9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e59013, marzo 2024 (Publicado Mar. 01, 2024)
Chaar, F. B., Fernández, J. P., Sepúlveda, L. R., & Rubi-
lar, T. (2021). The influence of density on survival
and larval development in the sea urchin Arbacia
dufresnii (Echinodermata: Echinoidea). Revista de
Biología Tropical, 69(S1), S334–S345. http://dx.doi.
org/10.15517/rbt.v69isuppl.1.46365
Chiarelli, R., Martino, C., & Roccheri, M. C. (2019). Cad-
mium stress effects indicating marine pollution in
different species of sea urchin employed as environ-
mental indicators. Cell Stress Chaperones, 24, 675–
687. https://doi.org/10.1007/s12192-019-01010-1
Dufossé, A. (1847). Observations sur le developpement des
oursins. Annales des Sciences Naturelles, 7, 44–52.
Epel, D., Vacquier, V. D., Peeler, M., Miller, P., & Patton, C.
(2004). Sea urchin gametes in the teaching laboratory:
Good experiments and good experiences. Methods
in Cell Biology, 74, 797–823. https://doi.org/10.1016/
S0091-679X(04)74033-9
Epherra, L., Gil, D., Rubilar, T., Perez-Gallo, A. S., Reartes,
B., & Tolosano, J. A. (2015). Temporal and spa-
tial differences in the reproductive biology of the
sea urchin Arbacia dufresnii. Marine and Freshwa-
ter Research, 66, 329–342. https://doi.org/10.1071/
MF14080
Fabbrocini, A., & D’Adamo, R. (2011). Gamete and embr-
yos of sea urchins (Paracentrotus lividus, Lmk 1816)
reared in confined conditions: their use in toxicity
bioassays. Chemistry and Ecology, 27(2), 105–115.
https://doi.org/10.1080/02757540.2011.625931
Fabbrocini, A., Silvestri, F., & D’Adamo, R. (2021). Develo-
pment of alternative and sustainable methodologies
in laboratory research on sea urchin gametes. Marine
Environmental Research, 167, 105–282. https://doi.
org/10.1016/j.marenvres.2021.105282
Fabbrocini, A., Silvestri, F., & D’Adamo, R. (2023). Effects
of post-collection storage conditions on sperm moti-
lity longevity in the blunt sea urchin Sphaerechinus
granularis. Aquaculture, 563,738–813. https://doi.
org/10.1016/j.aquaculture.2022.738913
Fernández, J. P., Chaar, F. B., Epherra, L., González-Arave-
na, J. M., & Rubilar, T. (2021). Embryonic and larval
development is conditioned by water temperature
and maternal origin of eggs in the sea urchin Arbacia
dufresnii (Echinodermata: Echinoidea). Revista de
Biología Tropical, 69(S1), S452–S463. http://dx.doi.
org/10.15517/rbt.v69isuppl.1.46384
Garner, S., Zysk, I., Byrne, G., Kramer, M., Moller, D.,
Taylor, V., & Burke, R. D. (2016). Neurogenesis in sea
urchin embryos and the diversity of deuterostome
neurogenic mechanisms. Development, 143, 286–297.
https://doi.org/10.1242/dev.124503
Hinman, V. F., & Burke, R. D. (2018). Embryonic neu-
rogenesis in echinoderms. Wiley Interdisciplinary
Reviews: Developmental Biology, 7, e316. https://doi.
org/10.1002/wdev.316
Hurvich, C. M., Simonoff, J. S., & Tsai, C. L. (1998).
Smoothing parameter selection in nonparametric
regression using an improved Akaike information
criterion. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 60(2), 271–293. https://
doi.org/10.1111/1467-9868.00125.
InfoStat. (2016). InfoStat (Versión 2016)[Computer soft-
ware]. Grupo InfoStat, FCA.
Kiyomoto, M. (2019). Long-term preservation of echi-
noderm sperm under non-cryo conditions for
ecotoxicological bioassay. Marine Environmental
Research, 144, 246–249. https://doi.org/10.1016/j.
marenvres.2019.01.004
Kiyomoto, M., Hamanaka, G., Hirose, M., & Yamagu-
chi, M. (2014). Preserved echinoderm gametes as a
useful and ready-to-use bioassay material. Marine
Environmental Research, 93, 102–105. https://doi.
org/10.1016/j.marenvres.2013.08.014
Kristan, J., Samarin, A. M., Malinovskyi, O., & Policar, T.
(2020). Gamete management for artificial reproduc-
tion of northern pike Esox lucius (Linnaeus, 1758).
Aquaculture, 528, 735575. https://doi.org/10.1016/j.
aquaculture.2020.735575
Lera, S., & Pellegrini, D. (2006). Evaluation of the fertili-
zation capability of Paracentrotus lividus sea urchin
storaged gametes by the exposure to different aqueous
matrices. Environmental Monitoring and Assessment,
119, 1–13. https://doi.org/10.1007/s10661-005-9000-0
Lawrence, J. M. (2007). Edible sea urchins: Use and life his-
tory strategies. In J. M. Lawrence (Ed.), Developments
in Aquaculture and Fisheries Science (pp. 1–6). Else-
vier. https://doi.org/10.1016/S0167-9309(07)80065-2
Matranga, V., & Corsi, I. (2012). Toxic effects of engi-
neered nanoparticles in the marine environment:
model organisms and molecular approaches. Mari-
ne Environmental Research, 76, 32–40. https://doi.
org/10.1016/j.marenvres.2012.01.006
McClay, D. R. (2011). Evolutionary crossroads in deve-
lopmental biology: sea urchins. Development, 138,
2639–2648. https://doi.org/10.1242/dev.048967
Meidel, S. K., & Yund, P. O. (2001). Egg Longevity and
Time-Integrated Fertilization in a Temperate Sea
Urchin (Strongylocentrotus droebachiensis). Biology
Bulletin, 201, 84–94.
Rahman, S., Tsuchiya, M., & Uehara, T. (2009). Effects of
temperature on hatching rate, embryonic develop-
ment and early larval survival of the edible sea urchin,
Tripneustes gratilla. Biologia (Section Zoology), 64,
768–775. https://doi.org/10.2478/s11756-009-0135-2