1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
Analyzing morphometry among extant and extinct species: A case study of
genus Agassizia (Spatangoida: Echinoidea)
Alejandra Martinez-Melo1; https://orcid.org/0000-0003-2314-689X
Carolina Martin-Cao Romero2; https://orcid.org/0000-0003-4215-8036
Cristian Moisés Galván-Villa3; https://orcid.org/0000-0003-1927-2500
Rosa Carmen Sotelo-Casas*4; https://orcid.org/0000-0002-9297-6099
1. Invertebrate Paleontology, Academy of Natural Sciences of Philadelphia, 1900 Benjamin Franklin Pkwy, 19103,
Philadelphia, Pennsylvania, United States; Martinez-Melo@drexel.edu
2. Red Mexicana de Equinodermos, Ciudad de México, México; caromcr@gmail.com
3. Laboratorio de Ecología Molecular, Microbiología y Taxonoa (LEMITAX), Departamento de Ecología, Centro
Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, CP 45200,
México; cristian.galvan@academicos.udg.mx
4. Departamento para el Desarrollo Sustentable de Zonas Costeras (DEDSZC), Centro Universitario de la Costa Sur,
Universidad de Guadalajara, Gómez Farias 480, Centro, 48980, San Patricio-Melaque, Jalisco, Mexico e-mail: rosacar-
mensotelocasas@gmail.com (Correspondence*)
Received 04-VII-2023. Corrected 27-XII-2023. Accepted 06-I-2024.
ABSTRACT
Introduction: The genus Agassizia in Mexico is represented both in the fossil record by the species Agassizia
regia† during the Miocene of Chiapas and by the extant species Agassizia excentrica on the Atlantic coast and
Agassizia scrobiculata on the Pacific coast. Qualitative diagnosis and descriptions make it hard to distinguish
morphological boundaries between species, especially in groups with fossils and recent representatives, increas-
ing the level of complexity by having samples of disparate qualities and quantities.
Objective: We propose the use of little explored statistical methods in the comparison of paleontological and
biological populations. This methodology allowed us to resolve issues of missing values in a morphometric data
set for the genus Agassizia.
Methods: Using samples recently collected and specimens already housed in collections, we explore a routine of
recovery of missing data MICE and the numerical and graphic analyses PERMANOVA, PCA, and SIMPER to
compare morphometric parameters between these species for recognizing diagnostic characters.
Results: Our results show a morphological difference in the length of the ambulacrum II and the length and
width of the periproct and peristome structures, these being greater in A. scrobiculata, with a consistent pattern
in both population samples not previously described.
Conclusions: Quantitative morphometric comparisons can be an assertive and complementary tool to determine
distinctive differentiation characteristics in species of the same genus. Comparative morphology reviews should
be an ongoing exercise to keep taxonomic knowledge on both extinct and extant species up to date. Our research
encourage the scientific community studying fossil populations to utilize quantitative and multivariate methods
to strengthen their investigations.
Key words: Miocene, multivariate analysis, Chiapas, Colima, Mexico, MICE.
https://doi.org/10.15517/rev.biol.trop..v72iS1.59016
SUPPLEMENT
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
INTRODUCTION
Echinoids present a rich fossil record since
the Mississippian (Early Carboniferous) (Mon-
giardino-Koch & Thompson, 2021); this is due
to the susceptibility to fossilization of their
high-magnesium calcite endoskeleton (Kroh,
2020). Currently, the extant biodiversity of
this class includes 1 000 valid species around
the world, ranging from the shore to the deep
sea and from tropical to polar waters (Kroh &
Mooi, 2019). The great fossil record of echi-
noids added to their extant diversity allows us
to propose them as models to make paleoeco-
logical and paleoenvironmental interpretations
and, at simultaneously, can help us predict what
will happen with future communities.
According to the World Register of Marine
Species (WoRMS, 2023), the genus Agassizia
Valenciennes in Agassiz & Desor, 1847 includes
15 extinct and five extant species (Kroh &
Mooi, 2022), with a stratigraphic range between
the middle Eocene to Recent (Smith & Kroh,
2011), and a distribution in North America, the
Caribbean, in West Europe (Portugal, Spain,
and France), the Middle East, and the East
Pacific. The type species is Agassizia scrobicu-
lata Valenciennes in Agassiz & Desor, 1847.
Three species of genus Agassizia have
been recorded for Mexico (Fig. 1). The extinct
Agassizia regia Israelsky, 1924†, that has been
reported from the Eocene-Oligocene of Tux-
pam Beds, Tampico Region (Israelsky, 1924),
and the Miocene of Tulijá, Chiapas (Martínez-
Melo, 2019). Two extant species, Agassizia
excentrica A. Agassiz, 1869, occurred in Yuca-
tán (Gabino-García et al., 2021), with a depth
ranging between 43–900 m, and Agassizia scro-
biculata Valenciennes, 1846 in Agassiz & Desor,
1847, has been recorded on the Pacific coast of
RESUMEN
Análisis de la morfometría entre especies existentes y extintas:
Un estudio de caso del género Agassizia (Spatangoida: Echinoidea)
Introducción: El género Agassizia en México está representado tanto en el registro fósil por la especie Agassizia
regia† del Mioceno de Chiapas, como por las especies actuales Agassizia excentrica de la costa del Atlántico y
Agassizia scrobiculata de la costa del Pacífico. Las descripciones y diagnosis cualitativas dificultan reconocer los
limites morfológicos entre especies, especialmente en grupos con representantes fósiles y recientes, e incremen-
tando el nivel de complejidad al tener muestras de cantidad y calidad desiguales.
Objetivo: Proponemos el uso de métodos estadísticos poco explorados en la comparación de poblaciones paleon-
tológicas y biológicas. Esta metodología nos permitió resolver problemas de valores faltantes en un conjunto de
datos morfométricos para el género Agassizia.
Métodos: Usando muestras recolectadas para este fin, así como provenientes de colecciones científicas, explora-
mos una rutina de recuperación de datos faltantes MICE, y los análisis numéricos y gráficos PERMANOVA, PCA
y SIMPER para comparar parámetros morfométricos entre estas especies y reconocer caracteres de diagnóstico.
Además, comparamos cuidadosamente los caracteres morfológicos descritos previamente en la literatura taxonó-
mica y la descripción ambiental del hábitat actual de A. scrobiculata.
Resultados: Nuestros resultados muestran una diferencia morfológica en la longitud del ambulacrum II y la
longitud y anchura de las estructuras del periprocto y peristoma, siendo estas mayores en A. scrobiculata, con un
patrón consistente en ambas muestras poblacionales no descrito previamente. El hábitat actual de las muestras de
A. scrobiculata en la costa del Pacífico es un sistema costero poco profundo con sedimentos arenosos y temperatu-
ras tropicales. Bahía Chamela comparte varias similitudes con la fauna y las condiciones ambientales previamente
descritas en el Mioceno de Chiapas.
Conclusiones: Las comparaciones morfométricas cuantitativas pueden ser una herramienta poderosa y comple-
mentaria para determinar caracteres distintivos de diferenciación en especies del mismo género. Las revisiones
de morfología comparativa deben ser un ejercicio continuo para mantener actualizado el conocimiento taxo-
nómico sobre las especies existentes y extintas. Nuestro trabajo busca incentivar a la comunidad científica que
trabaja con poblaciones fósiles a explorar estos y otros métodos cuantitativos y multivariados para fortalecer sus
investigaciones.
Palabras clave: Mioceno, alisis multivariado, Chiapas, Colima, México.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
Mexico, including the eastern coast of the Baja
California Peninsula and the Gulf of California,
with a depth range from the intertidal to 62 m
(Galván-Villa et al., 2018; Maluf, 1988).
The advantage of having large samples of
both fossil and extant echinoids is that we can
apply a population approach with multivariate
statistical methods (McNamara, 1989; Solís-
Marín et al., 2013) and explore new statistical
dimensions, such as size variability in a popula-
tion, changes in growth patterns associated with
age, and changes in the allometric relationships
for body structures (e. g. Caballero-Ochoa et
al., 2021; Ciampaglio & DOrazio, 2007).
Qualitative diagnosis and descriptions
make it hard to distinguish morphological
boundaries between species, especially in
groups with fossils and recent representatives;
the dissimilar quality and quantity of the fossil
samples increase complexity when analyzing
and comparing morphology within a group.
This study aims to propose a practical and
effective multivariate statistics routine to solve
the problems derived from comparing poor
paleontological samples with recent samples
using two species of genus Agassizia from
Mexico as a model.
MATERIALS AND METHODS
Data collection:
Recent and fossil samples: We used fossil
specimens collected by Martínez-Melo (2019)
and housed in the Colección Nacional de
Paleontología, Instituto de Geología, Univer-
sidad Nacional Autónoma de México (IGeol,
UNAM), Mexico and recent specimens housed
in the LEMA-EQ, Echinoderms Collection,
Laboratorio de Ecología Molecular, Microbi-
ología y Taxonomía (LEMITAX), Departa-
mento de Ecología, Centro Universitario de
Ciencias Biológicas y Agropecuarias, Univer-
sidad de Guadalajara (CUCBA-UDG), Mexico.
For the fossils, we included 49 specimens
of A. regia† housed in IGeol, catalog numbers
IGM 11257 - IGM 11307, from the Tulijá
Formation at IGM-loc 3636, El Gato site, near
Palenque, northern Chiapas, Mexico (17°29’
N, 92°56’ W) (Fig. 2c). We used a total of 78
recent specimens of A. scrobiculata, housed in
Fig. 1. Distribution of the genus Agassizia Valenciennes in Agassiz & Desor, 1847 in Mexico.
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
CUCBA-UDG; 10 specimens (LEMA EQ-583)
collected in San Andrés, Chamela Bay, Jalisco,
Mexico (19°31’32” N, 105°05’31” W) (Fig. 2a),
in December 2013, at 3 m depth; 68 speci-
mens collected in Punta Santiago, Manzanillo,
Colima, Mexico (19° 05’ 58” N, 104° 21’ 11”
W) (Fig. 2b), 12 of them collected in February
2016 (LEMA EQ-592), 23 in July 2017 (LEMA
EQ-601), and 33 in October 2021 (LEMA
EQ-047 and LEMA EQ-086), all specimens
were collected between 6 and 8 m depth.
Measurements: We followed the method
used by Martinez-Melo (2019) for measuring
recent (A. scrobiculata) and fossil (A. regia†)
specimens according to the data reported for A.
regia† (Table 5 in Martinez-Melo, 2019). Thir-
teen measurements per specimen were taken
(Fig. 3) using a manual caliper with a precision
of 0.05 mm.
Comparative analysis:
Recovery of missing measurements and dis-
card criteria for statistical evaluation: As with
other fossil samples, some of our A. regia
specimens show structural damage in the test
that precludes us from taking whole body
measurements (Appendix 1). When working
with datasets that contain missing values, there
methods of treatment exist: 1) Discard any
samples or factors with missing values, even if
this represents a significant loss of information,
2) Explore statistical tools enable the handling
of missing values but assume a significant
reduction in the explanatory power of our
results, and 3) Use imputation techniques to
achieve a complete dataset of data, but being
aware of the potential bias associated with the
quality of the substituted values (Lin & Tsai,
2020; Stuart et al., 2009).
Fig. 2. Sampling sites localization. A) A. scrobiculata from San Andrés Island, Chamela Bay, Jalisco; B) A. scrobiculata from
Punta Santiago, Manzanillo, Colima; C) Agassizia regia† in the paleontological site s El Gato, Chiapas.
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
The Multivariate Imputation by Chained
Equations (MICE) is a statistical method widely
employed in medical research for treating com-
plex and incomplete datasets, yielding satisfac-
tory outcomes while maintaining original datas
natural tendencies with a few signs of bias (Van
Buuren & Groothuis-Oudshoorn, 2011).
Due to A. regia† data set having 35 % miss-
ing data, we used the MICE routine to impute
the missing values. This was done to prevent
significant information loss that would result
from discarding incomplete samples (Acuña
& Rodríguez, 2004). We used the imputation
method by the predictive pairing of means
(pmm) with ten imputations and a scalar of ten
(maxit), following the criteria recommended by
Raghunathan et al. (2001). The data sets quality
was tested graphically, using a xyplot to identify
outliers, and numerically, to ensure that the
mean difference between the observed and
imputed values for each morphometric factor
did not exceed two standard deviations (Stuart
et al., 2009).
Two samples of A. scrobiculata with miss-
ing data were discarded. This decision was
supported by the analysis of Acuña & Rodrí-
guez (2004), who discussed how imputing or
discarding values for missing data values <
5 % does not significantly affect the results.
Caballero-Ochoa et al. (2021) suggest that dif-
ferences in sample population sizes can lead to
errors in interpreting allometric comparisons.
To prevent bias, we excluded 32 samples of A.
scrobiculata with sizes smaller than the inferior
size range of A. regia† (TL < 15.6 mm). The
statistical analysis included a total of 93 speci-
mens, 49 of A. regia† and 44 of A. scrobiculata
(Appendix 1).
Descriptive morphometry and degree of dis-
similarity between species: For the quantitative
evaluation, we combined three multivariate
statistical methods. To prove morphological
Fig. 3. Measured parameters used in the morphometric analysis of Agassizia. A) Zoom to the ambulacrum region: IL, length
of ambulacrum I; IIL, length of ambulacrum II; IW, width of ambulacrum I; IIW, width of ambulacrum II; B) Test in oral
view: PsF, distance from the peristome to the anterior margin; PsL, length of the peristome; PsW, width of the peristome; TL,
length; TW, width; C) Test in posterior view: PpW, width of the periproct; PpH, height of the periproct, PpL, length of the
periproct; and TH, height.
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
differences between both species, we used a per-
mutational multivariable analysis of variance
(PERMANOVA) with fixed effects, constructed
using the factor species (Sp) as follows: Y= μ +
Spi + εi. Additionally, we conducted a similar-
ity percentage analysis (SIMPER) to identify
the main morphometric factors contributing
to the dissimilarity between the species. Prin-
cipal Component Analysis (PCA) was used
to prove or discard the separation between
recent and fossil samples, and to identify the
most effective set of morphometric factors that
account for this differentiation. The statistical
software used for the PERMANOVA and SIM-
PER analysis was Primer-e® v.6, while the PCA
graph was generated using CANOCO v.4.5.
All analysis used a Euclidean distance matrix
with measurement data previously transformed
using the fourth root and 10 000 permutations
to demonstrate statistical significance (Clarke
& Gorley, 2005; Ter Braak & Smilauer, 2002;
Zar, 1999).
To visually compare the morphology of
the two species, we constructed a box-and-
whisker plot with the values for each mor-
phological factor. The box-and-whisker plot
shows the minimum, maximum, and mean
values with the standard deviation for each
morphological factor.
Systematics
Class Echinoidea Leske, 1778
Order Spatangoida L. Agassiz, 1840
Family Prenasteridae Lambert, 1905
Genus Agassizia Valenciennes, 1846
Type species Agassizia scrobiculata
Valenciennes in Agassiz & Desor, 1847: 20.
Stratigraphic range— Middle Eocene to
Recent (Smith & Kroh, 2011).
Modern distribution in Mexico— On the
Pacific coast of northern Mexico, including
the eastern coast of the Baja California Penin-
sula and the Gulf of California (Martínez-Melo
et al., 2015).
Agassizia scrobiculata Valenciennes in
Agassiz & Desor, 1846-1847: 20.
Agassizia scrobiculata Valenciennes in
Agassiz & Desor, 1846-1847: 20. Agassizia sub-
rotunda Gray, 1851: 133. Agassizia ovulum
tken, 1864: 134.
Type specimens— Syntypes MNHN-
IE-2013-10543 and MNHN-IE-2013-10544.
Distribution— From Baja California
Mexico to Capón, Peru; including the Gulf of
California and the Galapagos Islands (Galván-
Villa et al., 2018). The bathymetric distribu-
tion ranges from the intertidal to 62 m depth
(Maluf, 1988).
Referred specimens— 78 specimens,
LEMA EQ-047, LEMA EQ-086, LEMA EQ-583,
LEMA EQ-592, LEMA EQ-601.
Locality— San Andrés Island, Chamela
Bay, Jalisco and Punta Santiago, Manzanillo,
Colima, Mexico (Fig. 2a & 2b).
Habitat— San Andrés is a small island
of 7.15 ha, located between the Cuitzmala
River and the San Nicolás River. It is part of
a coastal archipelago within the Chamela Bay
Marine Protected Area, Jalisco, Mexico (Comis-
ión Nacional de Áreas Naturales Protegidas
[CONANP], 2008). According to CONANP
(2008) and Ríos-Jara et al. (2013), Chamela
Bay is a coastal system with a mixed rocky
and sandy substrate, ranging from 10 to 25 m
in depth. The sea surface temperature (SST)
oscillates between 20 and 30 °C, and the salin-
ity ranges from 34 to 35 during cold-dry and
warm-rainy seasons, respectively. The average
rainfall is 748 mm. The ecosystem supports a
high biodiversity, including plankton, corals
of the genera Porites, Pavona, and Pocillopora,
over one hundred species of Chondrichthyes
and bony fishes, and diverse invertebrates of the
phyla Mollusca, Arthropoda, Cnidaria, Annel-
ida, Porifera, and Echinodermata. During the
sampling work conducted in December 2013,
the sea surface temperature (SST) showed a
value of 27°C.
Sotelo-Casas et al. (2019) reported an SST
range of 21.3 and 31.8 °C for Punta Santiago,
Manzanillo bays. The authors described the
locality as a coastal system with a mixed sandy
and rocky substrate, and a seasonal influx
of runoff sediments from Juluapans Lagoon.
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
During our sampling work in Punta Santia-
go, we recorded the following environmental
parameters: SST of 30.2 °C, dissolved oxygen
concentration of 24.7 %, salinity of 33 ppt, and
organic matter content in the sediments of 0.86
%. Additionally, granulometric characteriza-
tion revealed a predominance of medium sand
(Table 1).
Description (Tapia-Ramírez, 2012) —Test
slightly oval, posterior side truncate, anterior
side slightly wider than the posterior region.
Apical system ethmolytic, with four gonopores.
Anterior ambulacra long, reaching the ambi-
tus. Posterior ambulacra petaloid, short and
wide. The single anterior ambulacrum without
pores, slightly sunken and elongated, reaches
the frontal ambitus. Periproct on the posterior
side, oval, wider than long. Peristome reniform
with prominent labrum. Plastron wide, cov-
ered by small tubercles, wider on the posterior
region. Peripetal fasciole forming obtuse angles
between the ambulacra, except at the front
ambulacrum, where it joins the latero-anal
fasciole, which forms a “v” below the periproct.
Test with abundant tubercles, being more evi-
dent on the anterior region.
Agassizia regia Israelsky, 1924
Agassizia clevei Cotteau, 1875 pl. 7, Figs 1a, 1b.
Agassizia regia Israelsky, 1924, p. 142.
Type specimens— Holotype CAS-IG 363
from Eocene-Oligocene, Tuxpam Beds, Tam-
pico Region, Mexico.
Geographical and time record— Report-
ed from the Eocene-Oligocene, Tuxpam Beds,
Tampico Region, Mexico (Israelsky, 1924).
Referred specimens— 49 specimens, IGM
11257 through IGM 11307.
Locality and age—Specimens discussed
herein were collected from the Tulijá Formation
at IGM-loc 3636, El Gato site, near Palenque,
northern Chiapas, Mexico (Fig. 2c).
Habitat— The Tulijá Formation is a cal-
careous sequence of strata clays ranging from
30 to 150 cm in thickness. It is exposed along
the Tulijá River and extenders to Palenque. The
formation contains high abundance of inverte-
brate fossils, including foraminifera, ostracods,
gastropods, ostreid, bivalves, echinoderms, cor-
als, portunid crabs, tubes of polychaete worms,
and sponges, which are so numerous that they
form embedded coquinas. The fossil assem-
blage also includes vertebrate remains, such as
shark, ray, and teleostean fish teeth, fish scales,
pycnodonts, serranids, percomorphs, and other
fish bones, as well as sirenid bones. These
extensive fossil records suggest that during
the early Miocene, the Tulijá Formation sedi-
ments were deposited in a marine environment
near the shore, under shallow and high-energy
conditions that may have included transgres-
sive and regressive episodes along the inner
platform and/or coastal lagoons (Alvarado-
Ortega et al., 2018; Martínez-Ortiz et al., 2017;
Meneses-Rocha, 2001; Riquelme et al., 2012;
Velasquillo-García, 2011).
Table 1
Grain size distribution of sediment in Punta Santiago, Manzanillo, Colima.
Diameter (phi) Percentage (%) Size class
Coarse texture -2 4.86 Very coarse sand
-1 28.816 Coarse sand
0 40.411 Medium sand
1 17.511 Fine sand
2 7.422 Very fine sand
3 0.977 Very coarse silt
Fine texture 4 0.001 Very fine sand
5 0 Very coarse silt
6 0.001 Coarse silt
7 0 Medium silt
8 0.001 Fine silt
9 0 Very fine silt
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
Description— Small (length 16-27 mm)
almost spherical test (width 13-23 mm and
height 13-20 mm), more rounded anteriorly
than posteriorly, slightly flat near the periproct.
Apex slightly posterior, at the apical system,
which has four genital pores. Anterior ambu-
lacrum (III) non-petaloid, in slight furrow,
with no visible pores. Ambulacra petaloid, II
and IV divergent at 120°, petals almost reach-
ing the ambitus; anterior series of pore pairs
atrophied, the posterior row with conspicu-
ous pairs of elongated pores. Anterior paired
petals depressed, posterior petals short, more
depressed than anterior pair, width about one-
third the length. Petals I and V 2/3 the length of
the anterior pair of petals, lacking interporifer-
ous zones. Periproct high on the posterior the
test, horizontally ovate. Peripetalous fasciole
unindented in the interporiferous area, extends
below the anterior petals; latero-anal fasciole
extends from below the periproct upward to
point of juncture with peripetalous fasciole,
then downward anteriorly to below ambitus in
anterior ambulacrum. Oral surface more swol-
len at the interambulacral 5. Plastron strongly
elevated, ornamented with closely spaced scaly
tubercles. Peristome reniform, extremely ante-
rior, at 17 % of the length, labiate posteriorly.
Size and morphological references for
the Agassizia genus: The average measure-
ments and the minimum and maximum range
of sizes were included in Appendix 2. Agassizia
scrobiculata had a smaller average size than A.
regia†. Thirty-three samples of A. scrobiculats
were smaller than the smallest specimen of
A. regia†. Fig. 4 showed a visual comparison
between fossil species A. regia† and recent spe-
cies A. scrobiculata.
Morphometric analysis on genus Agas-
sizia: The Multivariate Imputation by Chained
Equations (MICE) generated 209 imputed val-
ues for A. regia†. The xyplot does not indicate
the presence of outliers (Fig. 5), and only
4.8 % (n = 10) of the imputed values differed
Fig. 4. A morphological comparison between fossil species A. regia† (A: test in apical view, B: test in oral view) and recent
species A. scrobiculata (C: test in apical view, D: test in oral view).
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
Fig. 5. The xyplot shows the values of the morphometric measurements for A. regia†. The blue circles represent the original
values, and the pink circles represent the imputed data: TL, length; TW, width; TH, height; IL, length of ambulacrum I; IW,
width of ambulacrum I; IIL, length of ambulacrum II; IIW, width of ambulacrum II; PsW, width of the peristome; PsL, length
of the peristome; PsF, distance from the peristome to the anterior margin; PpW, width of the periproct; PpL, length of the
periproct; and PpH, height of the periproct.
Table 2
The average dissimilarity between morphometric factors
was computed by the SIMPER test for A. regia† and A.
scrobiculata.
Species Contribution % Cumulative contribution %
PsF 13.17 13.17
PsL 12.22 25.39
IIL 10.66 36.05
PpL 8.62 44.67
TL 7.73 52.40
from the mean of the observed values by more
than two standard deviations. Therefore, we
deemed the quality of the imputed data ade-
quate for analysis.
The PERMANOVA test revealed signifi-
cant differences between morphometric values
of A. regia† and A. scrobiculata (Peudo-F =
6.9196, P = 0.0003). The SIMPER test (cut-off
of 50 %) identified PsF, PsL, IIL, PpL, and TL as
the morphological values that most contributed
to the differences between species (Table 2).
The box-and-whisker plot shows that, on
average, the samples of the A. regia† species
samples were larger in size. Specifically, they
had higher values for TL, TW, TH, IL, IW, IIW,
PpW, and PpH (Fig. 6). Conversely, A. scrobicu-
lata had the larger sizes for IIL, PsW, PsL, PsF,
and PpL.
The Principal Component Analysis (PCA)
indicated a clear separation between the popu-
lations of A. regia† and A. scrobiculata (Fig. 7).
The maximum body size (TL, TH, TW) did
not consistently differentiate between the two
species. However, the measurements associated
with the length (PsL, PsF) and width (PsW)
of the peristome, and the length (PpL) of the
periproct, as well as the length of the ambula-
crum II (IIL) were significantly shorter in the
A. regia† samples.
It is evident that the morphometric charac-
ters of the peristome (PsL, PsF, and PsW), and
the length of the periproct (PpL) were larger
in A. scrobiculata samples (Fig. 6). Despite A.
scrobiculata having smaller specimens on aver-
age, the peristome and periproct of A. regia
is proportionally larger. The morphological
difference is evident in the arrangement of the
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
samples in the PCA plot (Fig. 7), where the
samples with smaller peristome and periproct
(A. regia†) are distinct from the species with the
larger oral and anal structures (A. scrobiculata)
through a vertical gradient.
When comparing the length of ambulacra
I and II, it was observed that individuals of A.
regia† have a smaller ambulacrum I (IL of A.
regia† < IL of A. scrobiculata). Conversely, in
ambulacrum II the relationship is inverted (IIL
of A. regia† > IIL of A. scrobiculata; Fig. 6 and
Fig. 7). This morphological difference appears
to be related to a variation in the position of the
Fig. 7. Principal Component Analysis (PCA) plots of morphological factors for Agassizia; black squares represent the samples
of Agassizia regia†, and gray circles represent the samples of A. scrobiculata: TL, length; TW, width; TH, height; IL, length of
ambulacrum I; IW, width of ambulacrum I; IIL, length of ambulacrum II; IIW, width of ambulacrum II; PsW, width of the
peristome; PsL, length of the peristome; PsF, distance from the peristome to the anterior margin; PpW, width of the periproct;
PpL, length of the periproct; PpH, height of the periproct.
Fig. 6. Box-and-whisker plot for the morphological factors. The plot shows the mean, standard deviation, and outliers for
each factor. Dark gray represents the values of A. regia† and light gray values of A. scrobiculata: TL, length; TW, width; TH,
height; IL, length of ambulacrum I; IW, width of ambulacrum I; IIL, length of ambulacrum II; IIW, width of ambulacrum
II; PsW, width of the peristome; PsL, length of the peristome; PsF, distance from the peristome to the anterior margin; PpW,
width of the periproct; PpL, length of the periproct; and PpH, height of the periproct.
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
apical system in each species, with A. scrobicu-
lata having a more anterior position (Fig. 4).
DISCUSSION
The representation of irregular sea urchins
in the fossil record tends to be higher than that
of regular echinoids (Greenstein, 1993). This is
attributed mainly to the ecology developed by
both forms and taphonomic processes related
to their preservation (Greenstein, 1993; Kier,
1977; Mancosu & Nebelsick, 2019; Nebelsick,
1996; Smith, 1984). In general, irregular echi-
noids feed on organic matter deposited in sedi-
ments, so they remain primarily buried in soft
substrates (Nebelsick, 1996), while regular sea
urchins are mainly herbivorous organisms that
inhabit rocky substrates (Steneck, 2020). The
significant representation of irregular echinoids
in the fossil record makes it possible to have
population samples of some species, as is the
case of A. regia† in our study. Population data-
sets open the possibility of implementing new
quantitative comparisons using multivariate
statistical methods.
An obstacle to using multivariate statistics
on fossil data is the loss of anatomical struc-
tures during the fossilization process and the
consequent loss of measurements in the data
sets (Clarke & Gorley, 2005; Stuart et al., 2009;
Zar, 1999). The use of the multivariate statis-
tical method in the descriptive taxonomy of
echinoderms is not new. During the last two
decades, their use has increased since they are
helpful tools to solve taxonomic determina-
tions that classical and genetic methods can-
not resolve alone. For example, Coppard &
Campbell (2006) applied multivariate statistics
to explore morphological differences within the
genera Diadema and Echinothrix, and Deli et al.
(2019) used these tools to compare populations
of Arbacia lixula along the African Mediter-
ranean coast. Multivariate statistics have also
been used in morphological analyses with other
fossil groups (Lefebvre et al., 2006), and in
irregular echinoids (Stara et al., 2023), however
performing the MICE routine to recover miss-
ing values from damaged specimens is a novel
and a complementary alternative. In our study,
data recovery using the MICE routine allowed
us to work with multivariate statistical tests that
do not admit missing data, and avoided the loss
of information associated to discard of incom-
plete data series.
The PERMANOVA analysis confirmed the
morphometric differences between A. regia
and A. scrobiculata. The box-and-whisker plot
(Fig. 6) showed that morphological factors
related to the total size of the test (TL, TH,
TW), as well as the width of ambulacra (IW,
IIW), the width (PpW), and the height (PpH)
of the periproct, and the length of ambula-
crum I (IL), being higher in A. regia†. These
differences show that despite a priori discard-
ing A. scrobiculata samples with sizes smaller
than the lower range of A. regia† (TL < 15.6
mm), on average A. scrobiculata specimens are
smaller. However, in the PCA plot, we show
that these differences between both species are
insufficient to recognize two groups through a
size gradient.
During the process of statistical analysis,
the smaller average size for A. scrobiculata was
evident. This is because more small samples
were collected in the field, in contrast with sam-
ples with major size in the fossil record of A.
regia†. Both species presented a similar range
of maximum size (Appendix 2). Further studies
would be necessary to explain the absence of
small-sized A. regia† in the fossil record.
According to the SIMPER analysis, the dif-
ferences between the length of the peristome
(PsF & PsL), the length of the ambulacrum II
(IIL), and the length of the periproct (PpL)
are those that contribute the most to explain-
ing the dissimilarity between species (Table 2).
The results of these three multivariate tools are
consistent, so we can conclude that the differ-
ences in the size of the periproct and peristome,
as well as in the length of the ambulacra and
the position of the apical system, can be used
as diagnostic criteria to distinguish these two
species within the genus. An extensive and
comparative review with population samples of
all species would be necessary to know if these
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
diagnostic characters can be extended to all
members of the genus Agassizia.
Previous descriptions for the genus Agassiz-
ia (Valenciennes in Agassiz & Desor, 1847), A.
regia† (Israelsky, 1924; Martínez-Melo, 2019),
and A. scrobiculata (Gray, 1851; Mortensen,
1951; Lütken, 1864; Tapia-Ramírez, 2012) show
how these morphometric differences had not
been identified as a descriptive character. This
omission seems to be due precisely to the fact
that traditional taxonomy does not always con-
template the quantitative comparison of the
specimens, nor are statistical methods explored
to evaluate the differences between the possible
diagnostic characters. By recognizing the mor-
phometric differences between these two spe-
cies from qualitative and multivariate analysis,
we tested the effectiveness and the relevance of
incorporating this type of technique in future
descriptive methodologies.
The qualitative descriptions of the species
in taxonomic reports are always necessary; nev-
ertheless, those could be non-resolutive when
identifying diagnostic characters for species
within a genus. Applying multivariate analysis
to morphometric data provides an objective
and complementary way to revise diagnostic
characters, supporting descriptive information
with numeric data. Proposing a routine to
impute missing data and perform multivariate
analysis offers several benefits. The absence of
data caused by poorly preserved fossil speci-
mens does not distort the natural patterns of
real data. Additionally, it allows for working
with populations instead of just individual
specimens and reinforces the recognition of
morphological patterns. Currently, taxonomists
and systematists have started to integrate novel
types of analysis to solve complex classification
problems (e.g., Dos Santos-Alitto et al., 2019;
Humara-Gil et al., 2022; Nethupul et al., 2022),
mainly including macro and micromorphol-
ogy and DNA sequences. As recovering DNA
information from fossil records is practically
impossible, analyzing qualitative and quantita-
tive morphological information can offer a new
data dimension for integrative taxonomy.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
See supplementary material
a20v72s1-MS1 • a20v72s1-MS2
ACKNOWLEDGEMENTS
This work is supported by Proyecto INAH
“Estudio arqueológico y paleontológico de
los fósiles marinos que proceden del sitio de
Palenque, Chiapas”; UNAM DGAPA-PAPIIT
Project IN 207314 and IN209017 “Vertebra-
dos Marinos del Mesozoico and Cenozoico de
México”; Project P3E 2021, Universidad de Gua-
dalajara. R.C.S.C. thanks the National Council
of Humanities, Science and Technologies for
the postdoctoral fellowship CONAHCYT I.D.
291281. We thank Jesus Alvarado Ortega, Insti-
tuto de Geología, UNAM, for supporting this
project throughout. Lorena Altamirano Curiel,
Regional Center for Fisheries Research, Man-
zanillo (CRIP-INAPESCA) for performing the
texture analysis of sediments. Jared Alvizo, Ana
Rodríguez, Diego Araiza, and Paula Ortega for
their support during the underwater collec-
tions. To Mariana Figueroa for taking pictures
of A. scrobiculata. We thank to the editors and
anonymous reviewers for their helpful com-
ments on earlier versions of the manuscript.
REFERENCES
Acuña, E., & Rodríguez, C. (2004). The treatment of mis-
sing values and its effect on classifier accuracy. In D.
Banks, F. R. McMorris, P. Arabie & W. Gaul (Eds.),
Classification, Clustering, and Data Mining Applica-
tions: Proceedings of the Meeting of the Internatio-
nal Federation of Classification Societies (IFCS) (pp.
639–647). Illinois Institute of Technology & Springer.
https://doi.org/10.1007/978-3-642-17103-1_60
13
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
Agassiz, A. (1869). Preliminary report on the echini and
starfishes dredged in deep water between Cuba and
the Florida Reef, by L. F. de Pourtalès, Assist. U.S.
Coast Survey. Bulletin of the Museum of Comparative
Zoölogy at Harvard College, 1(9), 253–308.
Agassiz, L. (1840). Catalogus Systematicus Ectyporum Echi-
nodermatum fossilium Musei Neocomiensis, secundum
ordinem zoologicum dispositus; adjectis synonymis
recentioribus, nec non stratis et locis in quibus reperiun-
tur. Sequuntur characters diagnostic generum novorum
vel minus cognitorum. Musée d’Histoire Naturelle
(Neuchâtel, Switzerland). https://doi.org/10.5962/bhl.
title.8820
Agassiz, L., & Desor, P. J. E. (1847). Catalogue raison
des familles, des genres, et des espèces de la classe
des echinodermes. Annales des sciences naturelles,
Troisième Série, Zoologie, 6, 305–374. https://doi.
org/10.5962/bhl.title.1833
Alvarado-Ortega, J., Cuevas-García, M., & Cantalice, K.
(2018). The fossil fishes of the archaeological site of
Palenque, Chiapas, southeastern Mexico. Journal of
Archaeological Science: Reports, 17, 462–476. https://
doi.org/10.1016/j.jasrep.2017.11.029
Caballero-Ochoa, A. A., Buitrón-Sánchez, B. E., Conejeros-
Vargas, C. A., Esteban-Vázquez, B. L., Ruiz-Nava,
M. P., Jiménez-López, J. C., Solís-Marín, F. A., &
Laguarda-Figueras, A. (2021). Morphological varia-
bility of recent species of the order Cassiduloida
(Echinodermata: Echinoidea) of Mexico. Revista de
Biología Tropical, 69(S1), S423–S437. https://doi.org/
rbt.v69iSuppl.1.46382
Ciampaglio, C. N., & D’Orazio, A. E. (2007). Hetero-
chrony within the cassiduloid echinoids from the
Castle Hayne Limestone of Southeastern North
Carolina. Historical Biology: An International Jour-
nal of Paleobiology, 19(4), 301–313. https://doi.
org/10.1080/08912960701322518
Clarke, K. R., & Gorley, R. N. (2005). PRIMER: Getting
started with v6 [Computer software]. PRIMER-E Ltd.
Comisión Nacional de Áreas Naturales Protegidas. (2008).
Programa de Manejo Santuario Islas La Pajarera, Coci-
nas, Mamut, Colorada, San Pedro, San Agustín, San
Andrés y Negrita, y los Islotes Los Anegados, Novillas,
Mosca y Submarino situadas en la Bahía de Chamela,
xico. CONANP & Secretaría de Medio Ambiente y
Recursos Naturales (SEMARNAT).
Coppard S. E. & Campbell A. C. (2006). Taxonomic sig-
nificance of test morphology in the echinoid genera
Diadema Gray, 1825 and Echinothrix Peters, 1853
(Echinodermata). Zoosystema, 28(1), 93–112.
Cotteau, G. H. (1875). Description des Echinides Tertiaires
des îles St. Barthelemy et Anguilla. PA Norstedt and
Söner.
Deli, T., Mohamed, A. B., Attia, M. H. B., Zitari-Chatti, R.,
Said, K., & Chatti, N. (2019). High genetic connectivi-
ty among morphologically differentiated populations
of the black sea urchin Arbacia lixula (Echinoidea:
Arbacioida) across the central African Mediterranean
coast. Marine Biodiversity, 49, 603–620. https://doi.
org/10.1007/s12526-017-0832-y
Dos Santos-Alitto, R. A., Zacagnini-Amar, A. C., Días-
de Oliveira, L., Serrano, H., Seger, K. R., Borges-
Guilherme, P. D., Di Domenico, M., Christensen, A.
B., Bolsoni-Lourenco, L., Tavares M., & Borges, M.
(2019). Atlantic West Ophiothrix spp. in the scope of
integrative taxonomy: Confirming the existence of
Ophiothrix trindadensis Tommasi, 1970. PLoS One,
14(1), e0210331. https://doi.org/10.1371/journal.
pone.0210331
Gabino-García, M. T., Villanueva-Sousa, V., & Ramírez-
Villalobos, Á. J. (2021). Lista actualizada de los Equi-
nodermos del Golfo de México. Revista de Zoología,
32, 19–90.
Galván-Villa, C. M., Rubio-Barbosa, E., & Martínez-Melo,
A. (2018). Riqueza y distribución de equinoideos
irregulares (Echinoidea: Cassiduloida, Clypeasteroi-
da, Holasteroida y Spatangoida) del Pacífico central
mexicano. Hidrobiológica, 28(1), 83–91. https://doi.
org/10.24275/uam/izt/dcbs/hidro/2018v28n1/Galvan
Gray, J. E. (1851). Description of two new genera and some
new species of Scutellidae and Echinolampidae in
the Collection of the British Museum. Proceedings of
the Zoological Society, London 19, 34–38. https://doi.
org/10.1111/j.1096-3642.1851.tb01127.x.
Greenstein, B. J. (1993). Is the fossil record of regular
echinoids so poor?: A comparison of living and sub-
fossil assemblages. Palaios, 8, 587–601. https://doi.
org/10.2307/3515034
Humara-Gil, K. J., Granja-Fernández, R., Bautista-Gue-
rrero, E., & Rodríguez-Troncoso, A. P. (2022). Over-
looked for over a century: Ophioderma occultum sp.
nov. (Echinodermata), a new species of brittle star
from the Eastern Pacific. Journal of Natural History,
56(5–8), 365–384. https://doi.org/10.1080/00222933
.2022.2071179
Israelsky, M. C. (1924). Notes on some echinoids from the
San Rafael and Tuxpan beds of the Tampico region,
Mexico. Proceedings of the California Academy of
Sciences: 4th series, 13, 137–145.
Kier, P. M. (1977). The poor fossil record of the regu-
lar echinoid. Paleobiology, 3, 168–174. https://doi.
org/10.1017/S0094837300005248
Kroh, A. (2020). Phylogeny and classification of echinoids.
In J. M. Lawrence (Ed.), Sea urchins: Biology and
Ecology (Vol. 43, pp. 1–17). Elsevier. https://doi.
org/10.1016/B978-0-12-819570-3.00001-9
14 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
Kroh, A., & Mooi, R. (2019). WoRMS Echinoidea: World
Echinoidea Database (version 2019-03-05). In Y.
Roskov, G. Ower, T. Orrell, D. Nicolson, N. Bailly,
P. M. Kirk, T. Bourgoin, R. E. DeWalt, W. Decock,
E. van Nieukerken, J. Zarucchi & L. Penev (Eds.),
Species 2000 & ITIS Catalogue of Life, 2019 Annual
Checklist. Species 2000. www.catalogueoflife.org/
annual-checklist/2019.
Kroh, A. & Mooi, R. (2022). World Echinoidea Database.
Agassizia cyrenaica pseudoclevei Desio, 1929†. World
Register of Marine Species. https://www.marines-
pecies.org/aphia.php?p=taxdetails&id=757598 on
2023-05-31.
Lambert, J. (1905). Catalogue descriptif des fossiles num-
mulitiques de l’Aude et de l’Hérault. Annales de
l’Université de Lyon, Nouvelle Série, I. Sciences, Mede-
cine, 17, 129–164.
Lefebvre, B., Eble, G. J., Navarro, N., & David, B.
(2006). Diversification of atypical Paleozoic echi-
noderms: a quantitative survey of patterns of
stylophoran disparity, diversity, and geogra-
phy. Paleobiology, 32(3), 483–508. https://doi.
org/10.1666/0094-8373(2006)32[483:DOAPEA]2.0.
CO;2
Lin, W. C., & Tsai, C. F. (2020). Missing value imputation:
a review and analysis of the literature (2006–2017).
Artificial Intelligence Review, 53, 1487–1509. https://
doi.org/10.1007/s10462-019-09709-4
tken, C. F. (1864). Bidrag til Kundskab om Echiniderne.
Videnskabelige Meddelelser fra den naturhistoriske
Forening i Kjöbenhavn, 1863, 69–207.
Maluf, L. Y. (1988). Composition and distribution of the Cen-
tral Eastern Pacific Echinoderms [Technical Report,
Vol. 2]. Natural History Museum of Los Angeles
County.
Mancosu, A., & Nebelsick, J. H. (2019). Paleoecology of
sublittoral Miocene echinoids from Sardinia: A case
study for substrate controls of faunal distributions.
Journal of Paleontology, 93(4), 764–784. https://doi.
org/10.1017/jpa.2019.4
Martínez-Melo, A. (2019). Miocene echinoids from Palen-
que, Chiapas, Mexico. Journal of South American
Earth Sciences, 95, 102258. https://doi.org/10.1016/j.
jsames.2019.102258
Martínez-Melo, A., Solís-Marín, F. A., Buitrón-Sánchez,
B. E., & Laguarda-Figueras, A. (2015). Taxonomía y
biogeografía ecológica de los equinoideos irregulares
(Echinoidea: Irregularia) de México. Revista de Biolo-
gía Tropical, 63(S2), 59–75. https://doi.org/10.15517/
rbt.v63i2.23129
Martínez-Ortiz, A. C., Alvarado-Ortega, J., & Cuevas-Gar-
cía, M. (2017). Ocurrencia de un decápodo braquiu-
ro extinto, Necronectes proavitus (Rathbun, 1918),
en los yacimientos marinos de la Formación Tulijá
(Mioceno temprano) en las cercanías de Palenque,
Chiapas, sureste de México. Paleontología Mexicana,
6(1), 1–15.
McNamara, K. J. (1989). The role of heterochrony in the
evolution of spatangoid echinoids. Geobios, 22, 283–
295. https://doi.org/10.1016/s0016-6995(89)80029-4
Meneses-Rocha, J. J. (2001). Tectonic evolution of the
Ixtapa Graben, an example of a strike-slip basin of
Southeastern Mexico: implications for regional petro-
leum systems. In C. Bartolini, R. T. Buffler & A. Can-
tu-Chapa (Eds.), The Western Gulf of Mexico Basin:
Tectonics, sedimentary basins, and petroleum systems
(pp. 183–216). The American Association of Petro-
leum Geologists. https://doi.org/10.1306/M75768C8
Mongiardino-Koch, N., & Thompson, J. R. (2021). A total-
evidence dated phylogeny of Echinoidea combining
phylogenomic and paleontological data. Systema-
tic Biology, 70(3), 421–439. https://doi.org/10.1093/
sysbio/syaa069
Mortensen, T. (1951). A Monograph of the Echinoidea, Vol.
2 Spatangoida. II. Amphisternata. II. Spatangidae,
Loveniidiae, Pericosmidae, Schizasteridae, Brissidae-
Atlas. CA Reitzel.
Nebelsick, J. H. (1996). Biodiversity of shallow-water red
sea echinoids: implications for the fossil record.
Journal of Marine Biological Association of the United
Kingdom, 76(1), 185–194. https://doi.org/10.1017/
S0025315400029118
Nethupul, H., Stöhr, S., & Zhang, H. (2022). New species,
redescriptions, and new records of deep-sea brittle
stars (Echinodermata: Ophiuroidea) from the South
China Sea, an integrated morphological and mole-
cular approach. European Journal of Taxonomy, 810,
1–95. https://doi.org/10.5852/ejt.2022.810.1723
Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., &
Solenberger, P. (2001). A multivariate technique for
multiply imputing missing values using a sequence
of regression models. Survey methodology, 27, 85–96.
https://doi.org/10.7550/rmb.30461
Ríos-Jara, E., Galván-Villa, C. M., Rodríguez-Zaragoza, F.
A., López-Uriarte, E., Bastida-Izaguirre, D., & Solís-
Marín, F. A. (2013). Los equinodermos (Echinoder-
mata) de bahía Chamela, Jalisco, México. Revista
Mexicana de Biodiversidad, 84(1), 26–279. https://doi.
org/10.7550/rmb.30461
Riquelme, F., Alvarado-Ortega, J., Cuevas-García, M.,
Ruvalcaba-Sil, J.L., & Linares-López, C. (2012). Cal-
careous fossil inclusions and rock-source of Mayan
lime plaster from the temple of the inscriptions,
Palenque, Mexico. Journal of Archaeological Science,
39, 624–639. https://doi.org/10.1016/j.jas.2011.10.022
Smith, A. B. (1984). Echinoid Palaeobiology. George Allen
and Unwin Limited.
15
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 72(S1): e59016, marzo 2024 (Publicado Mar. 01, 2024)
Smith, A. B., & Kroh, A. (2011). The Echinoid Directory.
Natural History Museum of London. https://www.
nhm.ac.uk/our-science/data/echinoid-directory/
index.html
Solís-Marín, F. A., Honey-Escandón, M. B., Herrero-
Perezrul, M. D., Benitez-Villalobos, F., Díaz-Martínez,
J. P., Buitrón-Sánchez, B. E., Palleiro-Nayar, J. S.,
& Durán-González, A. (2013). The echinoderms
of Mexico: biodiversity, distribution and current
state of knowledge. In J. J. Alvarado & F. A. Solis-
Marin (Eds.), Echinoderm Research and Diversity
in Latin America (pp. 11–65). Springer. https://doi.
org/10.1007/978-3-642-20051-9_2
Sotelo-Casas, R. C., Rodríguez-Troncoso, A. P., Rodrí-
guez-Zaragoza, F. A., Solís-Marín, F. A., Godínez-
Domínguez, E., & Cupul-Magaña, A. L. (2019).
Spatial-temporal variations in echinoderm diversity
within coral communities in a transitional region
of the northeast of the eastern pacific. Estuarine,
Coastal and Shelf Science, 227, 106346. https://doi.
org/10.1016/j.ecss.2019.106346
Stara, P., Melis, R., Bellodi, A., Follesa, M. C., Corradini,
C., Carugati, L., Mulas, A., Sibiriu, M., & Cannas, R.
(2023). New insights on the systematics of echinoids
belonging to the family Spatangidae Gray, 1825 using
a combined approach based on morphology, morpho-
metry, and genetics. Frontiers in Marine Science, 10,
1033710. https://doi.org/10.3389/fmars.2023.1033710
Steneck, R. S. (2020). Regular sea urchins as drivers of
shallow benthic marine community structure. In J.
M. Lawrence (Ed.), Sea Urchins: Biology and Ecology
(pp. 255–279), Elsevier. https://doi.org/10.1016/
B978-0-12-819570-3.00015-9
Stuart, E. A., Azur, M., Frangakis, C., & Leaf, P. (2009).
Multiple imputation with large data sets: a case study
of the Childrens Mental Health Initiative. American
Journal of Epidemiology, 169(9), 1133–1139. https://
doi.org/10.1093/aje/kwp026
Tapia-Ramírez, V. (2012). Revisión taxonómica de equi-
noideos (Echinodermata:Echinoidea) del Golfo de
California, México. [Tesis de licenciatura inédita].
Universidad Nacional Autónoma de México.
Ter Braak, C. J. F., & Smilauer, P. (2002). Canoco 4.5: refe-
rence manual and Canodraw for Windows. User’s
Guide: Software form canonical community ordina-
tion (version 4.5)[Computer software]. Microcom-
puter Power.
Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). MICE:
Multivariate imputation by chained equations in R.
Journal of Statistical Software, 45(3), 1–67. https://doi.
org/10.18637/jss.v045.i03
Velasquillo-García, G. E. (2011). Ostras fósiles de Palenque:
Estado de México. [Tesis de licenciatura, Universidad
Nacional Autónoma de México]. Repositorio Insti-
tucional de la UNAM. https://repositorio.unam.mx/
contenidos/186811
WoRMS Editorial Board (2023). World Register of Marine
Species. Vlaams Instituut voor de Zee. https://www.
marinespecies.org. https://doi.org/10.14284/170
Zar, J. H. (1999). Biostatistical analysis. Prentice Hall.