1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58997, marzo 2024 (Publicado Mar. 01, 2024)
Evaluating the reliability of DNA Barcoding for Central American Pacific
shallow water echinoderms identification: a molecular taxonomy
and database accuracy analysis
José Leonardo Chacón-Monge1, 2, 4*; https://orcid.org/0000-0002-9754-1254
Juan Ignacio Abarca-Odio1; https://orcid.org/0000-0002-3155-8264
Kaylen González-Sánchez1, 3; https://orcid.org/0000-0002-7208-9302
1. Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, 11501-2060, San José, Costa
Rica; jose.chaconmonge@ucr.ac.cr (*corresponding author), jiao24@gmail.com, kaylen.gonzalez@ucr.ac.cr
2. Museo de Zoología, Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica,
Costa Rica.
3. Centro de Investigación en Biología Celular y Molecular Universidad de Costa Rica, Costa Rica.
4. Escuela de Biología, Universidad de Costa Rica, Costa Rica.
Received 11-VII-2023. Corrected 20-XI-2023. Accepted 15-I-2024.
ABSTRACT
Introduction: Molecular divergence thresholds have been proposed to distinguish recently separated evolutive
units, often displaying more accurate putative species assignments in taxonomic research compared to traditional
morphological approaches. This makes DNA barcoding an attractive identification tool for a variety of marine
invertebrates, especially for cryptic species complexes. Although GenBank and the Barcode of Life Data System
(BOLD) are the major sequence repositories worldwide, very few have tested their performance in the identifica-
tion of echinoderm sequences.
Objective: We use COI echinoderm sequences from local samples and the molecular identification platforms
from GenBank and BOLD, in order to test their accuracy and reliability in the DNA barcoding identification for
Central American shallow water echinoderms, at genus and species level.
Methods: We conducted sampling, tissue extraction, COI amplification, sequencing, and taxonomic identifica-
tion for 475 specimens. The 348 obtained sequences were individually enquired with BLAST in GenBank as well
as using the Identification System (IDS) in BOLD. Query sequences were classified depending on the best match
result. McNemars chi-squared, Kruskal-Walliss and Mann-Whitney’s U tests were performed to prove differ-
ences between the results from both databases. Additionally, we recorded an updated list of species reported for
the shallow waters of the Central American Pacific.
Results: We found 324 echinoderm species reported for Central American Pacific shallow waters. Only 118 and
110 were present in GenBank and BOLD databases respectively. We proposed 325 solved morphology-based
identities and 21 provisional identifications in 50 putative taxa. GenBank retrieved 348 molecular-based identi-
fications in 58 species, including twelve provisional identifications in tree taxa. BOLD recovered 170 COI iden-
tifications in 23 species with one provisional identification. Nevertheless, 178 sequences retrieved unmatched
terms (in 34 morphology-based taxa). Only 86 sequences (25 %) were retrieved as correct identifications and
128 (37 %) as identification errors in both platforms. We include 84 sequences for eleven species not represented
in GenBank and 65 sequences for ten species in BOLD Echinoderm COI databases. The identification accuracy
using BLAST (175 correct and 152 incorrect identifications) was greater than with IDS engine (110 correct and
218 identification errors), therefore GenBank outperforms BOLD (Kruskal-Wallis = 41.625, df = 1, p < 0.001).
https://doi.org/10.15517/rev.biol.trop..v72iS1.58997
SUPPLEMENT
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58997, marzo 2024 (Publicado Mar. 01, 2024)
INTRODUCTION
The use of DNA barcoding with COI
sequences is proposed as a highly efficient
identification tool for a diverse range of
marine invertebrates. Given that interspecific
divergence gaps tend to be wider than intra-
specific divergences, divergence thresholds
demonstrate the capability to effectively dis-
tinguish recently diverged groups, leading to
Conclusions: Additional echinoderm sample references are needed to improve the utility of the evaluated DNA
barcoding identification tools. Identification discordances in both databases may obey specific parameters used
in each search algorithm engine and the available sequences. We recommend the use of barcoding as a comple-
mentary identification source for Central American Pacific shallow water echinoderm species.
Key words: taxonomy; universal primers; mitochondrial DNA; vouchers; scientific collections; BioMar-ACG;
Costa Rica.
RESUMEN
Evaluando la fiabilidad del Código de Barras de ADN para la identificación de equinodermos
en aguas poco profundas del Pacífico de América Central: un análisis de taxonomía molecular
y precisión de bases de datos
Introducción: Se han propuesto los umbrales de divergencia molecular para distinguir unidades evolutivas
recientemente separadas, que a menudo muestran asignaciones de especies putativas más precisas en la investi-
gación taxonómica en comparación con los enfoques morfológicos tradicionales. Esto hace que los Códigos de
Barras de ADN sean una herramienta de identificación atractiva para una variedad de invertebrados marinos,
especialmente para complejos de especies crípticas. Aunque GenBank y Barcode of Life Data System (BOLD)
son los principales repositorios de secuencias en todo el mundo, muy pocos han probado su desempeño en la
identificación de secuencias de equinodermos.
Objetivo: Utilizamos secuencias de equinodermos COI de muestras locales y las plataformas de identificación
molecular de GenBank y BOLD, para probar su precisión y confiabilidad en la implementación de códigos de
barras de ADN para equinodermos de aguas someras de Centroamérica, a nivel de género y especie.
Métodos: Realizamos muestreo, extracción de tejido, amplificación de COI, secuenciación e identificación taxo-
nómica de 475 especímenes. Las 348 secuencias obtenidas fueron consultadas individualmente con BLAST en
GenBank así como utilizando el Sistema de Identificación (IDS) en BOLD. Las secuencias consultadas se clasi-
ficaron según el mejor resultado de coincidencia. Se realizaron las pruebas chi-cuadrado de McNemar, Kruskal-
Wallis y U de Mann-Whitney para comprobar diferencias entre los resultados de ambas bases de datos. Además,
registramos una lista actualizada de especies reportadas para las aguas someras del Pacífico Centroamericano.
Resultados: Encontramos 324 especies de equinodermos reportadas para aguas someras (< 200 m) del Pacífico
centroamericano. Sólo 118 y 110 estaban presentes en las bases de datos GenBank y BOLD respectivamente.
Propusimos 325 identidades resueltas basadas en morfología y 21 identificaciones provisionales en 50 taxones
putativos. GenBank recuperó 348 identificaciones de base molecular en 58 especies, incluidas doce identificacio-
nes provisionales en tres taxones. BOLD recuperó 170 identificaciones de COI en 23 especies con una identifi-
cación provisional. Sin embargo, 178 secuencias recuperaron términos no coincidentes (en 34 taxones basados
en morfología). Sólo 86 secuencias (25 %) se recuperaron como identificaciones correctas y 128 (37 %) como
errores de identificación en ambas plataformas. Incluimos 84 secuencias para once especies no representadas en
GenBank y 65 secuencias para diez especies ausentes en las bases de datos BOLD Echinoderm COI. La precisión
de la identificación usando BLAST (175 identificaciones correctas y 152 incorrectas) fue mayor que con el motor
IDS (110 correctas y 218 errores de identificación), por lo tanto, GenBank supera a BOLD (Kruskal-Wallis =
41.625, df = 1, p < 0.001).
Conclusiones: Se necesitan muestras adicionales de equinodermos de referencia para mejorar la utilidad de las
herramientas de identificación de códigos de barras de ADN evaluadas. Las discordancias de identificación en
ambas bases de datos pueden obedecer a parámetros específicos utilizados en cada algoritmo de búsqueda y a las
secuencias disponibles. Recomendamos el uso de códigos de barras como fuente de identificación complementa-
ria para las especies de equinodermos de aguas someras del Pacífico centroamericano.
Palabras clave: taxonomía; primers universales; ADN mitocondrial; vouchers; colecciones científicas; BioMar-
ACG; Costa Rica.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58997, marzo 2024 (Publicado Mar. 01, 2024)
more accurate putative species assignments in
taxonomic research compared to morphologi-
cal approaches, especially for cryptic complexes
(Laakmann et al., 2016; Layton et al., 2016).
Therefore, molecular taxonomy is a valuable
alternative for solving conflicts related to the
application of morphology-based taxonomic
diagnosis, particularly when open-access bar-
code reference libraries are available. There
are 23 297 echinoderm COI entrances in Gen-
Bank and 37 267 public records in BOLD for
at least 2 115 echinoderm species (verified 18
Nov. 2023). However, only few studies have
tested the accuracy of public sequence reposi-
tories in DNA identification (Laakmann et al.,
2016; Meiklejohn et al., 2019) and none have
explored it for Central American echinoderm
molecular taxonomy.
Many Central American countries share
a common origin in echinoderm research,
marked initially by North American and Euro-
pean expeditions in the late nineteenth century,
leading to the description of the majority of
Central American echinoderm species. Subse-
quently, there was an increase in investigations
conducted by regional scientists or research
institutes in the second half of the twentieth
century (Alvarado et al., 2013; Alvarado & Fab-
regat-Malé, 2021). Historically, samples have
been kept in foreign museums, limiting access
to valuable vouchers and type material for local
scientists (Alvarado et al., 2017). Nevertheless,
the Colección Nacional de Equinodermos Ma.
Elena Caso Muñoz at Instituto de Ciencias
del Mar y Limnología, Universidad Nacional
Autónoma de México, hosts one of the largest
specimen collections in Latin America (Alvara-
do & Solís-Marín, 2013). Furthermore, the
Museo de Zoología (MZ-UCR) at the Centro
de Investigación en Biodiversidad y Ecología
Tropical (CIBET, Universidad de Costa Rica)
has consistently expanded its echinoderm col-
lection, facilitating local scientists’ access to
more in-depth voucher scrutinizing and creat-
ing opportunities for developing collaborative
networks in regional integrative research (Cor-
tés & Joyce, 2020; Kress, 2014; Miralles et al.,
2020; Schilthuizen et al., 2015).
While there have been ongoing efforts in
Central American echinoderm research with a
consistent focus on ecological and taxonomic
issues, the exploration of related areas as molec-
ular taxonomy has been limited (Alvarado et
al., 2013; Alvarado & Fabregat-Malé, 2021;
Varela-Sánchez et al., 2020). Since GenBank
and the Barcode of Life Data System (BOLD)
are the main molecular public repositories, we
tested their accuracy and reliability for COI
echinoderm sequences identification at genus
and species level (i.e. barcoding). This study
started the establishment of a validated and
comprehensive echinoderm reference library,
comprising morphological, and molecular data,
as well as additional metadata for samples col-
lected at Área de Conservación Guanacaste,
Costa Rica (Cortés & Joyce, 2020). However,
the biogeographic and bathymetric distribu-
tion of many of the present species extends the
applicability of this library to Central American
Pacific shallow waters (< 200 m depth) (Alvara-
do et al., 2010; Solís-Marín et al., 2013). We
matched morphological identifications with the
molecular species assignments (correct identi-
fications or identification errors) as a reference
method for database improvement in further
taxonomic and systematic studies in the region.
MATERIALS AND METHODS
Sample preparations: Sampling and tis-
sue extraction for 475 vouchers were con-
ducted during the BioMar-ACG echinoderm
surveys in 25 sample sites (Fig. 1). Different
body parts were dissected for DNA extraction
depending on the taxonomic group, gener-
ally dermis, podia, or arm tips were dissected
and stored in absolute ethanol (96 %) on lysis
plates, then frozen until its processing. Iden-
tifications were done by direct observation,
using optic stereoscopes and light microscopes.
Taxonomic identifications were based on pro-
posed diagnostic characters from external
and internal anatomy or skeletal elements (i.e.
ossicles) sourced in taxonomic specialized lit-
erature (Borrero-Pérez & Vanegas-González,
2019, Borrero-Pérez & Vanegas-González,
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58997, marzo 2024 (Publicado Mar. 01, 2024)
2020; Granja-Fernández et al., 2014, Granja-
Fernández et al, 2020; Lessios, 2005; Martín-
Cao-Romero et al, 2017; Massin et al., 2002;
Solís-Marín et al., 2009, Solís-Marín et al.,
2014, Solís-Marín et al., 2020; Woo et al., 2015).
The nomenclature for taxonomic designations
follows the World Register of Marine Species
(WoRMS Editorial Board, 2024). When identi-
fications could not be established at the species
level, provisional identifications were given to
the lowest possible taxon.
Data collection: In order to assess the
whole representation of the Central American
shallow water Pacific echinoderm richness,
we registered an updated list of species report-
ed from the Central American Pacific coast
(excluding Panama) from 0 to < 200 m depth
(Appendix 1). The DNA extraction, ampli-
fication, and sequencing of COI fragments
were conducted by the Center for Biodiversity
Genomics, Guelph University, Canada (Cortés
& Joyce, 2020). Throughout an automatized
process developed and improved since the
early 2000’s (Ivanova et al., 2006; deWaard et
al., 2008; for detailed protocols). The obtained
sequences were analyzed with the GenBank and
BOLD identification tools.
DNA barcode analyses: The obtained
sequences were individually searched with the
Nucleotide Basic Local Alignment Search Tool
(BLAST Best Match) in GenBanks identifica-
tion core (Altschul et al., 1990) and also com-
pared with the Identification System (IDS)
engine available in the Barcode of Life Data
System, BOLD (Meiklejohn et al., 2019; Ratnas-
ingham & Hebert, 2007). Setting the “standard
nucleotide BLAST” and the “Public Record
Barcode Database’ for nucleic species identifi-
cation respectively, each obtained sequence was
requested under GenBank and BOLD built-in
search tools. Query sequences were considered
Correctly identified” (C) if a record with the
same taxonomic name had the best match
statistic or highest percent identity, otherwise
they were classified as an Identification error
(IE) (Laakmann et al., 2016; Meiklejohn et al.,
2019). Morphologically unsolved taxa were
not included in identity comparisons, instead
Fig. 1. Echinoderm sample sites in the BioMar-ACG project at Área de Conservación Guanacaste, north Pacific of Costa
Rica. Peninsular sites (blue dots) and Archipelago sites (red dots) are shown. Modified from Chacón-Monge et al. (2021),
published with permission.
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58997, marzo 2024 (Publicado Mar. 01, 2024)
were labeled as No Apply (NA). Given our
data nature, McNemars Chi-squared, Kruskal-
Walliss and Mann-Whitney’s U tests were per-
formed to prove the differences between these
databases and their identification accuracy.
RESULTS
Overall representativeness: About 466
echinoderm species have been registered in
Central America, and around 364 (78 %) have
been listed for Costa Rica (Alvarado & Fabre-
gat-Malé, 2021; Alvarado et al., 2017; Alvarado
et al., 2022; Chacón-Monge et al., 2021; Solís-
Marín et al., 2013). We listed a total of 324 echi-
noderm species reported for Central American
Pacific shallow waters (< 200 m) (Appendix
1), and about 236 (73 %) should be present in
Costa Rica (Alvarado et al., 2017; Borrero-Pérez
& Vanegas-González, 2020; Chacón-Monge et
al., 2021; Granja-Fernández et al., 2020; Solís-
Marín et al., 2020). Nevertheless, only 118
(36 %) and 110 (34%) of Central American
echinoderm fauna were represented in the
GenBank nucleotide search and BOLD public
databases respectively, with sequences for only
96 shared species and sharing 192 absences
(Appendix 1). Our database includes 348 COI
samples successfully sequenced in the BioMar-
ACG project for 44 morphology-based species
in 325 sequences (Appendix 1), and 21 provi-
sional identifications in seven taxa (Appendix
2). Representing only 19 % of Costa Rican and
14 % of Central American Pacific shallow water
echinoderm species, but 37 % and 40 % of the
total representativeness available for the region
in each database (GenBank and BOLD).
Sequence recovery: In terms of sequence
recovery, our study achieved a sequencing suc-
cess rate of 73 %, resulting in 348 sequences
out of 475 samples. Not too far from the
78 % obtained in a major Canadian echino-
derm database (1 285 vouchers), where the
sequencing failure was attributed to primer
effectiveness (Layton et al., 2016). Sequence
length ranges from 200 to 680 bp (average 629
bp). We proposed 325 solved and 21 unsolved
morphology-based identities in 50 putative
taxa (Appendix 2). All query sequences were
identified using the GenBank nucleotide iden-
tification engine. There were 56 species pro-
posed for 336 sequences and twelve provisional
identities for three taxa, with correspondences
from 81.2 % to 100 %. BOLD recovered 169
solved identifications in 22 taxa and one pro-
visional identification, with correspondences
from 97.06 % to 100 %. But 178 sequences were
retrieved as unmatched terms (in 33 morphol-
ogy-based taxa), last verification October 9th,
2023 (Appendix 2). The general taxonomic
representativeness, success and numbers of
proposed genera and species identities using
each identification method is summarized by
class (Appendix 3). Our study contributes to
the inclusion of sequences from local vouchers
in molecular databases. Specifically, we provide
84 sequences for eleven species not previously
represented in GenBank and 65 sequences for
nine species absent in BOLD (Appendix 2).
Barcoding identification: Although 39 of
the putative morphology-based taxa were rep-
resented at GenBank COI database (in 265 seq.)
and 41 morphology-based taxa were found
at BOLD sequence database (in 283 seq.),
not always the query sequence retrieved the
expected identification. For genus and species
level, identifications success differs (McNemars
chi-squared = 32.84, df = 1, p < 0.01; McNe-
mar’s chi-squared = 35.43, df = 1, p < 0.01)
between identification engines, and was greater
for GenBank at genus (Kruskal-Wallis = 52.44,
df = 1, p < 0.01) and species level (Kruskal-
Wallis = 41.625, df = 1, p < 0.01). According
to the GenBank research engine, there were
175 sequences correctly identified and 152
identification errors, while in the BOLD public
record barcode, there were 111 correct identifi-
cations and 216 identification errors (Table 1).
Otherwise 21 Vouchers did not apply for this
comparison, since they correspond to mor-
phology-based unsolved identities (Appendix
2). Only 87 (24 %) and 128 (37 %) sequences
were simultaneously correctly and incorrectly
identified respectively (Appendix 2). Despite
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58997, marzo 2024 (Publicado Mar. 01, 2024)
the identity percentage was higher for BOLD
compared to GenBank (Mann-Whitney U =
2110, p < 0.01), the accuracy for genus and spe-
cies identification using the BLAST Best Match
was better than the obtained by the IDS engine,
therefore GenBank outperforms BOLD identi-
fication at both taxonomic categories (Fig. 2).
Tabl e 1
Classification of query sequences for Central American
Pacific shallow water echinoderms using GenBank
(BLAST) and BOLD (IDS) identification tools
ID BLAST IDS
Correct (C) 175 111
Identification Errors (IE) 152 216
NA 21 21
No match 0 178
DISCUSSION
Identification success: Low species iden-
tification success was not expected, given the
relatively well representation of the proposed
taxa related to Central American Pacific shal-
low water echinoderms in GenBank and BOLD
libraries. It is also possible that the discrimina-
tory power for species-level identification may
be diminished on short sequences (< 430 bp),
but similar results have been obtained using
COI fragments of 650 bp and 130 bp for insect
identification (Grzywacz et al., 2017).
Misidentifications: Identification discor-
dances in both databases may obey specif-
ic parameters used in each search algorithm
engine, and sequences available for barcod-
ing under comparison (Layton et al., 2016).
GenBank compares the query sequence to the
nucleotide database, the Mega BLAST search
tool (established by default) is optimized with
similar sequences to search against all oth-
ers using the command-line interface. While
in BOLD, when public database records are
chosen, a selection from the published proj-
ects section in BOLD (including all public
COI records from BOLD and GenBank with
a minimum sequence length of 500 bp) is
automatically selected to compare the query
sequence (Meiklejohn et al., 2019). Therefore,
each requested sequence is compared against
the appropriate group of barcode sequences
according to the specific parameters for each
database. General discordances can appear
because of the specific evolutionary history of
species, imperfect species delineation and over-
looked diversity (“bad taxonomy” sensu Ebach
et al., 2006; Hörandl, 2007). In consequence,
putative species are more reliable when sup-
ported by various delimitation methods and
COI based techniques need to be evaluated
under integrative taxonomy (Laakmann et al.,
2016; Sonet et al., 2022).
Fig. 2. COI sequence identification accuracy (%) for Central American Pacific shallow water echinoderms using GenBank
(BLAST) and BOLD (IDS) identification tools.
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58997, marzo 2024 (Publicado Mar. 01, 2024)
Considering all identification errors and
unmatched terms, after a consequent taxo-
nomic revision and morphologic comproba-
tion, we found 23 morphology based vouchers
in four putative species erroneously identified
or unsolved before the BLAST query (five
Holothuria arenicola previously identified as H.
impatiens; six H. impatiens identified as H. par-
dalis, two Ophioderma panamense identified as
O. cf. panamense and ten O. hendleri identified
as Ophioderma sp.). Seven of them were also
correctly identified by BOLD in two species
(five H. arenicola and two O. panamense, the
other 16 were retrieved as unmatched terms.
The rest of morphology-based unsolved taxa
correspond to juvenile stages. Based on the
molecular databases compared and employed
analysis, the suggested misidentifications may
correspond to real barcoding identification
errors. Rather than possible morphology based
errors, contrary to the expected rate of identi-
fication success using COI molecular DNA for
echinoderm identification. We strongly recom-
mend taking precautions when using public
sequence databases to identify morphologically
undetermined species of Central American
Pacific shallow water echinoderms. With spe-
cial awareness if they include not verified taxa,
juvenile stages or information from “unpub-
lished projects, which might include unsolved
taxonomy. In contexts where no prior taxo-
nomic information about echinoderm samples
is known, accurate and reliable interpretations
of discordant identities may impose a challenge
(Sonet et al., 2022).
Regional representativeness: This effort
also marks a crucial step towards systematically
evaluating the representativeness and accu-
racy of the GenBank and BOLD identification
engines for echinoderm species in Central
American Pacific shallow waters. Not only
refining molecular identification tools, but also
increasing the overall regional representative-
ness of COI sequences databases. This work
is a first step in the DNA barcode library con-
struction for Central American Pacific shallow
water echinoderms, but additional echinoderm
sample references are needed to improve the
utility of DNA barcoding as an identification
tool in the region.
Applicability: DNA barcoding is a com-
plementary approach to biodiversity studies. It
is possible to obtain robust results using these
databases in combination, as well as to improve
data sets for systematic purposes and further
taxonomic research, by applying methods for
putative species identification based on COI
sequences for previously known taxonomic
identities. Nevertheless, we do not recommend
the use of molecular repositories as the main
source for Central American Pacific shallow
water echinoderm species identification. Echi-
noderm systematics could benefit from addi-
tional integrative taxonomy approaches and
molecular data analysis only if it is keeping
connection between voucher morphology and
sequences. It directly highlights the importance
of increasing the sequences representativeness
for many common and rare species in global
public scientific molecular repositories and
holding vouchers in local natural history collec-
tions with corroborated taxonomy.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
See supplementary material
a18v72s1-MS1
ACKNOWLEDGEMENTS
We thank the Universidad de Costa Rica,
specially to the Vicerrectoría de Investigación,
the Centro de Investigación en Ciencias del
Mar y Limnología (CIMAR), the Museo de
Zoología (MZ-UCR) at Centro de Investig-
ación en Biodiversidad y Ecología Tropical
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e58997, marzo 2024 (Publicado Mar. 01, 2024)
(CIBET) and to Escuela de Biología. For sup-
porting the BioMar-ACG project (808-B9-508)
and guaranteeing the availability of materials,
equipment, workspace, voucher and sample
storage that made possible this research. We
also thanks the Sistema Nacional de Áreas de
Conservación (SINAC) and the Ministerio de
Ambiente y Energía (MINAE) for gave the
research and collection permits (R-SINAC-
PNI-SE-002-2018 and R-SINAC-ACG-PI-004-
2019-BIOMAR). And to the Guanacaste Dry
Forest Conservation Fund for financing the
BioMar-ACG project. We are grateful to the
Cuajiniquil Diving Center, Gilberth Ampié,
Yelba Vega, Génesis Coto, Carolina Sheridan-
Rodríguez, Cristian Mora-Barboza, Juan José
Alvarado, Frank Joyce, Daniel Jansen, Winnie
Hallwachs and Jorge Cortés. For their help
during or before field sampling and facilities
for tissue processing. We greatly appreciate the
invitation from the scientific editors to par-
ticipate in this volume and to two anonymous
lecturers that peer reviewed our manuscript.
REFERENCES
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman,
D. J. (1990). Basic local alignment search tool. Journal
of Molecular Biology, 215(3), 403–410. https://doi.
org/10.1016/S0022-2836(05)80360-2
Alvarado, J. J., Barraza, E., & Sancho-Mejías, T. I. (2013).
Central America Echinoderms: diversity, ecology and
future perspectives. In J. J. Alvarado & F. A. Solís-
Marín. (Eds.), Echinoderm research and diversity in
Latin America (pp. 67–106). Springer. https://doi.
org/10.1007/978-3-642-20051-9_3
Alvarado, J. J., Chacón-Monge, J. L., Solís-Marín, F. A.,
Pineda-Enríquez, T., Caballero-Ochoa, A. A., Rive-
ra, S. S., & Chaves, R. R. (2017). Equinodermos
del Museo de Zoología de la Universidad de Costa
Rica. Revista de Biología Tropical, 65(S1), S272–S287.
https://doi.org/10.15517/rbt.v65i1-1.31695
Alvarado, J. J., Chacón-Monge, J. L., Azofeifa-Solano, J.
C., & Cortés, J. (2022). Diversity of deep-sea echino-
derms from Costa Rica. Frontiers in Marine Science,
9, 918878. https://doi.org/10.3389/fmars.2022.918878
Alvarado, J. J., & Fabregat Malé, S. (2021). Echinoderm
research perspectives: A Central American bibliome-
tric review. Cuadernos de Investigación UNED, 13(2),
e3535. http://dx.doi.org/10.22458/urj.v13i2.3535
Alvarado, J. J., & Solís-Marín, F. A. (2013). Echinoderm
research and diversity in Latin America. In J. J. Alva-
rado & F. A. Solís-Marín (Eds.), Echinoderm research
and diversity in Latin America (pp. 1–9). Springer.
https://doi.org/10.1007/978-3-642-20051-9_1
Alvarado, J. J., Solís-Marín, F. A., & Ahearn, C. G. (2010).
Echinoderm (Echinodermata) diversity in the Pacific
coast of Central America. Marine Biodiversity, 40,
45–56. https://doi.org/10.1007/s12526-009-0032-5
Borrero-Pérez, G. H., & Vanegas-González, M. J. (2019).
Holothuria (Mertensiothuria) viridiaurantia sp. nov.
(Holothuriida, Holothuriidae), a new sea cucumber
from the Eastern Pacific Ocean revealed by morpho-
logy and DNA barcoding. ZooKeys, 893, 1–19. https://
doi.org/10.3897/zookeys.893.36013
Borrero-Pérez, H., & Vanegas-González, M. J. (2020).
Riqueza, composición y distribución de los equino-
dermos de los Riscales y Morros del norte del Chocó,
Pacífico Colombiano. In L. Chasqui (Ed.), Biodiver-
sidad de los arrecifes rocosos (riscales y morros) del
Pacífico Norte Chocoano (No. 116, pp. 232–282). Serie
Publicaciones Generales de INVEMAR.
Chacón-Monge, J. L., Azofeifa-Solano, J. C., Alvarado, J. J.,
& Cortés, J. (2021). Área de Conservación Guanacaste
echinoderms, North Pacific of Costa Rica. Revista
de Biología Tropical, 69(S1), S487–S500. https://doi.
org/10.15517/rbt.v69iSuppl.1.46391
Cortés, J., & Joyce, F. (2020). BioMar-ACG: A successful
partnership to inventory and promulgate marine
biodiversity. Biotropica, 52, 1104–1107. https://doi.
org/10.1111/btp.12841
deWaard, J. R., Ivanova , N. V., Hajibabaei, M., & Hebert, P.
D. N. (2008). Assembling DNA barcodes. Analytical
protocols. Methods in Molecular Biology, 410, 275–
293. https://doi.org/10.1007/978-1-59745-548-0_15
Ebach, M., Williams, D., & Morrone, J. (2006). Paraphyly
is bad taxonomy. Taxon, 55(4), 831–832. https://doi.
org/10.2307/25065678
Granja-Fernández, R., Herrero-Pérezrul, M., López-Pérez,
R., Hernández, L., Rodríguez-Zaragoza, F., Walla-
ce Jones, R., & Pineda-López, R. (2014). Ophiu-
roidea (Echinodermata) from coral reefs in the
Mexican Pacific. ZooKeys, 406, 101–145. https://doi.
org/10.3897/zookeys.406.6306
Granja-Fernández, R., Pineda-Enríquez, T., Solís-Marín,
F. A. & Laguarda-Figueras, A. (2020). Ophioder-
ma hendleri sp. nov. (Echinodermata: Ophiuroidea:
Ophiodermatidae) and its congeners from the Eastern
Pacific. European Journal of Taxonomy 729, 11–41.
https://doi.org/10.5852/ejt.2020.729.1187
Grzywacz, A., Wyborska, D., & Piwczyński, M. (2017). DNA
barcoding allows identification of European Fannii-
dae (Diptera) of forensic interest. Forensic Science
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e58997, marzo 2024 (Publicado Mar. 01, 2024)
International, 278, 106–114. https://doi.org/10.1016/j.
forsciint.2017.06.023
randl, E. (2007). Neglecting evolution is bad taxonomy.
Taxon, 56 (1), 1–5.
Ivanova, N. V., deWaard, J. R., & Hebert, P. D. N.
(2006). An inexpensive, automation-friendly pro-
tocol for recovering high-quality DNA. Mole-
cular Ecology Notes, 6(4), 998–1002. https://doi.
org/10.1111/j.1471-8286.2006.01428.x
Kress, W. J. (2014). Valuing collections. Science, 346(6215),
1310. https://doi.org/10.1126/science.aaa4115
Laakmann, S., Boos, K., Knebelsberger, T., Raupach, M., &
Neumann, H. (2016). Species identification of echino-
derms from the North Sea by combining morphology
and molecular data. Helgoland Marine Research, 70,
18. https://doi.org/10.1186/s10152-016-0468-5
Layton, K. K. S., Corstorphine, E. A., & Hebert, P. D. N.
(2016). Exploring Canadian echinoderm diversity
through DNA barcodes. PLoS ONE 11(11), e0166118.
https://doi.org/doi:10.1371/journal.pone.0166118
Lessios, H. A. (2005). Echinoids of the Pacific waters of
Panama: status of knowledge and new records. Revis-
ta de Biología Tropical, 53(S3), 147–170.
Martín-Cao-Romero, C., Solís-Marín, F. A., Laguarda-
Figueras, A., & Buitrón-Sánchez. B. E. (2017). Phata-
ria unifascialis (Valvatida: Ophidiasteridae) from the
Eastern Pacific: Redescription and skeletal morpho-
logy. Revista de Biología Tropical, 65(S1), S258–S271.
https://doi.org/10.15517/RBT.V65I1-1.31694
Massin, C., Zulfigar, Y., Tan Shau Hwai, A., & Rizzal,
S. (2002). The genus Stichopus (Echinodermata:
Holothuroidea) from the Johore Marine Park (Malay-
sia) with the description of two new species. Biologie,
72, 73–99.
Meiklejohn, K. A., Damaso, N., & Robertson, J. M. (2019).
Assessment of BOLD and GenBank–Their accuracy
and reliability for the identification of biological
materials. PloS ONE, 14(6), e0217084. https://doi.
org/10.1371/journal.pone.0217084
Miralles, A., Bruy, T., Wolcott, K., Scherrz, M., Begerow,
D., Beszteri, B., Bonkowski, M., Fekden, J., Heme-
inholzer, B., Glaw, F., Glöckner, F., Hawlitschek, O.,
Kostadinov, I., Nattkemper, T., Printzen, C., Renz,
J., Rybalka, N., Stadler, M., Weibulat. T., … Vences,
M. (2020). Repositories for taxonomic data: Where
we are and what is missing. Systematic Biology, 69(6),
1231–1253. https://doi.org/10.1093/sysbio/syaa026
Ratnasingham, S., & Hebert, P. D. N. (2007). BOLD: The
Barcode of Life Data System (www. barcodinglife.
org). Molecular Ecology Notes, 7, 355–364. https://doi.
org/10.1111/j.1471-8286.2007.01678.x
Solís-Marín, F. A., Alvarado, J. J., Abreu-Pérez, M., Agui-
lera, O., Alió, J., Bacallado-Aránega, J. J., Barraza, E.,
Benavides-Serrato, M., Benítez-Villalobos, F., Betan-
court-Fernández, L., Borges, M., Brandt, M., Brogger,
M. I., Helena Borrero-Pérez, G., Buitrón-Sánchez, B.
E., Campos, L. S., Cantera, J., Clemente, S., Cohen-
Renfijo, M., … Williams, S. M. (2013). Appendix.
In J. J. Alvarado, & F. A. Solís-Marín (Eds.), Echino-
derm Research and Diversity in Latin America (pp.
543–654). Springer.
Solís-Marín, F. A., Alvarado, J. J., Conejeros-Vargas, C.,
& Ochoa, A. A. (2020). Pentamera fonsecae n. sp.
a new species of sea cucumber from the Pacific
coast of Costa Rica (Holothuroidea: Dendrochiroti-
da: Thyonidae). Zootaxa, 4878, 581–588. https://doi.
org/10.11646/zootaxa.4878.3.9
Solís-Marín, F. A., Arriaga-Ochoa, J. A., Laguarda-Figueras,
A., Frontana-Uribe, S. C., & Durán-González, A.
(2009). Holothuroideos (Echinodermata: Holothuroi-
dea) del Golfo de California, México [Informe técnico].
Comisión Nacional para el Conocimiento y Uso de
la Biodiversidad e Instituto de Ciencias del Mar y
Limnología de la Universidad Nacional Autónoma de
México, México.
Solís-Marín, F. A., Laguarda-Figueras, A., Estrada-Rodrí-
guez, P., Honey-Escandón, M., Cao-Romero, C., &
Durán-Gonzáles, A. (2014). Los asteroideos (Echino-
dermata: Asteroidea) del Golfo de California, México
[Informe técnico]. Instituto de Ciencias del Mar y
Limnología de la Universidad Nacional Autónoma
de México (UNAM), Secretaría de Medio Ambien-
te y Recursos Naturales (SEMARNAT) e Instituto
Nacional de Ecología y Cambio Climático (INECC);
México.
Sonet, G., Smitz, N., Vangestel, C., & Samyn, Y. (2022). DNA
barcoding echinoderms from the East Coast of South
Africa. The challenge to maintain DNA data con-
nected with taxonomy. PLoS ONE, 17(10), e0270321.
https://doi.org/10.1371/journal.pone.0270321
Schilthuizen, M., Vairappan, C., Slade, E., Mann, D.,
& Miller, J. (2015). Specimens as primary data:
museums and ‘open science. Trends in Ecology and
Evolution, 30(5), 237–238. https://doi.org/10.1016/j.
tree.2015.03.002
Varela-Sánchez, A., Templado, J., & Machordom, A. (2020).
A. Morphological and molecular approaches to the
study of ophiuroids (Echinodermata: Ophiuroidea)
at Las Baulas Marine National Park (North Pacific,
Costa Rica). Revista de Biología Tropical, 68(S3),
803–817. https://doi.org/10.15517/rbt.v68i3.39283
Woo, S. P., Zulfigar, Y., Tan, S. H., Kajihara, H., & Fujita, T.
(2015). Sea cucumbers of the genus Stichopus Brandt,
1835 (Holothuroidea, Stichopodidae) in Straits of
Malacca with description of a new species. ZooKeys,
545, 1–26. https://doi.org/10.3897/zookeys.545.6415
WoRMS Editorial Board (2024). World Register of Marine
Species. Vlaams Instituut voor de Zee. https://doi.
org/10.14284/170