1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e59627, enero-diciembre 2025 (Publicado Mar. 07, 2025)
Motile macroinvertebrates and fishes sheltering in burrows with
and without the Indo-Pacific Rock-boring Urchin Echinometra mathaei
(Camarodonta: Echinometridae), at Mana Island, Fiji
Floyd E. Hayes1*; https://orcid.org/0000-0003-3032-8405
Antonio I. Robles1,2; https://orcid.org/0000-0002-0024-617X
John C. Duncan1; https://orcid.org/0000-0002-2408-8022
1. Department of Biology, Pacific Union College, 1 Angwin Ave., Angwin, CA 94508, United States of America;
floyd_hayes@yahoo.com (*Correspondence), airobles@icloud.com, jduncan@puc.edu
2. Pacific Union College Preparatory School, 1 Angwin Ave., Angwin, CA 94508, United States of America.
Received 23-IV-2024. Corrected 22-XI-2024. Accepted 18-II-2025.
ABSTRACT
Introduction: Sea urchins of the genus Echinometra are ecosystem engineers that burrow into lower intertidal
and subtidal rocks, creating shelter for themselves and a variety of marine animals.
Objective: To test the hypothesis that motile macroinvertebrates and fishes shelter proportionately more fre-
quently in burrows with Echinometra mathaei, whose spines potentially offer additional protection, than in
burrows without E. mathaei.
Methods: We studied the motile macroinvertebrates and fishes sheltering in the burrows of the Indo-Pacific
Rock-boring Urchin E. mathaei (Type C) at Mana Island, Fiji.
Results: Burrows with E. mathaei averaged shorter in length than burrows without E. mathaei. We observed 42
motile macroinvertebrates of at least eight species and 49 fishes of at least eight species in burrows with E. mathaei
(n = 1 127), and four motile macroinvertebrates of three species and one fish of one species in burrows lacking
E. mathaei (n = 243). Motile macroinvertebrates occurred with statistically equal frequencies in burrows with
E. mathaei (3.6 %) and in burrows without E. mathaei (2.5 %). Fishes occurred significantly more frequently in
burrows with E. mathaei (4.3 %) than in burrows without E. mathaei (0.4 %).
Conclusion: Fishes, but not motile macroinvertebrates, gain more protection from predators by sheltering in
burrows with sea urchins, whose spines offer additional protection, than in burrows without sea urchins.
Key words: coastal ecosystems; community ecology; defensive behavior; ecosystem engineers; Pacific Ocean.
RESUMEN
Macroinvertebrados móviles y peces que se refugian en madrigueras con y sin el erizo perforador
de rocas del Indo-Pacífico Echinometra mathaei (Camarodonta: Echinometridae), en isla Mana, Fiji
Introducción: Los erizos de mar del género Echinometra son ingenieros de ecosistemas que excavan en rocas
intermareales y submareales inferiores, creando refugio para ellos y una variedad de animales marinos.
Objetivo: Probar la hipótesis de que los macroinvertebrados móviles y los peces se refugian proporcionalmente
con más frecuencia en madrigueras con Echinometra mathaei, cuyas espinas ofrecen potencialmente protección
adicional, que en madrigueras sin E. mathaei.
Métodos: Estudiamos los macroinvertebrados móviles y los peces que se refugian en las madrigueras del erizo
perforador de rocas del Indo-Pacífico E. mathaei (Tipo C) en la isla Mana, Fiji.
https://doi.org/10.15517/rev.biol.trop..v73i1.59627
AQUATIC ECOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e59627, enero-diciembre 2025 (Publicado Mar. 07, 2025)
INTRODUCTION
Sea urchins (Echinodermata: Echinoidea)
enhance the biodiversity of shallow benthic
marine communities by providing microhabi-
tats, shelter, and nutrients for a wide variety of
organisms (Lawrence, 2020; Steneck, 2020). Sea
urchins of the genus Echinometra are ecosystem
engineers (Jones et al., 1994) that often burrow
into subtitdal rocks, creating shelter for them-
selves and a variety of invertebrates and fishes
(Asgaard & Bromley, 2008; McClanahan &
Muthiga, 2001; McClanahan & Muthiga, 2020).
In addition, the sharp spines of Echinometra
sea urchins may protect associating organ-
isms from predators (Cheh et al., 2021; Nunes
et al., 2019). The motile macroinvertebrates
and fishes sheltering in burrows excavated by
Echinometra sea urchins have been studied for
two species: the Atlantic Rock-boring Urchin
Echinometra lucunter in the Western Atlantic
Ocean (Hayes et al., 2016; Hayes et al., 2019;
Monroy-López & Solano, 2006; Nunes et al.,
2019; Schoppe, 1991; Schoppe & Werding,
1996; Wirtz et al., 2009; Yamarte et al., 2019)
and the Central American Rock-boring Urchin
Echinometra vanbrunti in the eastern Pacific
Ocean (Hayes et al., 2022; Schoppe & Werding,
1996; Vallejo, 2007).
The Indo-Pacific Rock-boring Urchin
Echinometra mathaei is widely distributed
throughout the Indian Ocean and Western
Pacific Ocean (Clark & Rowe, 1971). It typi-
cally inhabits burrows excavated in rock and
coral substrates in lower intertidal and shallow
subtidal (usually < 10 m) depths along the coast
and outer coral reefs, but it does not burrow
into softer sediments in reef flats and seagrass
beds (Khamala, 1971; McClanahan & Muthiga,
2001; McClanahan & Muthiga, 2020; Neill,
1988; Russo, 1980; Suzuki, 2005; Yamamori
& Kato, 2017). In soft mudstone in Japan, E.
mathaei occupies burrows excavated and sub-
sequently abandoned by the Burrowing Fine
Spine Urchin Echinostrephus molaris, sharing
the burrows with 18 species of invertebrates
and one species of fish (Yamamori & Kato,
2017; Yamamori, 2022). In burrows excavated
by E. mathaei, two species of crustaceans, Sea-
urchin Snapping Shrimp Arete indicus and the
shrimp Tuleariocaris holthuis (Brasseur et al.,
2018; Dabbagh et al., 2019a, Dabbagh et al.,
2019b; Gherardi, 1991; Gherardi & Calloni,
1993; Ghory et al., 2018) and one species of fish,
Dusky Gregory Stegastes nigricans (Cheh et al.,
2021), associate with E. mathaei.
In this study, we provide the first descrip-
tion of the motile macroinvertebrate and fish
communities sheltering in burrows excavated
by E. mathaei. Furthermore, we test the hypoth-
esis that motile macroinvertebrates and fishes
shelter proportionately more frequently in bur-
rows with E. mathaei, whose spines potentially
offer additional protection, than in burrows
without E. mathaei.
MATERIALS AND METHODS
Study area: Mana Island is a small island
(1.75 km2) with a maximum elevation of 70 m
Resultados: Las madrigueras con E. mathaei promediaron una longitud más corta que las madrigueras sin E.
mathaei. Observamos 42 macroinvertebrados móviles de al menos ocho especies y 49 peces de al menos ocho
especies en madrigueras con E. mathaei (n = 1 127), y cuatro macroinvertebrados móviles de tres especies y un
pez de una especie en madrigueras sin E. mathaei (n = 243). Los macroinvertebrados móviles se presentaron con
frecuencias estadísticamente iguales en madrigueras con E. mathaei (3.6 %) y en madrigueras sin E. mathaei (2.5
%). Los peces se presentaron significativamente con mayor frecuencia en madrigueras con E. mathaei (4.3 %) que
en madrigueras sin E. mathaei (0.4 %).
Conclusión: Los peces, pero no los macroinvertebrados móviles, obtienen más protección contra los depreda-
dores al refugiarse en madrigueras con erizos de mar, cuyas espinas ofrecen protección adicional, que en madri-
gueras sin erizos de mar.
Palabras clave: ecosistemas costeros; ecología comunitaria; comportamiento defensivo; ingenieros de ecosiste-
mas; océano Pacífico.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e59627, enero-diciembre 2025 (Publicado Mar. 07, 2025)
in the Mamanuca Islands of western Fiji (Fig. 1).
The shores are formed of volcanic rock head-
lands alternating with sandy beaches. A barrier
reef and lagoon occur to the west and South of
the island, patch reefs occur within the lagoon,
and a fringing reef occurs along the north and
east shores. The coral reefs of the Mamanuca
Islands, including Mana Island, support a rich
diversity of marine life but are threatened by
human activities (Fenner, 2006; Harborne et
al., 2001).
Sampling methods: We studied the motile
(non-sessile, free moving) macroinvertebrates
(large enough to see without the aid of a micro-
scope) and fishes sheltering in the burrows of
E. mathaei along 150 m of the shore of a rocky
promontory and on adjacent submerged rocks
on the north coast of Mana Island (17°40’14”
S, 177°6’34” E, Fig. 1) during 21-24 June 2019,
25 March 2023, and 11 September 2023. Three
morphs of E. mathaei, Type A (white-tipped
or entirely white spines), Type C (entirely
dark spines), and a rare type undesignated by
a letter (entirely maroon spines), occur in Fiji
and possibly represent distinct species (Appana
et al., 2004). All E. mathaei at our study site
represented Type C. We used snorkeling gear
in shallow water < 6 m deep to search for
motile macroinvertebrates and fishes within
each burrow. Not all burrows were occupied
by E. mathaei. We sampled organisms in bur-
rows with E. mathaei and in burrows without E.
mathaei (Fig. 2). We measured the length (near-
est cm) of a subset of burrows of both types
with a wooden ruler. Underwater writing slates
were used to record data. Each species was
identified as the surveys were taking place or
photographed and subsequently identified with
the assistance of published field guides (Allen
et al., 2003; Humann & Deloach, 2010; Rosen-
stein, 2019) and experts identifying our photos
posted at iNaturalist (www.inaturalist.org). All
organisms were observed in situ; we did not
attempt to remove any organisms for subse-
quent identification. The English and scien-
tific names follow iNaturalist, which frequently
incorporates taxonomic revisions.
Statistical analyses: A Mann-Whitney U
test (z statistic) (Zar, 2010) was calculated to
compare the lengths of burrows with and with-
out urchins. We calculated the number of indi-
viduals and the percent of burrows occupied
for each species of motile macroinvertebrate
and fish observed in burrows with and without
Fig. 1. Mana Island, Fiji, with study site along north coast indicated in red.
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e59627, enero-diciembre 2025 (Publicado Mar. 07, 2025)
E. mathaei. Chi-square analyses of contingency
tables (X2 statistic) (Zar, 2010) were calculated
to compare the proportions of burrows with
motile macroinvertebrates and fishes between
burrows with E. mathaei and burrows without
E. mathaei. The statistical tests were calculated
with Statistix 10 software (Nimis, 2013).
RESULTS
Burrow characteristics: The burrows of E.
mathaei comprised irregularly shaped grooves
on rock surfaces, usually wider at the ends than
in the middle (Fig. 1), and varied greatly in
length, ranging from 4 to 57 cm (mean = 16.5,
SD = 9.8). The burrows with urchins averaged
shorter in length (mean = 15.9 cm, SD = 10.6,
range = 4-57 cm, n = 94) than burrows without
urchins (mean = 17.6 cm, SD = 7.8, range =
6-46 cm, n = 47; Mann-Whitney U test, z =
2.04, p = 0.04).
Motile macroinvertebrates: We observed
42 motile macroinvertebrates of at least eight
species in burrows with E. mathaei (n = 1 147),
and six motile macroinvertebrates of three spe-
cies in burrows lacking E. mathaei (n = 243;
Table 1). Motile macroinvertebrates occurred
with statistically equal frequencies in burrows
with E. mathaei (3.6 %) and in burrows without
E. mathaei (2.5 %; Yates corrected X2 = 0.51, d.f.
= 1, p = 0.48; Table 1).
Adult gastropod molluscs of three species
comprised 19.0 % of the motile macroinver-
tebrates in burrows with E. mathaei (Table 1),
including the Mulberry Whelk Tenguella mar-
ginalba (family Muricidae, 2.4 %), Striped Engi-
na Engina mendicaria (family Pisaniidae, 4.8 %,
Fig. 3A), and unidentified cone snails Conus sp.
(family Conidae, 4.8 %, Fig. 3B). Decapod crus-
taceans of three species comprised 23.8 % of the
motile macroinvertebrates in burrows with E.
Fig. 2. Burrows with and without Echinometra mathaei at Mana Island, Fiji. Photograph by Floyd E. Hayes.
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e59627, enero-diciembre 2025 (Publicado Mar. 07, 2025)
mathaei (Table 1), including a juvenile Painted
Spiny Lobster Panulirus versicolor (family Panu-
liridae, 2.4 %) and adults of the Gaimards Her-
mit Crab Calcinus gaimardii (family Calcinidae,
11.9 %, Fig. 3C) and Small White Hermit Crab
Calcinus minutus (2.4 %, Fig. 3D). Unidentified
juvenile sea urchins Diadema or Echinothrix
spp. (family Diadematidae) comprised 40.5 %
of the motile macroinvertebrates in burrows
with E. mathaei (Table 1, Fig. 3B). Feather stars
(order Comatulida) comprised 16.7 % of motile
macroinvertebrates in burrows with E. mathaei
(Table 1), including an adult Bennetts Bushy
Feather Star Oxycomanthus bennetti (family
Comasteridae, 2.4 %). An unidentified Conus
sp. and a juvenile Diadema or Echinothrix
TABLE 1
Number (% of burrows occupied) of motile macroinvertebrates and fishes observed in burrows with (n = 1 127)
and without (n = 243) the sea urchin Echinometra mathaei at Mana Island, Fiji
Phylum, class, order
Family, genus and specific epithet
Burrows with
E. mathaei
Burrows without
E. mathaei
Mollusca, Gastropoda, Neogastropoda
Muricidae, Tenguella marginalba 1 (0.09)
Pisaniidae, Engina mendicaria 2 (0.18)
Conidae, Conus ebraeus 3 (1.23)
Conidae, Conus sp. 2 (0.18)
Unidentified 3 (0.27)
Mollusca, Gastropoda, Littorinomorpha
Cypraeidae, Monetaria annulus 1 (0.41)
Mollusca, Cephalopoda, Octopoda
Unidentified 1 (0.41)
Arthropoda, Malacostraca, Decapoda
Panuliridae, Panulirus versicolor 1 (0.09)
Calcinidae, Calcinus gaimardii 5 (0.44) 1 (0.41)
Calcinidae, Calcinus minutus 3 (0.27)
Calcinidae, unidentified 1 (0.09)
Echinodermata, Echinoidea, Diadematoida
Diadematidae, Diadema or Echinothrix sp. 17 (1.51)
Echinodermata, Crinoidea, Comatulida
Comasteridae, Oxycomanthus bennetti 1 (0.09)
Unidentified 6 (0.53)
Chordata, Actinopterygii, Gobiiformes
Gobiidae, Eviota teresae 3 (0.27)
Gobiidae, Eviota fasciola 3 (0.27)
Chordata, Actinopterygii, Bleniiformes
Tripterygiidae, Enneapterygius sp. 1 (0.09)
Blenniidae, Cirripectes castaneus 4 (0.41)
Blenniidae, unidentified 3 (0.27)
Chordata, Actinopterygii, Ovalentaria
Pomacentridae, Chrysiptera leucopoma 6 (0.53)
Pomacentridae, Chrysiptera unimaculata 1 (0.09)
Pomacentridae, Plectroglyphidodon leucozona 8 (0.71)
Pomacentridae, Stegastes nigricans 17 (1.75) 1 (0.41)
Chordata, Actinopterygii
Unidentified 3 (0.27)
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e59627, enero-diciembre 2025 (Publicado Mar. 07, 2025)
sp. were the only motile macroinvertebrates
observed sharing a burrow together with an E.
mathaei (Fig. 3B).
Adults of the Black-and-white Cone Snail
Conus ebraeus (family Conidae) comprised 50
% of the motile macroinvertebrates in burrows
without E. mathaei, followed by an adult Money
Cowry Monetaria aunnulus (family Cypraeidae,
16.7 %), a small unidentified octopus (order
Octopoda, 16.7 %), and an adult C. gaimardii
(family Calcinidae, 16.7 %, Table 1).
Fishes: We observed 49 fishes of at least
eight species in burrows with E. mathaei (n =
1 147), but only one fish of one species in bur-
rows lacking E. mathaei (n = 243, Table 1). The
fishes occurred significantly more frequently
in burrows with E. mathaei (4.3 %) than in
burrows without E. mathaei (0.4 %; Yates cor-
rected X2 = 7.50, d.f. = 1, p = 0.006, Table 1).
Adult gobies (family Gobiidae) of two spe-
cies comprised 12.2 % of the fishes in burrows
with E. mathaei (Table 1), including the Terry’s
Shrimpgoby Eviota teresae (6.1 %, Fig. 4A)
and Barred Eviota Eviota fasciola (6.1 %, Fig.
4B). An adult triplefin, possibly a Blackcheek
Threefin Enneapterygius rufopileus (family
Tripterygiidae, Fig. 4C), comprised 2.0 % of
the fishes in burrows with E. mathaei (Table 1).
Adult blennies (family Blenniidae) of one or
more species accounted for 14.3 % of the fishes
in burrows with E. mathaei (Table 1), including
the Chestnut Blenny Cirripectes castaneus (8.2
%) and unidentified blennies (6.1 %). Juvenile
and adult damselfishes (family Pomacentridae)
of four species accounted for 65.3 % of the fishes
Fig. 3. Examples of motile macroinvertebrates in the burrows of Echinometra mathaei: A. Engina mendicaria; B. Conus sp.
(left center) and Diadema sp. or Echinometra sp. (lower right); C. Calcinus gaimardii; D. Calcinus minutus. Photographs by
Floyd E. Hayes (A, C, D) and John C. Duncan (B).
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e59627, enero-diciembre 2025 (Publicado Mar. 07, 2025)
in burrows with E. mathaei (Table 1), including
the Pacific Surge Demoiselle Chrysiptera leuco-
poma (12.2 %, Fig. 4D), Onespot Demoiselle
Chrysiptera unimaculata (2.0 %), Whiteband
Damsel Plectroglyphidodon leucozona (16.3 %),
and Dusky Gregory Stegastes nigricans (34.7 %).
The remaining 6.1 % of fishes in burrows with
E. mathaei were unidentified cryptobenthic
species (Table 1).
An E. fasciola and an unidentified fish
were the only fishes observed sharing a burrow
together with an E. mathaei. We did not observe
any fishes cohabiting a burrow with any motile
macroinvertebrate other than E. mathaei.
The only fish observed in a burrow without
E. matthaei was an adult C. leucopoma (Table 1).
The adults of all fishes were relatively small,
never exceeding 10 cm in length.
DISCUSSION
The burrows of E. mathaei are usually
inhabited by a single individual, gradually
increase in size through bioerosion by the sea
urchin, and are reused by multiple generations
of sea urchins (Russo, 1980). The preference
by E. mathaei for shorter burrows in our study
suggests that the conditions of the longest bur-
rows are suboptimal for foraging or defense
from predators, which needs further study.
Of the eight species of motile macroinver-
tebrates and eight species of fishes observed
sheltering in burrows of E. mathaei, only one
species, the damselfish S. nigricans, had been
previously reported associating with E. mathaei
(Cheh et al., 2021). None of the organisms
sheltering in E. mathaei burrows associated
Fig. 4. Examples of fishes in the burrows of Echinometra mathaei: A. Eviota teresae; B. Eviota fasciola; C. Enneapterygius sp.,
possibly E. rufopileus; D. Chrysiptera leucopoma. Photographs by Floyd E. Hayes.
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e59627, enero-diciembre 2025 (Publicado Mar. 07, 2025)
exclusively with E. mathaei or appeared to be
specialized for associating with sea urchins,
indicating that the associations are facultative
rather than obligatory.
Organisms inhabiting E. mathaei burrows
potentially benefit from reduced predation by
sheltering within burrows, by associating close-
ly with the sharp spines of E. mathaei, or syner-
gistically by both. Organisms may also benefit
by finding prey within the burrows. None of
the organisms that we observed in E. mathaei
burrows are known predators of E. mathaei
(McClanahan, 2000; McClanahan & Muthiga,
1989; McClanahan & Muthiga, 2001; McCla-
nahan & Muthiga, 2020). The largest carnivore
was the unidentified octopus, which sheltered
in a burrow without E. mathaei. Octopuses
have been reported preying on sea urchins else-
where (Smith, 2003; Villegas et al., 2014). All
of the fishes observed sheltering in E. mathaei
burrows were small, < 10 cm long, comprising
juveniles or adults of relatively small species.
Although several species of fishes comprise
the dominant predators of E. mathaei (McCla-
nahan, 2000; McClanahan & Muthiga, 1989;
McClanahan & Muthiga, 2001), small fishes
such as those that we observed in the burrows
pose no existential threat to sea urchins and are
more likely to benefit from the spines of sea
urchins than larger fishes (Hayes et al., 2019;
Hayes et al., 2022; Karplus, 2014).
Our data are too limited to evaluate wheth-
er macroinvertebrates benefit more by shelter-
ing in burrows or associating directly with E.
mathaei. Most species of molluscs and decapod
crustaceans possessed or lived within calci-
um carbonate shells, which provide protection
against predators. Juvenile Diadema or Echino-
thrix urchins, which were the most common
motile macroinvertebates, sheltered only in
burrows occupied by E. mathaei, but always in
opposite ends of the burrows, presumably to
reduce interspecific competition (McClanahan,
1988). Because Diadema and Echinothrix sea
urchins have proportionately longer spines than
E. mathaei (McClanahan, 1988), which presum-
ably provide more protection against predators
(Hayes et al., 2016; Hayes et al., 2019; Hayes
et al., 2022), Diadema sea urchins more likely
benefit from the shelter of a burrow than by
associating with the spines of E. mathaei.
Our data for all fish species combined
provide evidence that fishes prefer shelter-
ing in burrows with E. mathaei, even though
they averaged shorter in length than burrows
without E. mathaei, presumably because of
the potential additional benefit of associating
directly with the spines of E. mathaei. Cheh et
al. (2021) provided evidence that the damsel-
fish S. nigricans, which was the most common
fish species sheltering in E. mathaei burrows in
our study, perceived E. mathaei as providing
extra security from approaching threats, such
as larger predatory fishes or cephalopods. Simi-
larly, the Brazilian Fanged Blenny Ophioblen-
nius trinitatis perceived E. lucunter as providing
extra security from threats (Nunes et al., 2019).
In contrast with the burrows of E. mathaei,
fewer species of animals occurred in burrows
occupied by an urchin than in empty burrows
of the Pacific Purple Sea Urchin Strongylocen-
trotus purpuratus (Davidson & Grupe, 2013)
and Pot-hole Urchin Stomopneustes variolaris
(Chanket & Wangkulangkul, 2019). However,
these two species excavate a smaller burrow,
described as a “pit,” with less space available for
sheltering ectosymbionts. Thus, both the size
of a burrow and the presence or absence of an
urchin may affect the efficacy of an urchin bur-
row as a shelter from predators.
Ethical statement: The authors declare
that they all agree with this publication and
made significant contributions; that there is no
conflict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the Acknowledgements
section. A signed document has been filed in
the journal archives.
ACKNOWLEDGMENTS
Our field work was funded by Herber Fam-
ily Faculty Development Grants, the Margaret
Hughes Faculty Research Fund and Faculty
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e59627, enero-diciembre 2025 (Publicado Mar. 07, 2025)
Development Fund of Pacific Union College
and by students taking a tropical field biol-
ogy course taught by Hayes. We thank Fabio
Maia for logistical assistance, Kimberly Lange
Velazquez for assistance with data collection,
Nathaniel Bell and Juan Manuel de Roux for
assistance with identifying mollusc photos, Eiji
Myorin for assistance with identifying hermit
crab photos and Francois Libert and Mark
Rosenstein for assistance with identifying
fish photos.
REFERENCES
Allen, G. R., Steene, R., Humann, P., & DeLoach, N. (2003).
Reef fish identification: Tropical Pacific (2nd ed.). New
World Publications.
Appana, S. D., Vuki, V. C., & Cumming, R. L. (2004).
Variation in abundance and spatial distribution of
ecomorphs of the sea urchins, Echinometra sp. nov
A and E. sp. nov C on a Fijian reef. Hydrobiologia,
518(1–3), 105–110.
Asgaard, U., & Bromley, R. G. (2008). Echinometrid sea
urchins, their trophic styles and corresponding
bioerosion. In M. Wisshak, & L. Tapanila (Eds.),
Current developments in bioerosion (pp. 279–303).
Springer-Verlag.
Brasseur, L., Caulier, G., Lepoint, G., Gerbaux, P., &
Eeckhaut, I. (2018). Echinometra mathaei and its
ectocommensal shrimps: The role of sea urchin
spinochrome pigments in the symbiotic association.
Scientific Reports, 8, 17540.
Chanket, W., & Wangkulangkul, K. (2019). Role of the
sea urchin Stomopneustes variolaris (Lamarck, 1816)
pits as a habitat for epilithic macroinvertebrates on
a tropical intertidal rocky shore. Zoological Science,
36(4), 330–338.
Cheh, A., Fadaee, N., Kalhori, P., Williams, D. M., Anchie-
ta, J., Nunes, C. C., & Blumstein, D. T. (2021). Love
thy prickly neighbor? Sea urchin density affects risk
assessment in damselfish. Coral Reefs, 40(1), 21–25.
Clark, A. M., & Rowe, F. E. W. (1971). Monograph of
shallow-water Indo-West Pacific echinoderms. Trustees
of the British Museum (Natural History).
Dabbagh, A-R., Kamrani, E., Taherizadeh, M. R., Jahromi,
M. S., & Naderloo, R. (2019a). Mating system in the
shrimp Arete indicus, a symbiont of Echinometra
mathaei. Indian Journal of Geo Marine Science, 48(2),
248–252.
Dabbagh, A-R., Kamrani, E., Taherizadeh, M. R., Jahromi,
M. S., & Naderloo, R. (2019b). Sexual system and
sexual dimorphism in the shrimp Arete indicus,
symbiont with the sea urchin Echinometra mathaei in
the Persian Gulf, Iran. Indian Journal of Geo Marine
Science, 48(2), 259–262.
Davidson, T. M., & Grupe, B. M. (2013). Habitat modifica-
tion in tidepools by bioeroding sea urchins and impli-
cations for fine-scale community structure. Marine
Ecology, 36(2), 185–194.
Fenner, D. (2006). Coral diversity survey: Mamanuca Islands
and Coral Coast, Fiji, 2005. Institute of Applied Scien-
ces, University of the South Pacific.
Gherardi, F. (1991). Eco-ethological aspects of the sym-
biosis between the shrimp Athanas indicus (Coutière
1903) and the sea urchin Echinometra mathaei (de
Blainville 1825). Tropical Zoology, 4(1), 107–128.
Gherardi, F., & Calloni, C. (1993). Protandrous hermaphro-
ditism in the tropical shrimp Athanas indicus (Deca-
poda: Caridea), a symbiont of sea urchins. Journal of
Crustacean Biology, 13(4), 675–689.
Ghory, F. S., Ahmed, Q., & Ali, Q. M. (2018). Symbio-
tic association between Echinometra mathaei (Echi-
noidea: Echinometridae) and Athanas sp. (Caridea:
Alpheidae) from Sunhera Beach, Karachi (northern
Arabian Sea). Pakistan Journal of Marine Science,
27(1), 73–77.
Harborne, A., Solandt, J-L., Afzal, D., Andrews, M., &
Raines, P. (2001). Mamanuca coral reef conservation
project‒Fiji 2001 pilot project final report [Technical
Report]. Coral Cay Conservation Limited.
Hayes, F. E., Holthouse, M. C., Turner, D. G., Baumbach,
D. S., & Holloway, S. (2016). Decapod crustaceans
associating with echinoids in Roatán, Honduras.
Crustacean Research, 45, 37–47.
Hayes, F. E., Richards, S. T., Robles, A. I., Gouveia, R. A.,
& Fayard, G. G. (2022). The role of spine length in
crustacean and fish associations with echinoids at Los
Cabos, Baja California Sur, Mexico. Revista de Biolo-
gía Tropical, 70(1), 787–803.
Hayes, F. E., Trogdon, S. J., Richards, S. T., Graham, C.,
Duncan, J. C., & Robles, A. I. (2019). Peces asociados
con equinoideos en aguas poco profundas en Roatán,
Honduras. Boletín de Investigaciones Marinas y Coste-
ras, 48(1), 43–54.
Humann, P., & Deloach, N. (2010). Reef creature identifica-
tion: Tropical Pacific. New World Publications.
iNaturalist. (s.f.). https://www.inaturalist.org/
Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Orga-
nisms as ecosystem engineers. Oikos, 69(3), 373–386.
Karplus, I. (2014). Symbiosis in fishes: The biology of inters-
pecific partnerships. John Wiley & Sons.
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e59627, enero-diciembre 2025 (Publicado Mar. 07, 2025)
Khamala, C. P. M. (1971). Ecology of Echinometra mathaei
(Echinoidea: Echinodermata) at Diani Beach, Kenya.
Marine Biology, 11(2), 167–172.
Lawrence, J. M. (2020). Sea urchin life history strategies. In
J. M. Lawrence (Ed.), Sea urchins: biology and ecology
(pp. 19–28). Elsevier.
McClanahan, T. R. (1988). Coexistence in a sea urchin guild
and its implications to coral reef diversity and degra-
dation. Oecologia, 77(2), 210–218.
McClanahan, T. R. (2000). Recovery of a coral reef keystone
predator, Balistapus undulatus, in East African marine
parks. Biological Conservation, 94(1), 191–198.
McClanahan, T. R., & Muthiga, N. A. (1989). Patterns of
predation on a sea urchin, Echinometra mathaei (de
Blainville), on Kenyan coral reefs. Journal of Experi-
mental Marine Biology and Ecology, 126(1), 77–94.
McClanahan, T. R., & Muthiga, N. A. (2001). Ecology of
Echinometra. Developments in Aquaculture and Fishe-
ries Science, 32, 225–243.
McClanahan, T. R., & Muthiga, N. A. (2020). Echinometra.
In J. M. Lawrence (Ed.), Sea urchins: biology and eco-
logy (4th ed., pp. 497–517). Elsevier.
Monroy-López, M., & Solano, D. O. (2006). Estado pobla-
cional de Echinometra lucunter (Echinoida: Echino-
metridae) y su fauna acompañante en el litoral rocoso
del Caribe colombiano. Revista de Biología Tropical,
53(3), 291–297.
Neill, J. B. (1988). Experimental analysis of burrow defense
in Echinometra mathaei (De Blainville) on Indo-West
Pacific reef flat. Journal of Experimental Marine Biolo-
gy and Ecology, 115(2), 127–136.
Nimis, G. (2013). Statistix 10 users manual. Analytical
Software.
Nunes, J. A. C. C., Leduc, A., Miranda, R. J., Cipressof, P.
H., Alvesa, J. P., Mariano-Netoc, E., Sampaiog, C.
L. S., & Barrosa, F. (2019). Refuge choice specificity
increases with predation risk in a rocky reef fish.
Journal of Experimental Marine Biology and Ecology,
520, 151207
Rosenstein, M. (2019). Fiji reef fish. Fins Publishing.
Russo, A. R. (1980). Bioerosion by two rock boring echinoi-
ds (Echinometra mathaei and Echinostrephus acicula-
tus) on Enewetak Atoll, Marshall Islands. Journal of
Marine Research, 31(1), 99–110.
Schoppe, S. (1991). Echinometra lucunter (Linnaeus) (Echi-
noidea, Echinometridae) als Wirt einer komplexen
Lebensgemeinschaft im Karibischen Meer. Helgolan-
der Meeresuntersuchungen, 45(3), 373–379.
Schoppe, S., & Werding, B. (1996). The boreholes of the
sea urchin genus Echinometra (Echinodermata: Echi-
noidea: Echinometridae) as a microhabitat in tropical
South America. Marine Ecology, 17(1-3), 181–186.
Smith, C. D. (2003). Diet of Octopus vulgaris in False Bay,
South Africa. Marine Biology, 143(6), 1127–1133.
Steneck, R. S. (2020). Regular sea urchins as drivers of
shallow benthic marine community structure. In J. M.
Lawrence (Ed.), Sea urchins: biology and ecology (pp.
255–279). Elsevier.
Suzuki, R. (2005). Characteristics of bioerosion by Echi-
nometra mathaei on the fringing reef of the Ishigaki
Island, the Ryukyus, Japan. Regional Views, 18, 1–39.
Vallejo, V. A. (2007). Echinometra vanbrunti (Echinometri-
dae) como hospedero de relaciones comensalistas en
el Pacífico colombiano. Acta Biológica Colombiana,
12(1), 57–66.
Villegas, E. J. A., Ceballos-Vázquez, B. P. C., Markaida, U.,
Abitia-Cárdenas, A., Medina-López, M. A., & Arella-
no-Martínez, M. (2014). Diet of Octopus bimaculatus
Verril, 1883 (Cephalopoda: Octopodidae) in Bahía de
Los Angeles, Gulf of California. Journal of Shellfish
Research, 33(1), 305–314.
Wirtz, P., De Melo, G., & De Grave, S. (2009). Symbioses of
decapod crustaceans along the coast of Espírito Santo,
Brazil. Marine Biodiversity Records, 2(162), 1–9.
Yamamori, L. (2022). Symbiotic systems associated with sea
urchin. Japanese Journal of Benthology, 77, 1–9.
Yamamori, L., & Kato, M. (2017). The macrobenthic com-
munity in intertidal sea urchin pits and an obligate
inquilinism of a limpet-shaped trochid gastropod in
the pits. Marine Biology, 164, 61.
Yamarte, R., Rusa, W., Polanco-Marin, D. de J., & Reyes-
Lujan, J. (2019). Crustáceos epibiontes de Echino-
metra lucunter (Echinodermata: Echinoidea) en un
litoral rocoso del noroccidente de Venezuela. REDIA-
LUZ, 9(1), 63–69.
Zar, J. H. (2010). Biostatistical analysis (5th ed.). Prentice
Hall.