrowing
echinoid, Echinocardium cordatum (Echinoder-
mata). Marine Biology, 115, 179–185. https://doi.
org/10.1007/BF00346333
Thompson, J. R., & Polz, M. F. (2006). Dynamics of Vibrio
populations and their role in environmental nutrient
cycling. In F. L. Thompson, B. Austin, & J. Swings
16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58880, marzo 2024 (Publicado Mar. 31, 2024)
(Eds.), The Biology of Vibrios (pp. 190–203). John Wiley
& Sons. https://doi.org/10.1128/9781555815714.ch13
Tiwari, M., Nagoji, S. S., Kartik, T., Drishya, G., Parvathy,
R. K., & Rajan, S. (2013). Oxygen isotope–salinity
relationships of discrete oceanic regions from India
to Antarctica vis-à-vis surface hydrological processes.
Journal of Marine Systems, 113, 88–93. https://doi.
org/10.1016/j.jmarsys.2013.01.001
Toju, H. (2015). High-throughput DNA barcoding for
ecological network studies. Population Ecology, 57(1),
37–51. https://doi.org/10.1007/s10144-014-0472-z
Trivedi, S., Aloufi, A. A., Ansari, A. A., & Ghosh, S. K.
(2016). Role of DNA barcoding in marine biodiversity
assessment and conservation: an update. Saudi Jour-
nal of Biological Sciences, 23(2), 161–171. https://doi.
org/10.1016/j.sjbs.2015.01.001
Vaslet, A., Phillips, D. L., France, C., Feller, I. C., & Baldwin,
C. C. (2012). The relative importance of mangroves
and seagrass beds as feeding areas for resident and
transient fishes among different mangrove habitats in
Florida and Belize: evidence from dietary and stable-
isotope analyses. Journal of Experimental Marine
Biology and Ecology, 434–435, 81–93. https://doi.
org/10.1016/j.jembe.2012.07.024
Voronov, D., Paganos, P., Magri, M. S., Cuomo, C., Maeso,
I., Gómez-Skarmeta, J. L., & Arnone, M. I. (2023).
Integrative multi-omics increase resolution of the
sea urchin posterior gut gene regulatory network
at single cell level [Preprint]. bioRxiv. https://doi.
org/10.1101/2023.05.12.540495
Walters, A., Robert, M., Cresson, P., Le Bris, H., & Kopp,
D. (2021). Food web structure in relation to envi-
ronmental drivers across a continental shelf ecosys-
tem. Limnology and Oceanography, 66(6), 2563–2582.
https://doi.org/10.1002/lno.11773
Wangensteen, O. S., Palacín, C., Guardiola, M., & Turon, X.
(2018). DNA metabarcoding of littoral hard-bottom
communities: high diversity and database gaps revea-
led by two molecular markers. PeerJ, 6, e4705. https://
doi.org/10.7717/peerj.4705
Wangensteen, O. S., Turon, X., García-Cisneros, A., Reca-
sens, M., Romero, J., & Palacín, C. (2011). A wolf in
sheeps clothing: carnivory in dominant sea urchins
in the Mediterranean. Marine Ecology Progress Series,
441, 117–128. https://doi.org/10.3354/meps09359
Webster, N. S., Negri, A. P., Botté, E. S., Laffy, P. W., Flores,
F., Noonan, S., Schmidt, C., & Uthicke, S. (2019).
Host-associated coral reef microbes respond to the
cumulative pressures of ocean warming and ocean
acidification. Scientific Reports, 9(1), 1–12. https://doi.
org/10.1038/srep19324
Whitman, W. B., Chuvochina, M., Hedlund, B. P., Hugen-
holtz, P., Konstantinidis, K. T., Murray, A. E., Palmer,
M., Parks, D. H., Probst, A. J., Reysenbach, A. L.,
Rodriguez-R., L. M., Rosello-Mora, R., Sutcliffe, I.,
& Venter, S. N. (2022). Development of the SeqCo-
de: a proposed nomenclatural code for uncultivated
prokaryotes with DNA sequences as type. Systematic
and Applied Microbiology, 45(5), 126305. https://doi.
org/10.1016/j.syapm.2022.126305
Yatsuya, K., & Nakahara, H. (2004). Diet and stable isotope
ratios of gut contents and gonad of the sea urchin
Anthocidaris crassispina (A. Agassiz) in two different
adjacent habitats, the Sargassum area and Corallina
area. Fisheries Science, 70(2), 285–292. https://doi.
org/10.1111/j.1444-2906.2003.00802.x
Zenteno, L., Crespo, E., Goodall, N., Aguilar, A., de Oli-
veira, L., Drago, M., Secchi, E. R., Garcia, N., &
Cardona, L. (2013). Stable isotopes of oxygen reveal
dispersal patterns of the South American sea lion in
the southwestern Atlantic Ocean. Journal of Zoology,
291(2), 119–126. https://doi.org/10.1111/jzo.12051
Zhang, M., Zou, Y., Xiao, S., & Hou, J. (2023). Envi-
ronmental DNA metabarcoding serves as a pro-
mising method for aquatic species monitoring and
management: A review focused on its workflow,
applications, challenges and prospects. Marine Pollu-
tion Bulletin, 194, 115430. https://doi.org/10.1016/j.
marpolbul.2023.115430
Zhang, X., Nakahara, T., Murase, S., Nakata, H., Inoue,
T., & Kudo, T. (2013). Physiological characterization
of aerobic culturable bacteria in the intestine of the
sea cucumber Apostichopus japonicus. The Journal
of General and Applied Microbiology, 59(1), 1–10.
https://doi.org/10.2323/jgam.59.1
Zhang, Z., Zhang, W., Hu, Z., Li, C., Shao, Y., Zhao, X.,
& Guo, M. (2019). Environmental factors promote
pathogen-induced skin ulceration syndrome outbreak
by readjusting the hindgut microbiome of Aposticho-
pus japonicus. Aquaculture, 507, 155–163. https://doi.
org/10.1016/j.aquaculture.2019.03.054
Zhao, L., Shirai, K., Tanaka, K., Milano, S., Higuchi, T.,
Murakami-Sugihara, N., Walliser, E. O., Yang, F.,
Deng, Y., & Schöne, B. R. (2020). A review of trans-
generational effects of ocean acidification on marine
bivalves and their implications for sclerochronology.
Estuarine, Coastal and Shelf Science, 235, 106620.
https://doi.org/10.1016/j.ecss.2020.106620