1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
Long-term monitoring of ocelots Leopardus pardalis
(Carnivora: Felidae) in Tortuguero National Park, Costa Rica
Stephanny Arroyo-Arce1*; https://orcid.org/0000-0003-0993-0071
Ian Thomson1; https://orcid.org/0009-0000-4714-005X
Kat Cutler1; https://orcid.org/0009-0005-0232-1822
Alexander Oakley1; https://orcid.org/0009-0007-3215-6017
1. Coastal Jaguar Conservation, 48 Milton Road, Kirkcaldy, KY1 1TL, Fife, Scotland; sturnina@gmail.com
(*Correspondence), ianitthomson@hotmail.com, kat_cutler@outlook.com, alex.aokley@gmail.com
Received 16-VII-2024. Corrected 11-XII-2024. Accepted 13-III-2025.
ABSTRACT
Introduction: The ocelot Leopardus pardalis, though currently listed as Least Concern on the IUCN Red List, has
a declining population, and faces threats such as habitat loss and fragmentation and hunting across the entirety of
its geographical range, from the Southwestern United States to Northern Argentina. Being a cryptic species and
with few studies monitoring ocelots over multiple years, there is a lack of information regarding ocelot ecology.
Objective: To further understand the behaviour and population dynamics of ocelots within the study area,
Tortuguero National Park (45 755 ha), Costa Rica, by analysing data from a long-term camera trapping study
(2011-2022).
Methods: Individual ocelots were identified using their unique spot markings. Sex ratio, daily activity patterns,
and behaviour were evaluated, whilst ocelot minimum age was estimated for each individual and designated as
either resident or transient based on the number of consecutive years observed in the study.
Results: A total of 30 individual ocelots were identified (12 females, 18 males). The daily activity pattern (noctur-
nal) and sex ratio (1 : 0.7) were consistent with that described for the species. The movement of one individual
from Tortuguero National Park to Pacuare Nature Reserve, 41 km South, highlights the importance of wildlife
corridors for the species. The study also revealed evidence of a female ocelot at least 14 years of age. There are
very few published occurrences of an ocelot this old in the wild. Scent marking behaviour was also recorded.
Conclusions: This is the longest monitoring effort for ocelots in the country, to our knowledge. Our results
highlight the importance of and need for further long-term studies of ocelots to enhance understanding of the
species and thus promote the conservation of the species and its habitat.
Keywords: camera trap; daily activity pattern; long-term monitoring; ocelot; protected area; Tropical Wet Forest.
RESUMEN
Monitoreo a largo plazo del ocelote Leopardus pardalis (Carnivora: Felidae)
en el Parque Nacional Tortuguero, Costa Rica.
Introducción: A pesar de ser considerado como una especie de Preocupación Menor según la Lista Roja de la
UICN, el ocelote Leopardus pardalis tiene una población en declive la cual enfrenta amenazas, como la pérdida
y fragmentación del hábitat natural, y la cacería, a lo largo de su distribución geográfica, desde el Suroeste de los
Estados Unidos hasta el Norte de Argentina. Al tratarse de una especie críptica y con pocos estudios disponibles
a largo plazo, se carece de información sobre su ecología.
https://doi.org/10.15517/rev.biol.trop..v73i1.61917
TERRESTRIAL ECOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
INTRODUCTION
The ocelot Leopardus pardalis is a Neo-
tropical spotted cat with a geographic distribu-
tion ranging from Southwestern United States
to Northern Argentina (Sunquist & Sunquist,
2002). The species is associated with areas of
dense vegetation cover, from scrublands to
tropical rainforest (Emmons, 1988; Emmons
et al., 1989; Sunquist & Sunquist, 2002) but
has been known to tolerate disturbed habitats
to some degree (Paviolo et al., 2024). It can
be found primarily at elevations below 3 000
m, although occasional sightings have been
documented above 3 000 m (Nowell & Jack-
son, 1996; Sunquist & Sunquist, 2002). While
the IUCN Red List of Threatened Species lists
the ocelot as Least Concern (Paviolo et al.,
2024), it is considered endangered in Costa
Rica. The primary threats to the ocelot across
its geographic range include habitat loss and
fragmentation, retaliatory killing due to depre-
dation of domestic animals and hunting for the
illegal wildlife trade across its geographic range
(Sunquist & Sunquist, 2002).
The ocelot has been the subject of numer-
ous studies in Costa Rica. The predominant
approach has involved employing non-invasive
techniques, such as camera traps, to gather
information about this elusive species. Topics
of study have included behaviour (scent mark-
ing: Cove et al., 2014; King et al., 2017; activ-
ity patterns: Botts et al., 2020; Herrera et al.,
2018), population density (González-Maya &
Cardenal-Porras, 2011; Vargas et al., 2023), and
habitat use (Cambronero et al., 2023; De Olivei-
ra et al., 2010; Montalvo et al., 2015; Montalvo
et al., 2023; Yaap et al., 2015). Other research
has focused on the ocelots diet (Chinchilla,
1997; González-Maya et al., 2010; Montalvo
et al., 2020), illegal trade (Kelly, 2018), genetic
diversity and population structure (Ruiz-García
et al., 2012; Salom-Pérez et al., 2022), the pres-
ence of infectious diseases in wild and cap-
tive felids (Avendaño et al., 2016; Blanco et
al., 2011; Romero-Vega et al., 2024), and the
rehabilitation and reintroduction of orphaned
ocelots into the wild (Montalvo et al., 2022). It
is important to highlight that although these
studies have been conducted in different areas
of Costa Rica, none of them have focused in
Tortuguero National Park.
In Tortuguero National Park, our long-
term wildlife monitoring programme has main-
ly focused on studying the local jaguar Panthera
onca population. Through this monitoring
effort, three additional species of wild cat have
been documented inhabiting the area. These
comprise sporadic records of the puma Puma
concolor and the margay Leopardus wiedii, as
Objetivo: Aumentar el conocimiento sobre el comportamiento y la dinámica poblacional de los ocelotes en el
Parque Nacional Tortuguero (45 755 ha), Costa Rica, mediante el análisis de datos de un estudio a largo plazo con
cámaras trampa (2011-2022).
Métodos: Los ocelotes se identificaron con base en el patrón de manchas. Para cada individuo se calculó la edad
mínima, y se designó como residente o transeúnte en función del número de años consecutivos observados en el
estudio. También se estimó la proporción de sexos y el patrón de actividad diaria, y se brindaron observaciones
sobre el comportamiento de la especie.
Resultados: Se identificaron 30 ocelotes (12 hembras, 18 machos). El patrón de actividad diaria (nocturno) y
la proporción de sexos (1 : 0.7) concuerda con lo descrito para la especie. El desplazamiento de un individuo
desde el Parque Nacional Tortuguero hasta la Reserva Natural Pacuare, 41 km al sur, resalta la importancia de los
corredores biológicos. Se destaca la presencia de un ocelote hembra de al menos 14 años. Hay pocas ocurrencias
publicadas de ocelotes salvajes de esa edad. También se registraron comportamientos de marcaje olfativo.
Conclusiones: Es el estudio de mayor esfuerzo de monitoreo del país, bajo nuestro conocimiento. Nuestros resul-
tados destacan la importancia de los estudios a largo plazo para incrementar el conocimiento sobre el ocelote, y
así promover la conservación de la especie y de su hábitat natural.
Palabras clave: cámaras trampa; patrón de actividad diaria; monitoreo a largo plazo; ocelote; área protegida;
bosque tropical húmedo.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
well as more frequent records of the ocelot
(Arroyo-Arce & Salom-Pérez, 2014; Arroyo-
Arce et al., 2019). Despite being the second
most recorded felid in the national park after
the jaguar (I. Thomson pers. obs.), little is
known about the population and behavior of
the ocelot in the area. Our study aims to further
our understanding of this species by primarily
examining population dynamics, with obser-
vations on the behaviour of the species, using
camera trap data from the 12-year monitoring
program (2011-2022) in Tortuguero National
Park, Costa Rica. To our knowledge, this is
the longest monitoring effort for ocelots in the
country to date and one of the largest moni-
toring efforts across the species’ geographic
range (Haines et al., 2006; Satter et al., 2018;
Veals et al., 2022).
MATERIALS AND METHODS
Study site: Tortuguero National Park is
located on the Northeast Caribbean coast of
Costa Rica (10°32’28” N & 83°30’08” W, Fig. 1)
and encompasses an approximate terrestrial
area of 45 755 ha. The predominant ecosystem
is Tropical Wet Forest (Holdridge, 1969), and
elevation ranges from 0 m to 311 m above
sea level. The average temperature is between
25 and 30 oC, with a mean annual precipita-
tion of 6 000 mm (Bermudez & Hernandez,
2004). The national park is bordered to the
Northwest by the Barra del Colorado Wildlife
Refuge and Tortuguero Protected Zone, all
of which are part of Tortuguero Conserva-
tion Area (ACTo). The Western and Southern
edges of the national park are bordered by
Fig. 1. Camera trap locations across the study site of Tortuguero National Park, Costa Rica, between 2011 and 2022.
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
communities economically dependent on crop
farming (mainly banana and pineapple), exten-
sive livestock farming (meat and milk) and to a
lesser extent, tourism (Bermudez & Hernandez,
2004; Ling, 2002).
Data collection: Ocelot presence was
recorded at camera trap stations from January
2011 to November 2022. Each station consisted
of a digital camera trap (Bushnell and Moultrie
models) set to take photos (three successive
photos per trigger event with 3 s delay between
triggers) or videos (20 s video per trigger event
with 10 s delay between triggers) and placed
in areas where ocelot detection probability is
considered to be high (e.g. trails). A total of 43
camera trap stations were continuously active
for three months to 10 years, with seven located
at the Tortuguero village boundary, nine in
the forest interior, 10 near canals, and 17 in
the coastal habitat (Fig. 1). The date, time and
geographic coordinates were recorded for each
photo/video.
Data analysis: Individual ocelots were
identified from their unique spot pattern by
cross-referencing the images and videos with
an existing photographic database created by
Coastal Jaguar Conservation from the research
conducted in Barra del Colorado Wild-
life Refuge (2014), Pacuare Nature Reserve
(2015-2016), and Tortuguero National Park
(2011-2022).
Each identifiable individual was classi-
fied as male or female based on the presence
or absence of testicles. To estimate the ocelot
minimum age, it was assumed that all adult
individuals recorded were at least a year and a
half old when first detected, as kittens usually
spend the first 12-18 months of life with their
mother (Hunter, 2015; Laack et al., 2005).
The sex ratio was expressed as the number
of males per female (male : female; Pérez-Irineo
& Santos-Moreno, 2014). A Chi-square test was
performed to determine if the ratios differed
significantly from a 1:1 ratio. Additionally, all
individuals were categorised as either ‘resi-
dent’ or ‘transient’ according to Harmsen et al.
(2017), where a resident is an individual who
has been detected in the study area for at least
three consecutive years, whereas a transient has
been detected for less than two years.
Daily activity pattern was estimated using
the kernel density estimation method, with the
von Mises distribution for circular data (Ridout
& Linkie, 2009) and following the recommen-
dations of Peral et al. (2022). All statistics were
performed using the package “Activity” (Row-
cliffe, 2023) in R version 4.4.1 (R Core Team,
2024), following the R-Code developed by
Andrade-Ponce et al. (2022). Additional infor-
mation was obtained through the camera trap
records (photos or videos) when possible (e.g.
health condition, scent-marking behaviour).
RESULTS
After a total of 38 151 camera trap nights,
we were able to identify 30 adult ocelots (12
females and 18 males) across 25 camera trap
stations including two at Tortuguero village
boundary, four in the forest interior, five near
canals, and 14 in the coastal habitat (Table 1,
Fig. 1). Although we did not record the pres-
ence of cubs, we observed four females (two
resident and two transient individuals) show-
ing signs of pregnancy or having recently given
birth (e.g. saggy belly; Table 2). The minimum
age of the ocelots recorded by the end of the
study varied from 3 years old up to the oldest
individual recorded, F02, estimated to be at
least 14 years of age (Table 2)
The sex ratio was 1:0.7, which is not sig-
nificantly different from 1:1 (c2 = 1.2; d.f. =
1; p = 0.2733). Seven of the individuals were
residents (three females and four males) and
23 transients (nine females and 14 males; Table
2). Our data indicated a stable trend of resi-
dent ocelots throughout the study period, with
varying numbers of transient individuals. The
year with the highest record of individuals was
2020 with 11 individuals (six residents and five
transients) followed by 2013 with 10 individu-
als (two residents and eight transients; Fig. 2).
It is important to highlight that one transient
male, M08, was first detected in Tortuguero
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
National Park in November 2012, and on a
later date, July 2015, was identified at Pacuare
Nature Reserve, approximately 41 km South of
Tortuguero National Park (Fig. 1). After this
date, this individual was not recorded again in
our study.
The ocelots within the study showed a pre-
dominantly nocturnal activity pattern (Fig. 3).
All individuals appeared in good physical con-
dition with one exception, M19, a male resident
who was recorded from 2019 to 2022. On June
6, 2022, he was observed with eyeshine only
from his right eye (Table 2). Scent-marking
behaviour was exhibited exclusively by resident
individuals and was recorded seven times dur-
ing the study; defecation by F02, urine spraying
by M15 and M21, and the spraying of glandular
secretions by M19 on four different occasions in
the same location (Table 2). All scent-marking
behaviour occurred within the coastal habitat
along a human-made trail parallel to the beach.
DISCUSSION
The local ocelot population includes both
resident and transient individuals. It is impor-
tant to note that these terms, as described by
Harmsen et al. (2017), apply within our specific
Table 1
Ocelot Leopardus pardalis monitoring sampling effort conducted in Tortuguero National Park, Costa Rica, between 2011
and 2022.
Sector Camera trap
stations
Camera trap
days
Camera trap
images
Individuals
recorded*
Females
recorded
Males
recorded
Tortuguero village boundary 72 046 7 (3) 2 0 2
Forest interior 91 764 58 (25) 5 2 3
Canals 10 2 086 16 (9) 4 2 2
Coastal habitat 17 32 255 657 (367) 19 8 11
Tot al 43 38 151 738 (404) 30 12 18
*All individuals were classified as adults. In brackets: number of images used for individual identification.
Fig. 2. The number of ocelot Leopardus pardalis individuals identified from camera trap stations in Tortuguero National Park,
Costa Rica, between 2011 and 2022.
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
sampling area. Therefore, some individuals we
identify as transient might be residents out-
side our sampling area. It is also possible that
residents have a larger territory than the area
covered by our study (Harmsen et al., 2017). To
gain a better understanding of the local ocelot
population, future studies should focus on the
species’ spatial ecology, particularly its territo-
rial behaviour and habitat use in relation to its
home range.
Table 2
Ocelot Leopardus pardalis individuals identified from camera trap stations in Tortuguero National Park, Costa Rica, between
2011 and 2022.
Individual 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Number of
Years Recorded
Estimated
Minimum Age
M01 5 7
F02 PRGN PRGN PRGN, SMB PRGN PRGN 12 14
M03 1 3
M04 2 4
F05 1 3
M06 2 4
M07 2 4
M08 CONNT 1 3
M09 1 3
F10 1 3
F11 PRGN 1 3
F12 1 3
F13 1 3
M14 1 3
M15 SMB SMB 5 7
F16 PRGN PRGN 5 7
M17 1 3
M18 2 4
M19 SMB SMB, BLIND 4 6
M20 1 3
M21 SMB 4 6
F22 1 3
F23 3 5
F24 PRGN 1 3
F25 1 3
M26 1 3
M27 1 3
M28 1 3
F29 1 3
M30 1 3
M: male. F: female. SMB: scent-marking behaviour. PRGN: female with signs of pregnancy or recently given birth (e.g. saggy
belly). CONNT: individual recorded in Pacuare Nature Reserve in July 2015 (Arroyo-Arce et al. 2017). BLIND: eyeshine only
from the right eye as from June 6, 2022. Dark grey bars are resident individuals (recorded for ≥ 3 consecutive years). Light
grey bars are transient individuals (recorded for ≤ 3 consecutive years).
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
We were able to estimate the minimum age
of the individuals, one of whom was at least 14
years old, representing one of the oldest record-
ed ocelots in the wild worldwide. Ocelots can
live up to 20 years in captivity (Carolina Tiger
Rescue, 2024; Wilson & Mittermeier, 2009)
with some extraordinary cases of up to 28 years
(Weigl, 2005). Although long-term studies on
ocelot populations are rare, it has been estimat-
ed that longevity in the wild is likely between
seven to 10 years (Laack, 1991; Wilson & Mit-
termeier, 2009), with some authors recording
ocelots living 10 years (Lombardi et al., 2022),
and 14 years (Muskat, 2024) in North America.
The sex ratio of ocelots observed in our
study is consistent with expectations for the
species and aligns with findings from other
studies across the species’ geographic range
(Laack et al., 2005; Pérez-Irineo & Santos-
Moreno, 2014). However, some studies have
reported skewed sex ratios (Di Bitetti et al.,
2006; Maffei et al., 2005; Magalhães & Srbek-
Araujo, 2022; Satter et al., 2018, Sternberg et
al., 2023). These variations are possible as sex
ratios can be influenced by factors such as
social organisation (e.g. solitary species, home
range sizes varying with sex), habitat character-
istics (e.g. dry versus wet season), and popula-
tion change (births, deaths, in-migration, and
emigration) which may vary across space and
time (Di Bitetti et al., 2006; Kappeler, 2017;
Maffei et al., 2005; Magalhães & Srbek-Araujo,
2022; Pérez-Irineo & Santos-Moreno, 2014).
It is important to also consider the sampling
design used in each study, as this can impact the
observed sex ratio (Magalhães & Srbek-Araujo,
2022). For example, males are more likely to use
trails compared to females (Satter et al., 2018),
influencing detection rates when camera traps
are positioned mainly on trails.
The ocelot M08 covered approximately
41 km, comparable to distances recorded in
literature (Booth-Binczik, 2007; Crawshaw,
1995; Jacob, 2002). Although it is unknown
which route the ocelot traversed, it is possible
the individual used the Colorado-Tortuguero
Biological Corridor and the Moín-Tortugue-
ro Biological Corridor, which connects Tor-
tuguero National Park and Pacuare Nature
Reserve through fragmented landscape using
Fig. 3. Daily activity pattern of the ocelot Leopardus pardalis in Tortuguero National Park, Costa Rica. Yellow: daytime; dark
yellow: twilight; grey: nighttime; blue bars: number of camera trap records.
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
the remaining forest patches along the Carib-
bean coast (Acevedo, 2013). This is the first
evidence of wildlife movement between Tor-
tuguero National Park and Pacuare Nature
Reserve, highlighting the significance of wild-
life corridors for the long-term conservation of
the species (Arroyo-Arce et al., 2017).
The ocelots nocturnal habits found in
the study mirror those observed in similar
areas along the Caribbean coast of Costa Rica,
including the Barra del Colorado Wildlife Ref-
uge (Arroyo-Arce et al., 2016) and Pacuare
Nature Reserve (Arroyo-Arce et al., 2017). This
is consistent with previous descriptions of the
species (Wilson & Mittermeier, 2009), likely
co-ordinating with the activity patterns of its
main prey, small and medium-sized mammals
(Ludlow & Sunquist, 1987; Moreno et al., 2006).
It also serves as a strategy to avoid interspecific
competition and predation by the predomi-
nantly crepuscular, larger cat species, such as
jaguars and pumas (Gómez et al., 2005; Maffei
et al., 2005), both of which are found in Tortu-
guero National Park (Arroyo-Arce & Salom-
Pérez, 2014; Arroyo-Arce & Thomson, 2023).
Scent marking is a prevalent behaviour
among wild cats (Mellen, 1993), yet it poses
challenges in terms of documentation, par-
ticularly for cryptic species such as the ocelot
(King et al., 2017; Moreno & Giacalone, 2006;
Rodgers et al., 2014). Despite these challenges,
our camera traps captured seven instances of
scent marking, including the deposition of
faeces and urine marking. As noted by previous
researchers, scent marking serves as an olfacto-
ry mechanism for both intra- and interspecific
communication, conveying information about
an individual’s sex, reproductive status, terri-
tory, and movement patterns (King et al., 2017;
Mellen, 1993; Moreno & Giacalone, 2006).
The ocelot population exhibited signs of
reproduction, with females showing signs of
pregnancy, despite the absence of observed off-
spring or young individuals. The overall health
of the individuals appeared to be robust, as no
external signs of sickness or injury were evi-
dent, except for one ocelot, identified as M19,
which displayed eyeshine from only one eye,
possibly indicative of damage to the tapetum
lucidum. This could have been caused by vari-
ous factors, such as an injury from a prey ani-
mal defending itself (Kays, 2016). Although no
mortalities were documented during the study,
it is imperative for future research to investigate
the threats faced by ocelots, not only in Tortu-
guero National Park, but also in the Tortuguero
Conservation Area. Potential threats include
conflict with local communities (e.g. ocelot
predation on domestic animals), illegal wild-
life trade, road mortality (ocelots are the most
frequently road-killed wild cat in Costa Rica),
and habitat fragmentation (Corrales-Gutiérrez,
2016; Kelly, 2018; Salom-Pérez et al., 2022).
Understanding these threats is crucial for mak-
ing informed management decisions, necessary
for the long-term survival of the species at both
local and regional levels.
Our research is, to our knowledge, the
only study of its kind conducted in Tortuguero
National Park and represents the longest moni-
toring effort for ocelots in Costa Rica. It is also
among the longest studies of ocelots in the
Americas (Haines et al., 2006; Satter et al., 2018;
Veals et al., 2022). Consequently, our findings
provide critical insights into the ecology of this
species. Additionally, our study raises impor-
tant questions regarding various population
demographic parameters of ocelots, such as
abundance, density, and survival rate. Address-
ing these questions will enhance our under-
standing of ocelots at both local and regional
levels. Finally, our study emphasises the sig-
nificance of long-term monitoring projects in
achieving a deeper, more robust understanding
of the ocelot and the conditions necessary for
the species to thrive.
Ethical statement: The authors declare
that they all agree with this publication and
made significant contributions; that there is no
conflict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
ACKNOWLEDGMENTS
Our research was conducted under the
permits required by the Costa Rican govern-
ment (ACTo-SINAC). We are thankful for the
support provided by Global Vision Internation-
al, Sea Turtle Conservancy, The Rufford Small
Grants Foundation, and Idea Wild, that allowed
us to conduct our research. Special thanks to
the reviewers for their insightful comments,
which significantly contributed to the improve-
ment of our manuscript.
REFERENCES
Acevedo, H. (2013). Perfil Técnico: Estudio técnico-científico
del Corredor Biológico Colorado-Tortuguero y de un
área piloto, con el uso de Sistemas de Información
Geográfica. [Technical report]. Programa de las
Naciones Unidas para el Desarrollo, Fondo para el
Medio Ambiente Mundial, Sistema Nacional de Áreas
de Conservación. https://www.acto.go.cr/wp-content/
uploads/2020/08/Perfil-Tecnico-CB-Colorado-Tortu-
guero.pdf
Andrade-Ponce, G. P., Mandujano, S., Dáttilo, W., Farías-
González, V., Jiménez, J., Velásquez-C., K., & Zavale-
ta, A. (2022). A framework to interpret co-occurrence
patterns from camera trap data: The case of the gray
fox, the bobcat, and the eastern cottontail rabbit in
a tropical dry habitat. Journal of Zoology, 318(2),
91–103. https://doi.org/10.1111/jzo.13002
Arroyo-Arce, S., & Salom-Pérez, R. (2014). First record of
Puma concolor in Tortuguero National Park, Costa
Rica. Brenesia, 81-82, 115–118.
Arroyo-Arce, S., & Thomson, I. (2023). Impacts of jaguar
predation on nesting sea turtles at Tortuguero Natio-
nal Park. Cat News, 78, 34–36.
Arroyo-Arce, S., Thomson, I., Fernández, C., & Salom-
Pérez, R. (2017). Relative abundance and activi-
ty patterns of terrestrial mammals in Pacuare
Nature Reserve, Costa Rica. Cuadernos de Investiga-
ción UNED, 9(1), 15–21.
Arroyo-Arce, S., Thomson, I., Guy, D., & Searcy, A. (2019).
First confirmed record of margay in Tortuguero
National Park, Costa Rica. Cat News, 69, 6–7.
Arroyo-Arce, S., Thomson, I., & Salom-Pérez, R. (2016).
Relative abundance and activity patterns of terrestrial
mammals in Barra del Colorado Wildlife Refuge,
Costa Rica. Cuadernos de Investigación UNED, 8(2),
131–137.
Avendaño, R., Barrueta, F., Soto-Fournier, S., Chavarría, M.,
Monge, O., Gutiérrez-Espeleta, G. A., & Chaves, A.
(2016). Canine distemper virus in wild felids of Costa
Rica. Journal of Wildlife Diseases, 52(2), 373–377.
https://doi.org/10.7589/2015-02-041
Bermudez, F. A., & Hernandez, C. (2004). Plan de mane-
jo del Parque Nacional Tortuguero [Technical
report]. Ministerio del Ambiente y Energía, San
José, Costa Rica. https://www.acto.go.cr/wp-content/
uploads/2020/04/Plan_de_Manejo_-PN_Tortuguero.
pdf
Blanco, K., Peña, R., Hernández, C., Jiménez, M., Araya, L.
N., Romero, J. J., & Dolz, G. (2011). Serological detec-
tion of viral infections in captive wild cats from Costa
Rica. Veterinary Medicine International, 2011, 879029.
Booth-Binczik, S. (2007). Report from the field: monitoring
ocelot dispersal with satellite telemetry. Endangered
Species Update, 24(4), 110–112.
Botts, R. T., Eppert, A. A., Wiegman, T. J., Rodriguez, A.,
Blankenship, S. R., Asselin, E. M., Garley, W. M.,
Wagner, A. P., Ullrich, E. E., Allen, G. R., & Mooring,
M. (2020). Circadian activity patterns of mammalian
predators and prey in Costa Rica. Journal of Mam-
malogy, 101(5), 1313–1331. https://doi.org/10.1093/
jmammal/gyaa103
Cambronero, M., Sánchez-Calderón, R., & Lobo, R. (2023).
Medium and large-sized mammals in a premontane
moist forest fragment, Atenas, Costa Rica. Revista de
Biología Tropical, 71(1), e53245.
Carolina Tiger Rescue. (2024, July 24). Magoo Ocelot.
https://carolinatigerrescue.org/uncategorized/
magoo-ocelot-2/
Chinchilla, F. (1997). La dieta del jaguar (Panthera onca), el
puma (Felis concolor) y el manigordo (Felis pardalis)
(Carnivora: Felidae) en el Parque Nacional Corco-
vado, Costa Rica. Revista de Biología Tropical, 45(3),
1223–1229.
Corrales-Gutiérrez, D. (2016). Primer informe de labores
2013-2015, Unidad de Atención de Conflictos con Felinos
(UACFel) [Technical report]. UACFel/SINAC-Panthe-
ra, San José, Costa Rica. https://pantheracostarica.
org/wp-content/uploads/2017/03/1er-Informe-Labo-
res-UACFel-2013-2015.pdf
Cove, M., Spinola, M., Jackson, V. L., & Saenz, J. (2014).
Camera trapping ocelots: An evaluation of felid
attractants. Journal of Mammalogy, 25(2), 113–116.
https://doi.org/10.4404/hystrix-25.2-9945
Crawshaw, P. G. (1995). Comparative ecology of ocelot (Felis
pardalis) and jaguar (Panthera onca) in a protected
subtropical forest in Brazil and Argentina [Unpublis-
hed doctoral dissertation]. University of Florida.
De Oliveira, T. G., Tortato, M. A., Silveira, L., Kasper, C.
B., Mazim, F. D., Lucherini, M., Jácomo, A. T., Soares,
J. B. C., Marques, R. V., & Sunquist, M. E. (2010).
Ocelot ecology and its effect on the small-felid guild
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
in the lowland Neotropics. In D. W. Macdonald, & A.
J. Loveridge (Eds.), Biology and conservation of wild
felids (pp. 563–574). Oxford University Press.
Di Bitetti, M. S., Paviolo A., & De Angelo, C. (2006).
Density, habitat use and activity patterns of ocelots
(Leopardus pardalis) in the Atlantic Forest of Misio-
nes, Argentina. Journal of Zoology, 270(1), 153–163.
https://doi.org/10.1111/j.1469-7998.2006.00102.x
Emmons, L. (1988). A field study of ocelots (Felis pardalis)
in Peru. Revue d Écologie (La Terre et La Vie), 43(2),
133–157. https://doi.org/10.3406/revec.1988.5418
Emmons, L. H., Sherman, P., Bolster, D., Goldizen, A., &
Terborgh, J. (1989). Ocelot behavior in moonlight.
In K. H. Redford, & J. F. Eisenberg (Eds.), Advances
in Neotropical mammalogy (pp. 233–242). Sandhill
Crane Press.
Gómez, H., Wallace, R. B., Ayala, G., & Tejada, R. (2005). Dry
season activity periods of some Amazonian mammals.
Studies on Neotropical Fauna and Environment, 40(2),
91–95. https://doi.org/10.1080/01650520500129638
González-Maya, J. F., & Cardenal-Porras, J. (2011). Oce-
lot density in the caribbean slope of the Talamanca
region, Costa Rica. Hystrix, the Italian Journal of
Mammalogy, 22(2), 355–360. https://doi.org/10.4404/
hystrix-22.2-4675
González-Maya, J. F., Navarro-Arquez, E., & Schipper, J.
(2010). Ocelots as prey items of jaguars: A case from
Talamanca, Costa Rica. Cat News, 53, 11–12.
Haines, A. M., Tewes, M. E., Laack, L. L., Horne, J. S., &
Young, J. H. (2006). A habitat-based population via-
bility analysis for ocelots (Leopardus pardalis) in the
United States. Biological Conservation, 132, 424–436.
https://doi:10.1016/j.biocon.2006.04.035
Harmsen, B. J., Foster, R. J., Sanchez, E., Gutierrez-Gonzá-
lez, C. E., Silver, S. C., Ostro, L. E. T., Kelly, M. J., Kay,
E., & Quigley, H. (2017). Long term monitoring of
jaguars in the Cockscomb Basin Wildlife Sanctuary,
Belize; Implications for camera trap studies of carni-
vores. PLoS ONE, 12(6), e0179505.
Herrera, H., Chávez, E. J., Alfaro, L. D., Fuller, T. K.,
Montalvo, V., Rodrigues, F., & Carrillo, E. (2018).
Time partitioning among jaguar Panthera onca, puma
Puma concolor and ocelot Leopardus pardalis (Car-
nivora: Felidae) in Costa Ricas dry and rainforests.
Revista de Biología Tropical, 66(4), 1559–1568.
Holdridge, L. (1969). Ecología basada en zonas de vida. Ins-
tituto Interamericano de Ciencias Agrícolas.
Hunter, L. (2015). Wild cats of the world. Bloomsbury
Publishing.
Jacob, A. A. (2002). Ecologia e conservação da jaguatirica
(Leopardus pardalis) no Parque Estadual Morro do
Diabo, Pontal do Paranapanema, SP. [Unpublished
master’s thesis]. Universidade de Brasília.
Kappeler, P. M. (2017) Sex roles and adult sex ratios:
Insights from mammalian biology and consequences
for primate behaviour. Philosophical Transactions of
the Royal Society B, 372(1729), 2016–0321. https://
doi.org/10.1098/rstb.2016.0321
Kays, R. (2016). Candid creatures: How camera traps reveal
the mysteries of nature. Hopkins University Press.
Kelly, J. R. (2018). Insights into the illegal trade of feline
derivates in Costa Rica. Global Ecology and Conserva-
tion, 13, e00381. https://doi.org/10.1016/j.gecco.2018.
e00381
King, T. W., Salom-Pérez, R., Shipley, L. A., Quigley, H. B.,
& Thornton, D. H. (2017). Ocelot latrines: Commu-
nication centers for Neotropical mammals. Journal of
Mammalogy, 98(1), 106–113. https://doi.org/10.1093/
jmammal/gyw174
Laack, L. L. (1991). Ecology of the ocelot (Felis pardalis) in
South Texas. [Master’s thesis, Texas A&I Universi-
ty]. ProQuest Repository. https://www.proquest.com/
openview/478e698c69796acc227896dd15b16871/1?
pq-origsite=gscholar&cbl=18750&diss=y
Laack, L. L., Tewes, M. E., Haines, A. M., & Rappole, J. H.
(2005). Reproductive life history of ocelots Leopardus
pardalis in southern Texas. Acta Theriologica, 50,
505–514. https://doi.org/10.1007/BF03192643
Ling, F. (2002). Diagnóstico de la situación actual de los
recursos naturales en los sitios críticos del Corredor Bio-
lógico Mesoamericano, Sección Tortuguero [Technical
report]. Fondo Nacional de Financiamiento Forestal.
https://www.acto.go.cr/wp-content/uploads/2020/04/
DIAG_SITU_ACT_-RN.pdf
Lombardi, J. V., Sergeyev, M., Tewes, M. E., Schofield, L. R.,
& Wilkins, R. N. (2022). Spatial capture-recapture and
LiDAR-derived vegetation metrics reveal high densi-
ties of ocelots on Texas ranchlands. Frontier in Con-
servation Science, 3, 1–12. https://doi.org/10.3389/
fcosc.2022.1003044
Ludlow, M. E., & Sunquist, M. E. (1987). Ecology and beha-
viour of ocelots in Venezuela. National Geographic
Research, 3, 447–461.
Maffei, L., Noss, A. J., Cuéllar, E., & Rumiz, D. I. (2005).
Ocelot (Felis pardalis) population densities, activity,
and ranging behaviour in the dry forests of eastern
Bolivia: Data from camera trapping. Journal of Tropi-
cal Ecology, 21(3), 349–353. https://doi.org/10.1017/
S0266467405002397
Magalhães, L. M., & Srbek-Araujo, A. C. (2022). Oce-
lot, Leopardus pardalis (Mammalia, Carnivora, Feli-
dae), home range in the Lowland Atlantic Forest
of Southeastern Brazil. Neotropical Biology and
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
Conservation, 17(4), 229–237. https://doi.org/10.3897/
neotropical.17.e93828
Mellen, J. D. (1993). A comparative analysis of scent-mar-
king, social and reproductive behavior in 20 species of
small cats (Felis). American Zoologist, 33(2), 151–166.
https://doi.org/10.1093/icb/33.2.151
Montalvo, V. H., Hagnauer, I., Cruz-Díaz, J. C., Morera, B.,
Lloyd, K., Sáenz-Bolaños, C., Fuller, T. K., & Carrillo,
E. (2022). Experimental release of orphaned wild
felids into a Tropical Rainforest in Southwestern
Costa Rica. Veterinary Sciences, 9(9), 468. https:// doi.
org/10.3390/vetsci9090468
Montalvo, V. H., Sáenz-Bolaños, C., Cruz-Díaz, J. C.,
Hagnauer, I., & Carrillo, E. (2020). Consumption of
wild rice (Oryza latifolia) by free-ranging jaguars,
pumas, and ocelots (Carnivora-Felidae) in northwes-
tern Costa Rica. Food Webs, 22, e00138.
Montalvo, V. H., Sáenz-Bolaños, C., Cruz-Díaz, J. C., Kami-
lar, J. M., Carrillo, E., & Fuller, T. K. (2023). Effects
of camera trap placement on photo rates of jaguars,
their prey, and competitors in northwestern Costa
Rica. Wildlife Society Bulletin, 47, e1428. https://doi.
org/10.1002/wsb.1428
Montalvo, V. H., Sáenz-Bolaños, C., Ramírez, S., & Carrillo,
E. (2015). Abundancia del jaguar (Panthera onca),
otros felinos y sus presas potenciales en el Par-
que Nacional Santa Rosa, Costa Rica. Cuadernos de
Investigación UNED, 7(2), 305–311.
Moreno, R. S., & Giacalone, J. (2006). Ecological data obtai-
ned from latrine use by ocelots (Leopardus pardalis)
on Barro Colorado Island, Panama. Tecnociencia,
8(1), 7–21.
Moreno, R. S., Kays, R. W., & Samudio, R. (2006). Compe-
titive release in diets of ocelot (Leopardus pardalis)
and puma (Puma concolor) after jaguar (Panthera
onca) decline. Journal of Mammalogy, 87(4), 808–816.
https://doi.org/10.1644/05-MAMM-A-360R2.1
Muskat, A. (2024, April 29). Oldest wild ocelot ever docu-
mented found in Southern Arizona. Arizona Sono-
ran News. https://arizonasonorannews.com/37245//
oldest-wild-ocelot-ever-documented-found-in-
southern-arizona/
Nowell, K., & Jackson, P. (1996). Wild cats. Status survey
and conservation action plan. IUCN/SSC Cat Specia-
list Group.
Paviolo, A., Crawshaw, P., Caso, A., De Oliveira, T., Lopez-
Gonzalez, C. A., Kelly, M., De Angelo, C., & Payan, E.
(2024, August 13). Leopardus pardalis. The IUCN Red
List of Threatened Species. https://dx.doi.org/10.2305/
IUCN.UK.2015-4.RLTS.T11509A50653476.en
Peral, C., Landman, M., & Kerley, G. I. H. (2022). The inap-
propriate use of time-to-independence biases esti-
mates of activity patterns of free-ranging mammals
derived from camera traps. Ecology and Evolution,
12(10), e9408. https://doi.org/10.1002/ece3.9408
Pérez-Irineo, G., & Santos-Moreno, A. (2014). Density, dis-
tribution, and activity of the ocelot Leopardus pardalis
(Carnivora: Felidae) in Southeast Mexican rainforests.
Revista de Biología Tropical, 62(4), 1421–1432.
R Core Team. (2024). R: A language and environment for
statistical computing. R package version 1.3.4 [Soft-
ware]. CRAN. https://www.R-project.org/
Ridout, M. S., & Linkie, M. (2009). Estimating overlap of
daily activity patterns from camera trap data. Journal
of Agricultural, Biological, and Environmental Statis-
tics, 14, 322–337.
Rodgers, T. W., Giacalone, J., Heske, E. J., JanečKa, J. E.,
Phillips, C. A., & Schooley, R. L. (2014). Comparison
of noninvasive genetics and camera trapping for
estimating population density of ocelots (Leopardus
pardalis) on Barro Colorado Island, Panama. Tropical
Conservation Science, 7(4), 690–705.
Romero-Vega, L. M., Medlin, S., Hagnauer, I., Alfaro-
Alarcón, A., & Williams, B. (2024). Case report: Renal
adenoma in a captive ocelot (Leopardus pardalis)
in Costa Rica. Frontiers in Veterinary Science, 11,
1393039. https://doi.org/10.3389/fvets.2024.1393039
Rowcliffe, M. (2023). Activity: animal activity tatistics.
R package version 1.3.4 [Software]. CRAN. https://
CRAN.R-project.org/package=activity
Ruiz-García, M., Corrales, C., & Pinedo-Castro, M. (2012).
Craniometric and microsatellite genetic differentia-
tion among putative ocelot subspecies (Leopardus
pardalis) throughout Latin America. In M. Ruiz-
Garcia, & J. M. Shostell (Eds.), Molecular population
genetics, evolutionary biology and biological conserva-
tion of Neotropical carnivores (pp. 1–45). Nova Science
Publishers, Inc.
Salom-Pérez, R., Wultsch, C., Adams, J. R., Soto-Fournier,
S., Gutiérrez-Espeleta, G. A., & Waits, L. P. (2022).
Genetic diversity and population structure for oce-
lots (Leopardus pardalis) in Costa Rica. Journal of
Mammalogy, 103(1), 68–81. https://doi.org/10.1093/
jmammal/gyab146
Satter, C. B., Augustine, B. C., Harmsen, B. J., Foster, R. J.,
Sanchez, E. E., Wultsch, C., Davis, M. L., & Kelly, M.
J. (2018). Long-term monitoring of ocelot densities
in Belize. Journal of Wildlife Management, 83(2),
283–294. https://doi.org/10.1002/jwmg.21598
Sternberg, M. A., Schmidt, G. M., Carrera-Treviño, R., Oca-
ñas-García, O. A., Illescas-Martínez, F., deMaar, T., &
Peña, L. J. (2023). Characteristics of ocelot popula-
tions in Tamaulipas, Mexico, using capture–recapture
techniques. Endangered Species Research, 52, 113–127.
https://doi.org/10.3354/esr01271
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73: e61917, enero-diciembre 2025 (Publicado Mar. 27, 2025)
Sunquist, M., & Sunquist, F. (2002). Wild cats of the world.
University of Chicago Press.
Vargas, J. S., Flatt, E. J., Whitworth, A., Salom-Pérez,
R., Espinoza-Muñoz, D., & Molnár, P. K. (2023).
More than one way to count a cat: Estimation of
ocelot population density using frameworks for mar-
ked and unmarked species. Biodiversity and Con-
servation, 32, 1821–1838. https://doi.org/10.1007/
s10531-023-02579-x
Veals, A. M., Holbrook, J. D., Blackburn, A., Anderson, C.
J., DeYoung, R. W., Campbell, T. A., Young Jr., J. H., &
Tewes, M. E. (2022). Multiscale habitat relationships
of a habitat specialist over time: The case of ocelots in
Texas from 1982 to 2017. Ecosphere, 13, e4204. https://
doi.org/10.1002/ecs2.4204
Weigl, R. (2005). Longevity of mammals in captivity: From
the living collections of the world. Schweizerbart Scien-
ce Publishers.
Wilson, D. E., & Mittermeier, R. A. (2009). Handbook of the
mammals of the world. Lynx Edicions.
Yaap, B., Watson, H., & Laurance, W. F. (2015). Mammal
use of Raphia taedigera palm stands in Costa Ricas
Osa Peninsula. Mammalia, 79(3), 357–362. https://
doi.org/10.1515/mammalia-2014-0033