17
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58979, marzo 2024 (Publicado Mar. 01, 2024)
Chatla, A., Ghouri, M. M., El Hassan, O. W., Mohamed,
N., Prakash, A. V., & Elbashir, N. O. (2020). An
experimental and first principles DFT investigation
on the effect of Cu addition to Ni/Al2O3 catalyst
for the dry reforming of methane. Applied Catalysis
A: General, 602, 117699. https://doi.org/10.1016/j.
apcata.2020.117699
Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan,
J. C., Ling, T. C., Lee, D. J., & Chang, J. S. (2017).
Microalgae biorefinery: High value products perspec-
tives. Bioresource Technology, 229, 53–62. https://doi.
org/10.1016/j.biortech.2017.01.006
Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Chau-
dhary, A. K., Alghasal, G., & Al-Jabri, H. M. S.
(2019). Microalgal bioremediation of petroleum-
derived low salinity and low pH produced water.
Journal of Applied Phycology, 31, 435–444. https://doi.
org/10.1007/s10811-018-1571-6
de Cassia Soares Brandão, B., Oliveira, C. Y. B., Dos Santos,
E. P., de Abreu, J. L., Oliveira, D. W. S., da Silva, S.
M. B. C., & Gálvez, A. O. (2023). Microalgae-based
domestic wastewater treatment: a review of biologi-
cal aspects, bioremediation potential, and biomass
production with biotechnological high-value. Envi-
ronmental Monitoring and Assessment, 195(11), 1384.
https://doi.org/10.1007/s10661-023-12031-w
Fuhrmann, M., Georgiades, E., Cattell, G., Brosnahan, C.,
Lane, H., & Hick, P. (2021). Aquatic pathogens and
biofouling: pilot study of ostreid herpesvirus 1 trans-
location by bivalves. Biofouling, 37(9–10), 949–963.
https://doi.org/10.1080/08927014.2021.1985474
Goswami, R. K., Agrawal, K., Mehariya, S., & Verma, P.
(2021). Current perspective on wastewater treatment
using photobioreactor for Tetras elmis sp.: an emerging
and foreseeable sustainable approach. Environmental
Science and Pollution Research, 29, 1–33. https://doi.
org/10.1007/s11356-021-16860-5
Guillard, R. R. L. (1975). Culture of phytoplankton for
feeding marine invertebrates. En W. L. Smith, &
M. H. Chanley (Eds.), Culture of Marine Inver-
tebrate Animals (pp. 29–60). Springer. https://doi.
org/10.1007/978-1-4615-8714-9_3
Gumbi, S. T., Kumar, A., & Olaniran, A. O. (2022). Lipid
productivity and biosynthesis gene response of indi-
genous microalgae Chlorella sp. T4 strain for biodiesel
production under different nitrogen and phosphorus
load. BioEnergy Research, 15(4), 2090–2101. https://
doi.org/10.1007/s12155-022-10419-z
Gupta, S., Pawar, S. B., & Pandey, R. (2019). Current practi-
ces and challenges in using microalgae for treatment
of nutrient rich wastewater from agro-based indus-
tries. Science of the Total Environment, 687, 1107–
1126. https://doi.org/10.1016/j.scitotenv.2019.06.115
John, E. M., Krishnapriya, K., & Sankar, T. (2020).
Treatment of ammonia and nitrite in aquaculture
wastewater by an assembled bacterial consortium.
Aquaculture, 526, 735390. https://doi.org/10.1016/j.
aquaculture.2020.735390
Katiyar, R., Gurjar, B. R., Kumar, A., & Bharti, R. K. (2021).
An integrated approach for phycoremediation of
municipal wastewater and production of sustainable
transportation fuel using oleaginous Chlorella sp.
Journal of Water Process Engineering, 42, 102183.
https://doi.org/10.1016/j.jwpe.2021.102183
Lage, S., Toffolo, A., & Gentili, F. G. (2021). Microalgal
growth, nitrogen uptake and storage, and dissolved
oxygen production in a polyculture based-open pond
fed with municipal wastewater in northern Sweden.
Chemosphere, 276, 130122. https://doi.org/10.1016/j.
chemosphere.2021.130122
Liu, Y., Lv, J., & Feng, J. (2019). Treatment of real aqua-
culture wastewater from a fishery utilizing phyto-
remediation with microalgae. Journal of Chemical
Technology and Biotechnology, 94(3), 900–910. https://
doi.org/10.1002/jctb.5837
Moreno García, L., Gariépy, Y., Barnabé, S., & Raghavan, V.
(2020). 7—Biorefinery of microalgae biomass cultiva-
ted in wastewaters. En R. P. Kumar, E. Gnansounou,
J. K. Raman, & G. Baskar (Eds.), Refining Biomass
Residues for Sustainable Energy and Bioproducts (pp.
149–180). Academic Press. https://doi.org/10.1016/
B978-0-12-818996-2.00007-7
Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., Shao,
J., Wang, L., & Tsang, D. C. (2020). Bioremediation of
water containing pesticides by microalgae: Mecha-
nisms, methods, and prospects for future research.
Science of the Total Environment, 707, 136080. https://
doi.org/10.1016/j.scitotenv.2019.136080
Onuoha, S., Idike, F., & Orakwe, L. (2012). Water supply
resources for domestic purposes in Auchi Metropolis
of Edo State, Nigeria. International Journal of Enginee-
ring and Technology, 2(6), 1032–1039.
Organización de las Naciones Unidas para la Agricultura
y la Alimentación. (2020). Pesca y acuicultura. FAO.
http://www.fao.org/fishery/es
Rathod, H. (2014). Algae based wastewater treatment [Tesis
de Maestría no publicada]. Indian Institute of Tech-
nology Roorkee.
Rearte, T. A., Rodriguez, N., Sabatte, F., & de Iorio, A.
F. (2021). Unicellular microalgae vs. filamentous
algae for wastewater treatment and nutrient recovery.
Algal Research, 59, 102442. https://doi.org/10.1016/j.
algal.2021.102442
Rubilar, T., & Cardozo, D. (2020). Los erizos de mar y su
potencialidad en producir un tratamiento contra
COVID-19. Atek Na [En la tierra], 9, 375–384.
Septory, R., & Triyatmo, B. (2016). The utilization of
aquacultures wastewater as nutrient sources in