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ABSTRACT
Introduction: Climate change and other multiple stressors have globally caused the collapse of many coral reefs. 
Understanding how coral reefs have responded to previous disturbances is key to identify possible trajectories in 
the face of future more frequent and intense disturbances. 
Objective: We review the ecological history of coral reefs in Bahía Culebra, a historically important area for coral 
reef development in the North Pacific of Costa Rica, which has suffered extreme deterioration in the last decades. 
Methods: We assessed historical traits of coral reefs using both historical and recent data, divided as follows: (i) 
the “pre-disturbed” period (1970–2000), (ii) the early degradation period (2000–2010), and the degraded period 
(2010–present day). 
Results: Forty years ago, Bahía Culebra harbored the highest coral species richness in the Costa Rican Pacific, 
with high live coral cover (> 40 %). Signs of early degradation were observed after El Niño events and unprec-
edented coastal development that caused anthropic eutrophication, which led to coral death and a shift to 
macroalgae-dominated reefs. In the last decade, a steep decline in live coral cover (1–4 %), the loss of many reefs, 
and a decrease in reef fish diversity and abundance were recorded. 
Conclusions: To promote the recovery of coral reefs in the bay, we propose management actions such as marine 
spatial planning, mitigation and monitoring of stressors, and ecological restoration. The latter could help turn 
the tide by increasing live coral cover, eventually leading to ecosystem functionality recovery, with spill-over 
effects on reef-associated communities, including local coastal communities. Nonetheless, such actions need 
governmental and local support; thus, raising awareness through environmental education and citizen science 
programs is key for the long-needed conservation of coral reefs in Bahía Culebra. 

Key words: coral cover; Eastern Tropical Pacific; ecosystem recovery; historical ecology; resilience; phase shift.

RESUMEN
Una historia de perturbación y pérdida: degradación histórica de los arrecifes de coral 

en Bahía Culebra, Pacífico Norte de Costa Rica

Introducción: El cambio climático y otros múltiples factores estresantes han provocado a nivel mundial el 
colapso de muchos arrecifes de coral. Comprender cómo han respondido los arrecifes de coral a perturbaciones 
anteriores es clave para identificar posibles trayectorias ante perturbaciones futuras más frecuentes e intensas. 

https://doi.org/10.15517/rev.biol.trop..v73iS1.63624
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INTRODUCTION

Worldwide, live coral cover is declining and 
coral reef ecosystems are collapsing at unprec-
edented rates due to several stressors acting in 
tandem (Dixon et al., 2022; Hughes et al., 2017; 
Knowlton et al., 2021). These disturbances 
(e.g., ocean warming, acidification, overfishing, 
unplanned coastal development) can jeopardize 
the structure and ecological functioning of 
coral reefs (Graham et al., 2011), by compro-
mising coral growth and survival, reef com-
position, and functional diversity (Dietzel et 
al., 2020; Hughes et al., 2017; McWilliam et al., 
2020). In some cases, several acute and chronic 
stressors occurring at once or in short periods 
can act as reinforcing feedback mechanisms 
which can impede the ability of corals to cope 
with these disturbances, and thus prevent eco-
system recovery or force it to remain below 
a certain coral-cover threshold (Bozec et al., 
2021; de Bakker et al., 2016; Hughes et al., 
2010; Zaneveld et al., 2016). A new stable ben-
thic assemblage, such as those dominated by 
turf, cyanobacteria, and fleshy macroalgae, may 
establish and cause a phase shift, modifying 

ecosystem functionality (Bruno et al., 2009; 
Dudgeon et al., 2010; Fung et al., 2011; Lesser, 
2021). As highly dynamic ecosystems, reefs 
could bounce back and recover (Rohr et al., 
2018; Romero-Torres et al., 2020). However, as 
these disturbance events become more frequent 
and intense, they can compromise reef recovery 
time and thus, their resilience (Dixon et al., 
2022; Hughes et al., 2017; Pratchett et al., 2020). 

In the long term, coral reef degradation 
and ecological phase shifts to algal-dominated 
states modify the whole coral reef ecosystem, 
from benthic groups to top predators (Arias-
Godínez et al., 2019; Arias-Godínez et al., 2021; 
Norström et al., 2009). Algal-dominated states 
generally may reduce habitat heterogeneity and 
structural complexity (Pratchett et al., 2014), 
which will also affect reef-associated species 
(Ainsworth & Mumby, 2015; Chong-Seng et al., 
2012; Salas-Moya et al., 2021; Stella et al., 2011), 
which depend on corals for feeding, nursery, 
and shelter (Pratchett et al., 2014). Hence, these 
alternative stable states can lead to the local 
extinction of some species, weaken fisheries 
productivity (Ainsworth & Mumby, 2015), and 
undermine critical ecosystem functions and 

Objetivo: revisamos la historia ecológica de los arrecifes de coral en Bahía Culebra, un área históricamente 
importante para el desarrollo de arrecifes de coral en el Pacífico Norte de Costa Rica, que ha sufrido un deterioro 
extremo en las últimas décadas. 
Métodos: Evaluamos los rasgos históricos de los arrecifes de coral utilizando datos históricos y recientes, dividi-
dos de la siguiente manera: (i) el período “pre-disturbio” (1970–2000), (ii) el período de degradación temprana 
(2000–2010) y el período degradado (2010–actualidad). 
Resultados: Hace cuarenta años, Bahía Culebra albergaba la mayor riqueza de especies de coral en el Pacífico cos-
tarricense, con una alta cobertura de coral vivo (> 40 %). Se observaron signos de degradación temprana después 
de los fenómenos de El Niño y un desarrollo costero sin precedentes que provocó una eutrofización antrópica, 
que provocó la muerte de los corales y un cambio hacia arrecifes dominados por macroalgas. En la última década, 
se registró una fuerte disminución de la cobertura de coral vivo (1–4 %), la pérdida de muchos arrecifes y una 
disminución en la diversidad y abundancia de peces de arrecife. 
Conclusiones: Para promover la recuperación de los arrecifes de coral en la bahía, proponemos acciones de 
manejo como la planificación espacial marina, la mitigación y monitoreo de factores estresantes y la restauración 
ecológica. Esto último podría ayudar a cambiar la tendencia al aumentar la cobertura de coral vivo, lo que even-
tualmente conduciría a la recuperación de la funcionalidad del ecosistema, con efectos indirectos en las comuni-
dades asociadas a los arrecifes, incluidas las comunidades costeras locales. No obstante, tales acciones necesitan 
apoyo gubernamental y local; por lo tanto, crear conciencia a través de programas de educación ambiental y 
ciencia ciudadana es clave para la tan necesaria conservación de los arrecifes de coral en Bahía Culebra.

Palabras clave: cobertura coralina; Pacífico Tropical Oriental; recuperación de ecosistemas; ecología histórica; 
resiliencia; cambio de fase.
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services (Cheal et al., 2013; Norström et al., 
2009; Pratchett et al., 2014). 

Multiple ecosystem trajectories can lead to 
coral reef recovery if disturbances are managed 
or cease entirely, although returning to their 
original states might not be possible (Hughes 
et al., 2018; Lamy et al., 2016; Romero-Torres et 
al., 2020). Nonetheless, predicting such trajec-
tories is highly complex due to the numerous 
factors (e.g., disturbance intensity and frequen-
cy, ecosystem connectivity and ecological char-
acteristics) that can influence reef resilience 
and determine trajectories of recovery (Done et 
al., 2010; Graham et al., 2011; Hughes & Tan-
ner, 2000; McClanahan et al., 2014). 

In the Eastern Tropical Pacific (ETP), coral 
reefs have shown resilience in response to 
historical disturbances, and coral loss events 
have not translated into lasting, region-wide 
decline, but to long-term cycles of loss and 
recovery (Romero-Torres et al., 2020). In this 
region, coral reefs are small, discontinuous, and 
dominated by few coral species (Glynn et al., 
2017). They are influenced by a low aragonite 
saturation, fluctuations in nutrient and salinity 
levels (Rixen et al., 2012; Sánchez-Noguera et 
al., 2018a), and are periodically impacted by 
El Niño-Southern Oscillation (ENSO), con-
sidered their primary threat and main driver 
of reduction in coral cover (Manzello et al., 
2008; Romero-Torres et al., 2020; Zapata et 
al., 2010). However, some regions have in fact 
shown coral reef recovery after ENSO events 
in Colombia (Zapata, 2017), Panama (Glynn 
et al., 2014), Galápagos Islands (Glynn et al., 
2015), Mexico (Martínez-Castillo et al., 2022) 
and Costa Rica (Guzmán & Cortés, 2007), 
which recovered to pre-disturbance coral cover 
levels. The observed resilience of reefs in the 
ETP is promoted by (i) the fast-growth strategy 
of the dominant coral species, (ii) presence of 
thermotolerant symbionts, (iii) heterogeneous 
incidence of non-optimal conditions such as 
high irradiance and high-temperature stresses 
across the ETP, and (iv) the possible existence 
of ecological memory, by which the trajectory 
of frequently stressed coral reef ecosystems is 

shaped by previous conditions (Romero-Torres 
et al., 2020). 

Within the Pacific of Costa Rica, the recov-
ery of coral reefs has been disparate. While 
coral reefs in areas such as Isla del Coco (an 
oceanic island) or Isla del Caño (a continental 
island in the South Pacific of the country) have 
shown recovery after disturbance events, reefs 
in mainland areas, like Bahía Culebra (North 
Pacific coast), have not (Alvarado et al., 2012; 
Sánchez-Noguera et al., 2018b). These differ-
ences could be attributed to the degree and 
isolation from anthropogenic impacts, and pro-
tection status (Alvarado et al., 2019; Cortés et 
al., 2010). Whilst the first two areas are protect-
ed and relatively isolated from anthropogenic 
disturbances, Bahía Culebra has no level of 
protection and is in an extensive coastal devel-
opment area (Sánchez-Noguera et al., 2018b). 
Merely two decades ago, coral reefs in Bahía 
Culebra were among the most extensive in the 
North Pacific of Costa Rica, had high live coral 
cover (44 % on average) and diversity of reef 
fish species and ecological roles (Arias-Godínez 
et al., 2019; Arias-Godínez et al., 2021; Jiménez, 
2001a). However, due to ENSO events (e.g., 
1997–1998), harmful algal blooms (HABs), 
macroalgal invasion mainly by Caulerpa sertu-
larioides (S.G.Gmelin) M.Howe 1905, and other 
disturbances occurring in a short period of time 
in the early 2000s, coral reefs in the bay severely 
deteriorated, and many eventually collapsed, 
with effects on reef-associated communities 
(Arias-Godínez et al., 2019; Arias-Godínez et 
al., 2021; Fernández, 2007; Fernández-García 
et al., 2012;  Jiménez, 2007a; Morales-Ramírez 
et al., 2001; Sánchez-Noguera et al., 2018b; 
Vargas-Montero et al., 2008). Even though in 
the last decade (2010s) some stressors have 
ceased (J. J. Alvarado, personal observation, 
November 2023), the future trajectory of these 
ecosystems is still uncertain and will depend 
on management actions that support natural 
recovery (Alvarado et al., 2018). 

The response of coral ecosystems to previ-
ous environmental disturbances is especially 
relevant considering the predicted future chang-
es in environmental conditions. Identifying and 
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understanding coral reef decline drivers and 
their ability to recover from past disturbance 
through historical data is essential for con-
servation and management measures, such as 
coral restoration (Bruno et al., 2014; Cheal et 
al., 2010; Godfray & May, 2014; Kittinger et 
al., 2011; Knowlton & Jackson, 2008). This is 
especially pertinent in areas rapidly affected 
by coastal development (Cortés, 2012), like 
Bahía Culebra. 

Here, we analyze the available evidence 
on coral reefs, coral ecosystems, and their 
environment in Bahía Culebra, and synthesize 
current knowledge as a tool to (1) identify 
the causes of coral reef decline over time and 
the recorded ecological consequences of such 
demise and (2) propose management actions 
for ecosystem recovery. 

MATERIALS AND METHODS

To determine drivers and historical coral 
reef development in Bahía Culebra, we identi-
fied published and grey literature data focusing 
on coral reef ecology in the area. Additionally, 
we included unpublished data from the Labo-
ratorio de Ecología y Conservación de Eco-
sistemas Arrecifales Neotropicales (LECAN) 
from Centro de Investigación en Ciencias del 
Mar y Limnología (CIMAR), Universidad de 
Costa Rica. Literature search was conducted via 
Web of Science, Google Scholar and SCOPUS, 
using the following keywords: “coral”, “reefs”, 
and “Bahía Culebra”, “Golfo de Papagayo”, “fish”, 
“bioerosion” and “algae”. We compiled and 
chronologically arranged information on the 
state of coral reefs and their drivers of deg-
radation in Bahía Culebra, and divided their 
recent history into three periods, according to 
the level of intensity of anthropogenic distur-
bance and degradation state of the reef: (i) the 
“pre-disturbed” period (1970–2000s, when low 
anthropogenic pressure was recorded); (ii) the 
early degradation period (2000–2010, when 
anthropogenic stressors intensified); and (iii) 
the degraded and most recent period (2010s, 
when reef framework collapsed). For each 
period, we collected information on benthic 

cover, natural and anthropic disturbances on 
coral reefs, and their impacts on reef-associated 
communities.

Study area: Bahía Culebra (10°37’N, 
85°39’W) is a semi-enclosed bay in the Gulf of 
Papagayo, North Pacific of Costa Rica (Fig. 1). 
For this review, we consider Bahía Culebra as 
the section of the coast from Islas Palmitas in 
the north to Punta Cacique (Playa La Penca) in 
the south, including the inner part of the bay, 
based on previously published studies from the 
same region. The bay extends for more than 20 
km2 and reaches its maximum depth at about 
42 m (Rodríguez-Sáenz & Rodríguez-Fonseca, 
2004). The area is influenced by one of the 
three seasonal upwelling systems occurring in 
the ETP (Tehuantepec, Papagayo and Panama), 
which affects the region from December to 
April, lowering water temperature up to 10 ºC 
from the annual mean (27 ± 0.1 ºC) (Jiménez, 
2001b; Jiménez et al., 2010). 

RESULTS AND DISCUSSION

The “pre-disturbed” period (1970–2000): 
Coral & benthic composition: Historical 

data that reef development in Bahía Culebra 
occurred 350 years ≈ ago (Glynn et al., 1983). 
Nonetheless, it is hypothesized that mass coral 
mortality was caused by the Little Ice Age 
(1675–1800 A.D.), which led to a decrease 
in seawater temperature, and intensified and 
extended the duration of the seasonal upwell-
ing in the Gulf of Papagayo (Glynn et al., 1983). 
A few anecdotic reports exist on coral reefs in 
Bahía Culebra between the 1930s and the 1940s 
(Beebe, 1942; Fraser, 1943). In the late 1970s, 
the coral framework was covered by algae, with 
small and highly dispersed colonies (Glynn et 
al., 1983). It is not until the 1980s when national 
scientists from the Universidad de Costa Rica 
reported the area as important for coral reef 
development, with the highest richness on 
coral species in the Costa Rican Pacific and the 
presence of rare species, such as Leptoseris pap-
yracea (Dana, 1846), Cycloseris curvata (Hoek-
sema, 1989), and Pocillopora meandrina Dana, 



5Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73(S1): e63624, enero-diciembre 2025 (Publicado Mar. 03, 2025)

1846 (Cortés, 2012; Cortés & Murillo, 1985). 
However, intense non-controlled extraction of 
adult coral colonies in the early 1980s, especial-
ly for aquarism, led what once were abundant 
species in the bay to become rare (Cortés & 
Murillo, 1985). The extraction continued well 
into the 1990s, with more groups such as black 
corals and octocorals being targeted (C.E. Jimé-
nez, personal communication, June 2021) Later, 
the area was affected by the particularly intense 
El Niño event in 1982–83, which caused mass 
coral mortality across the ETP (Glynn, 1984). 
Barren and dead coral platforms were observed, 
as well as dead coral colonies of several species 
of Pocillopora –which were the most affected– 
covered by algae (Cortés et al., 1984; C. E. 
Jiménez, personal communication, June 2021). 
Other coral species, such as Porites lobata Dana, 
1846, Pavona clavus (Dana, 1846) and L. papy-
racea were also affected (Jiménez, 1998). Even 
though coral mortality in Bahía Culebra after 

the 1982–83 El Niño was enormous, it went 
largely understudied and only qualitative data 
exists (Jiménez, 2002). 

It was not until the 1990s when coral 
reefs in Bahía Culebra were mapped for the 
first time (Cortés & Jiménez, 2003; Jiménez, 
1998; Jiménez, 2001a; Jiménez, 2007a; Jimé-
nez, 2007b). The results showed a total of nine 
coral reefs in the bay (Fig. 1) (Jiménez, 2001a), 
with a mean live coral cover of 44.0 ± 3.3 % 
(reaching up to 90 %), and an area that ranged 
from 0.8 to 2.3 hectares (Cortés & Jiménez, 
2003; Jiménez et al., 2010), which is similar to 
other pre-disturbed fringing Pocillopora reefs 
in the ETP (Arias-Godínez et al., 2019; Glynn 
et al., 2014). Even though 20 coral species 
were reported during that time (Jiménez, 1997; 
Jiménez, 2001b), most sites were considered 
as monospecific, as they were dominated by 
pocilloporid corals (mainly Pocillopora elegans 
Dana, 1846), forming flat carpets that extended 

Fig. 1. Location of coral reefs in Bahía Culebra (North Pacific of Costa Rica) in 1995-1996.
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in between rocky reefs and sandy bottoms, 
and contributed to 42 % of all live coral cover 
(Jiménez, 1998; Jiménez, 2001a). In the deeper 
parts of the reef (> 13 m depth), P. clavus was 
the most abundant species (13.0 ± 3.6 % cover), 
followed by Pavona gigantea (Verrill 1869), 
Psammocora spp. and L. papyracea (Cortés & 
Jiménez, 2003; Jiménez, 2001a). 

Back then, Bahía Culebra was also home to 
unique coral formations not commonly found 
in other areas of the ETP. The largest P. clavus 
reef in the ETP was found in Güiri-Güiri, with 
colonies up to 10 m in diameter (Cortés & 
Jiménez, 2003). On the other side of the bay, 
in Punta Esmeralda (Fig. 1), there used to be 
the only reef in the ETP built by L. papyra-
cea, which extended over an area of 2 500 m2 
(Cortés & Guzmán, 1998; Jiménez, 1997), and 
the site also held the only live population of C. 
curvata known in Costa Rica (Jiménez, 1998). 
Additionally, Bahía Culebra harbored a rela-
tively large (0.3 ha) coral patch built mainly by 
Psammocora profundacella Gardiner, 1898 and 
Psammocora stellata (Verrill, 1866) in Playa La 
Penca (Fig. 1), with a live coral cover of 42.8 ± 
20.8 % (Jiménez, 1998). Psammocora-dominat-
ed environments are rare throughout the ETP, 
and only four used to exist in Costa Rica (Bezy 
et al., 2006; Jiménez, 1998). Even though they 
do not provide high habitat heterogeneity and 
structural complexity (Bezy et al., 2006), they 
shelter high biodiversity of invertebrates such 
as polychaetes, amphipods, decapods, crus-
taceans, and mollusks, which attracts a broad 
range of predator fauna (Glynn, 1974). 

While the moderate 1991–92 El Niño event 
had no notable effect on corals in Bahía Culebra 
(Jiménez & Cortés, 2001), the intense 1997–98 
event did cause thermal anomalies of +0.2 to 
3.9 ºC, which led to mass coral bleaching that 
mostly affected Pavona varians (Verrill, 1864), 
P. lobata, and Tubastraea coccinea Lesson, 1830 
(Jiménez et al., 2001). Coral mortality was 
recorded in eight different species, such as 
Pocillopora spp. colonies (> 60 % of all beached 
and dead colonies), and a loss of > 90 % of L. 
papyracea. Despite the magnitude of the event, 
overall mortality was lower (7.2 %) than in 

other areas of the ETP (Alvarado et al., 2012; 
Cortés & Jiménez, 2003; Guzmán & Cortés, 
2001; Jiménez et al., 2001), most likely due to 
the combined effects of upwelling and high 
cloud cover, which off-set the effects of high 
temperatures (Jiménez, 2002; Palmer et al., 
2022). The natural recovery of Bahía Culebra’s 
coral reefs was possible most likely because of 
the absence of chronic anthropogenic stress-
ors, the rapid growth rates of corals in the bay, 
which are higher than in other localities of the 
ETP (Jiménez & Cortés, 2003), and low densi-
ties (0.20 ± 0.02 ind. m-2) of the bioeroder sea 
urchin Diadema mexicanum A. Agassiz, 1863, 
which translated to high bioaccretion rates (18 
kg CaCO3 m-2) and low bioerosion (Alvarado et 
al., 2012; Jiménez, 1998). 

Despite densities of D. mexicanum being 
low during this period (Jiménez, 2001a), tell-
tale signs of past population explosions were 
observed. During visits to Bahía Culebra in 
the late 1980s and early 1990s, remains of 
highly bioeroded coral colonies were reported 
in several sites, with undoubted signs of sea 
urchin effects. Such bioerosion mostly affected 
colonies of massive species, with little to no 
effect on the Pocillopora reefs (C. E. Jiménez, 
unpublished data).

Reef fish communities: During this period, 
a total of 78 reef fish species from 32 different 
families were found in Bahía Culebra (Arias-
Godínez et al., 2019; Dominici-Arosemena et 
al., 2005), which is like the species richness 
estimated for other coral reefs in the ETP 
region (Cortés et al., 2017). Regarding trophic 
composition, invertebrate feeders and plank-
tivores were the most abundant groups, fol-
lowed by mesopredators, some of which were 
commercially important (Arias-Godínez et al., 
2021; Dominici-Arosemena et al., 2005). Sev-
eral predatory species were recorded during 
this period, such as the scalloped hammer-
head shark (Sphyrna lewini (Griffith & Smith, 
1834)) and the whitetip reef shark (Triaenodon 
obesus (Rüppell, 1837)) (Arias-Godínez et al., 
2019). Most reef fish species in Bahía Culebra 
showed a positive correlation with live coral 
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cover (Dominici, 1999), and higher diversity 
occurred in shallow Pocillopora reefs (Domi-
nici-Arosemena et al., 2005). These habitats 
contributed to high structural complexity and 
presence of microhabitats, which provide mul-
tiple food sources, shelter and protection from 
predators for many reef species (Depczyn-
ski & Bellwood, 2004; Komyakova et al., 2013; 
Russ et al., 2020).

Anthropic disturbances: Bahía Culebra’s 
terrestrial and marine ecosystems have been 
exposed to both natural – such as ENSO events 
– and anthropogenic stressors over time (Sán-
chez-Noguera, 2012a). The strong interest in 
the bay’s marine resources at the end of the 
20th century led to conflict between the dif-
ferent users with contrasting interests to repre-
sent (Dominici, 1999; Jiménez, 1997; Jiménez, 
1998; Jiménez, 2001a; Sánchez-Noguera, 2012b; 
Sánchez-Noguera et al., 2018b). The lack of a 
management plan to protect marine ecosystems 
from anthropic activities brought localized deg-
radation of some coral reefs and some of their 
associated ecological communities, such as spe-
cies used in ornamental trade (Jiménez, 1998; 
Jiménez, 2001a) and artisanal fishing (Domi-
nici-Arosemena et al., 2005; Gutiérrez, 1994; 
Jiménez, 1997; Sánchez-Noguera et al., 2018b). 

The coral species most affected by orna-
mental trade were Pocillopora grandis (Dana, 
1846), P. meandrina, and T. coccinea, as well as 
certain anemone species, mollusks, algae, and 
colorful invertebrates (Cortés & Jiménez, 2003; 
Jiménez, 1997; Jiménez, 2001a). Around 35–45 
ornamental reef fish were also extracted for 
aquarium trade, but extraction was particularly 
intense for Thalassoma lucasanum (Gill, 1862), 
Pomacanthus zonipectus (Gill, 1862), Holacan-
thus passer Valenciennes, 1846, and Diodon 
holocanthus Linnaeus, 1758 (Dominici, 1999; 
Fournier, 2004). Dominici (1999) reported 
declines in catch between 1999 and 2000, and 
selective extraction of juveniles and male termi-
nal phases of these species. Moreover, patches 
of coral reefs up to 25 m2 were destroyed to 
extract reef fish and shrimps for aquarium 
trade (Jiménez, 1997). Bahía Culebra’s coral 

reefs also suffered mechanical impacts, as it was 
already a snorkeling and diving hotspot in the 
1990s (Jiménez, 1997), stirring up sediments, 
breaking coral colonies or turning them over 
(Cortés & Jiménez, 2003; Jiménez, 1998). 

Finally, being the only large bay in the 
area, protected from wave action and relatively 
deep, Bahía Culebra had been a focal point for 
coastal development in the North Pacific of 
Costa Rica for many decades (Jiménez, 1998; 
Sánchez-Noguera, 2012b). The intensive devel-
opment began in the 1990s, when the largest 
tourist complex in Central America was built 
(Jiménez, 1998), with no consideration of the 
potential negative effects on coral areas. For 
instance, urbanization caused the burial of a 
100 m2 patch of a P. gigantea reef in Güiri-Güiri, 
causing 84 % coral mortality (Jiménez, 2001a). 
The following year, a P. clavus reef was also 
affected by sediment input caused by the ero-
sion of an unpaved road, resulting in high sedi-
ment suspension and lower coral growth rates 
(Jiménez, 1998; Jiménez, 2001a). Mortality of L. 
papyracea was observed after land movements 
in Playa Panamá (Jiménez, 1998). In addition, 
sea currents carried sediments, sewage, and fuel 
leftover from the construction, and discharges 
of the new tourist development to coral reef 
patches, even relatively distant ones (Jiménez, 
1998). This negative effect can be intensified 
due to the strong trade winds during upwell-
ing season (Jiménez, 2001a; Jiménez, 2001b) 
and the semi-enclosed morphology of the bay, 
which promotes particle dispersion (García-
Céspedes et al., 2004). 

The early degradation period (2000–2010): 
Anthropic disturbances: The picture for 

coral reefs in Bahía Culebra undoubtedly 
started changing in the early 2000s, when 
coral degradation was not localized but was 
observed throughout the area. The unprec-
edented coastal development and an increase in 
the number of visitors (Cortés & Reyes-Bonil-
la, 2017; Jiménez, 2001a; Sánchez-Noguera, 
2012b) caused anthropic eutrophication and 
modified water quality (Alvarado et al., 2018; 
Beita-Jiménez et al., 2019; Fernández, 2007; 
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Fernández-García et al., 2012). In addition, the 
synergistic effect of El Niño events (1997, 2003, 
2007, 2009) triggered a series of reinforcing 
feedback mechanisms that acted in synergy and 
prevented coral reef ecosystems from recover-
ing. The short time between disturbance events 
(proliferation of HABs, increase in algae cover, 
the propagation of the invasive macroalgae C. 
sertularioides, and a subsequent increase in the 
sea urchin D. mexicanum density), promoted a 
general decline in live coral cover, undermining 
the health of the whole ecosystem (Alvarado 
et al., 2012; Alvarado et al., 2016; Fernández-
García et al., 2012; Jiménez, 2007a; Sánchez-
Noguera, 2012a). Even though during the early 
2000s (2003–2006) some sites (e.g., Cacique, 
Islas Palmitas, Pelonas, Playa La Penca) experi-
enced a most impressive pulse of reef expansion 
and growth (C. E. Jiménez, unpublished data), 
they were nonetheless eventually affected by 
this generalized degradation. 

At the beginning of this period (2000–
2002), Bahía Culebra still had clear waters and 
low presence of heavy metals and total fecal 
coliforms, which were 3 μg/g in lead and < 4 
MPN/100 ml, respectively (Acuña-González et 
al., 2004; García et al., 2006; García-Céspedes 
et al., 2004; Vargas et al., 2015; Vargas-Zamora 
et al., 2018). Moreover, petroleum hydrocar-
bons were absent in the bay’s waters (Acuña-
González et al., 2004), and sedimentation and 
suspended matter (4.12 mg l-1) was also low 
(Vargas-Zamora et al., 2018). The minimal 
runoff discharges and wastes into the bay could 
explain these low concentrations (Vargas-
Zamora et al., 2018). Despite this, intense 
HABs (also known as red tides) occurred and 
major disturbances occurred, but no specific 
data were recorded.

Harmful algal blooms; When coastal devel-
opment first escalated, many tourist facilities 
lacked wastewater treatment plants (Cortés & 
Jiménez, 2003; Fernández-García et al., 2012; 
Jiménez, 1998). With changes in land use, nutri-
ent wash-off during rainy season, and seasonal 
upwelling, nutrients in the bay’s waters and 
nearby areas increased (Alvarado et al., 2018; 

Fernández, 2007; Sánchez-Noguera, 2012a; 
Stuhldreier et al., 2015a). In consequence, 
HABs increased in frequency, magnitude and 
duration along the North Pacific coast of Costa 
Rica, especially between 2006 and 2009 (Cortés 
& Reyes-Bonilla, 2017; Jiménez 2001a; Jiménez, 
2007a; Jiménez, 2007b; Morales-Ramírez et 
al., 2001; Sánchez-Noguera et al., 2018b; Var-
gas-Montero et al., 2008). These episodes can 
induce coral stress, bleaching, and mortality, as 
well as in fish and other marine taxa (Jiménez, 
2007a; Jiménez, 2007b; Sánchez-Noguera et al., 
2018b), through different mechanisms, such 
as the reduction of light penetration, direct 
toxicity, and the decrease in oxygen availabil-
ity (Bauman et al., 2010; Guzmán et al., 1990). 
During the continuous episodes of HABs in 
2007 in Bahía Culebra, which affected over 100 
km of coastline, coral habitats in the bay experi-
enced a most devastating decline in coral cover 
(Jiménez, 2007b). 

Coral & benthic composition: Once corals 
died, their skeletons became available space 
for the recruitment of fleshy and filamentous 
macroalgae and turf. Both groups thrive in 
high-nutrient environments, particularly with 
phosphates and nitrates, which promote and 
accelerate their growth (Adam et al., 2021; 
De’ath & Fabricius, 2010; Fabricius, 2005; 
Fernández-García et al., 2012; Lapointe et al., 
2005). This resulted in their highest cover in the 
early 2000s (Alvarado et al., 2012; Fernández-
García et al., 2012), at the expense of reef-build-
ing corals, outcompeted then by algae, which 
limit –and, in some cases, inhibit– coral larval 
settlement (Kuffner et al., 2006; McCook et al., 
2001; Roth et al., 2018). Hence, rates of coral 
recruitment are inversely correlated to algal 
abundance and cover (Kuffner & Paul, 2004), 
which, in the long term, can impede coral reef 
recovery after disturbance events (Adam et al., 
2021). Furthermore, the synergistic effect of 
fishing pressure caused a decline in the den-
sity of herbivores in Bahía Culebra (Dominici-
Arosemena et al., 2005; Villalobos-Rojas et 
al., 2014), therefore reducing top-down con-
trol on macroalgae and turf. Thus, previously 
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coral-dominated reefs became dominated by 
turf and macroalgae, and coral cover decreased 
from 38.5 % in 2006 to 2.5 % in 2009 (Alvarado 
et al., 2012; Sánchez-Noguera, 2012a). 

Another stressor which promoted the 
decline on live coral cover in the area was the 
spread of the green invasive macroalgae C. 
sertularioides (Fernández-García et al., 2012), a 
well-known species for its invasive-like growth 
in coastal waters (Lapointe et al., 2005; Meinesz, 
1999). Even though this macroalgae has histori-
cally been found in Bahía Culebra, its densities 
had always remained low until 2001, when its 
proliferation began (Fernández, 2007). The first 
rise was recorded in areas where many boats 
anchored (i.e., Playas del Coco and Ocotal) 
and close to coastal development like hotels 
and human communities (Fernández, 2007). 

From there, it began to spread along the bay 
(Fig. 2), particularly where the substrate con-
sisted of Pocillopora spp. fragments, which pro-
vide a suitable surface for the attachment of C. 
sertularioides stolons and rhizoids (Fernández-
García et al., 2012). In 2001, several hectares 
of very dense mats were reported, smothering 
coral colonies > 50 cm in height (C. E. Jimé-
nez, unpublished data). The maximum peak of 
C. sertularioides cover was recorded in 2005, 
when it reached 40 % during wet season and 
70.7 % during the dry upwelling season, with 
a growth rate of 1.1 cm day-1 (Fernández, 
2007; Fernández-García et al., 2012), coincid-
ing with the increase in nutrients that occurs 
in upwelling events (Rixen et al., 2012; Stuhl-
dreier et al., 2015b; Stuhldreier et al., 2015c). 
Additionally, its high asexual reproduction rate 

Fig. 2. Proliferation and expansion of the macroalgae Caulerpa sertularioides in Bahía Culebra (2001–2014) based on patch 
size and abundance categories in Fernández (2007).
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through fragmentation and low herbivory rates, 
partly due to the presence of toxins in its fronds 
(Davis et al., 2005; Doty & Aguilar-Santos, 
1966), favored the dispersal and settlement of 
this macroalgae on the coral areas of the bay 
(Fernández, 2007; Fernández & Cortés, 2005).

This accelerated spreading caused a 
40.5 % reduction in the growth rate of P. ele-
gans (Fernández, 2007), as C. sertularioides can 
affect coral growth through different mecha-
nisms: (i) constant abrasion of fronds against 
coral tissue, which damages it and makes coral 
polyps retract, thus allocating more energy for 
tissue repair, and limiting access to energy and 
metabolites, crucial for non-essential and high-
ly costly physiological processes such as growth 
(River & Edmunds, 2001), (ii) overgrowing of 
live coral tissue, and (iii) sediment trapping, 
which decreases available light (Fabricius, 2005; 
Sato, 1985). Under these stressful conditions, 
coral colonies may be partially damaged and 
eventually die, resulting in a reduction of live 
coral cover. For instance, the Psammocora-
dominated coral reef in Playa Penca lost a 95 
% of its live coral cover and was reduced to 
small patches (1–3 m2) found among dead cor-
als and thick beds of C. sertularioides (Bezy et 
al., 2006). In 2006, the Psammocora reef had 
completely disappeared (J. J. Alvarado, personal 
observation, November 2023). Thus, where 
once were coral-dominated environments, a 
new benthic assemblage was established, form-
ing Caulerpa prairies (Alvarado et al., 2018). 
Such a rapid spreading of a macroalgae, causing 
abrupt declines in coral cover, was at the time 
unheard of in the ETP (Bezy et al., 2006). 

Diadema mexicanum bioerosion: The 
increase of turf and macroalgae cover resulted 
in a population explosion of the sea urchin D. 
mexicanum, due to the additional availability of 
food sources and strong fishing pressure in the 
area, which caused a reduction of sea urchin 
predators (Alvarado et al., 2012; Sánchez-
Noguera et al., 2018a; Villalobos-Rojas et al., 
2014). The densities of this herbivore bioeroder 
began to increase in 2009 (over 900 % increase 
since 2006) (Alvarado et al., 2012), not only due 

to anthropogenic factors but to the 2009–2010 
ENSO event, as reported for other areas of the 
ETP (Eakin, 1996; Eakin, 2001; Alvarado et al., 
2012; Glynn & Manzello, 2015). 

The role of sea urchins in coral reef ecol-
ogy and their carbonate budgets can change in 
accordance with their density. When sea urchins 
graze on algae growing on dead coral substrate, 
they reduce macroalgae and turf cover and 
facilitate the growth of crustose coralline algae, 
which promote coral larval recruitment, hence 
favoring ecosystem recovery (Alvarado et al., 
2012; Glynn & Manzello, 2015). However, when 
found in moderate and high densities, they can 
cause significant erosion of reef framework 
(from 0.07 to 0.75 kg CaCO3 m-2 yr-1 in Bahía 
Culebra) (Alvarado et al., 2012; Glynn & Man-
zello, 2015). When their density surpasses 1.5 
ind m-2, such as in the case of Bahía Culebra 
during this period, carbonate balance becomes 
negative and active bioerosion of reef frame-
work takes place. In consequence, calcareous 
structures weakened, and reef structural com-
plexity eventually diminished (Alvarado et al., 
2012; Alvarado et al., 2016). 

The degraded period (2010–present):
After almost a decade of being affected by 

several types of disturbances, ecological con-
sequences of coral reef deterioration in Bahía 
Culebra started being notorious. Effects were 
seen not only in terms of changes in benthic 
cover and drastic reductions of live coral cover, 
but also in the loss of coral reef framework and 
structural complexity, which in turn affected 
the different coral-associated communities. 

Coral & benthic composition: The most 
direct effects of coral reef deterioration in Bahía 
Culebra were a reduction in live coral cover and 
the number of coral species. Several rare coral 
species suffered local extinction (e.g., L. papy-
racea, C. curvata, P. meandrina), while domi-
nant species in the 1990s were the ones that 
remained present in the bay’s coral reefs (Sán-
chez-Noguera, 2012a; Sánchez-Noguera et al., 
2018b). Additionally, drastic reductions in live 
coral cover in many coral reefs were reported 
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after the disturbance period: in 2010–2011, 
live coral cover was between 1–4 % (Sánchez-
Noguera, 2012a), and during 2014–2016, it 
remained 1.3 ± 2.4 % (Arias-Godínez et al., 
2019). Most recent reevaluations reveal that live 
coral cover is currently 1.1 ± 0.7 % (Alvarado et 
al., unpublished data) (Fig. 3). 

While in 2010–2011 the dominant substrate 
cover was dead coral, which exceeded 85 % of 
total cover in some cases (Sánchez-Noguera, 
2012a), it was later (2014–2016) replaced by 
macroalgae, turf and sand (Arias-Godínez et 
al., 2019). During this period, turf reached 46.1 
± 15.6 % of substrate cover in the bay, similar 
to values reported for reefs in the ETP (Fong 
et al., 2017), and macroalgae cover (mainly C. 
sertularioides) was 14.0 ± 7.2 % (Alvarado et al., 
unpublished data). Even though there was an 
increase in herbivore abundance (Alvarado et 
al., 2012; Arias-Godínez et al., 2021), the high 
growth and dispersal rates of C. sertularioides 
ensured that it remained abundant in many 
coral reefs in Bahía Culebra and prevailed over 
coral cover (Arias-Godínez et al., 2019). Thus, 
the previously reported shifts from coral to 
macroalgae-dominated ecosystems intensified 
and took place in most coral reefs in the bay. 
For instance, the existing Pocillopora spp. reef 

in Playa Blanca was replaced by extensive mats 
of C. sertularioides (< 60 %) (Arias-Godínez, 
2017). However, C. sertularioides cover has 
been declining during the last years (2021: 0.8 
± 0.3 %), especially after hurricane Otto (2016) 
and tropical storm Nate (2017) hit the Pacific 
coast of Costa Rica (J. J. Alvarado, personal 
observation, November 2023) (Fig. 3). 

Moreover, while cyanobacteria were absent 
in the 1990s, they appeared as a new category of 
substrate cover during reef evaluations in 2010–
2011, although their cover was < 1 % (Sánchez-
Noguera, 2012a). While cyanobacteria are a 
natural component of coral reefs (Charpy et al., 
2012), they can form dense and extensive mats 
in deteriorated reefs. Their presence inhibits 
coral larval settlement and recruitment, and 
they can act as pathogens for scleractinian cor-
als, and produce secondary metabolites to deter 
grazing (Brocke et al., 2015; Charpy et al., 2012; 
Kuffner & Paul, 2004; Kuffner et al., 2006). 
Hence, when found in high densities, they are 
considered indicators of nutrient enrichment 
and declining reef health (Albert et al., 2005; 
Charpy et al., 2012; Paerl & Paul, 2012). 

Coral mortality in the 2000s also caused a 
shift on composition and diversity of Pocillo-
pora-associated fauna (i.e., cryptofauna), from 

Fig. 3. Mean (±SE) substrate cover (%) in Bahía Culebra from 2013 to 2021 (North Pacific, Costa Rica) in the four reefs 
surveyed in Jiménez (1998) and Sánchez-Noguera et al. (2018b) (Güiri-Güiri, Punta Esmeralda, Islas Palmitas and Playa 
Blanca). CCA: Crustose calcareous algae.
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obligate symbiotic species to boring opportu-
nistic and facultative species (Salas-Moya et al., 
2021). An increase in the abundance of bivalves 
of the genus Lithophaga (Leiosolenus) can con-
tribute to a rise in internal bioerosion of coral 
colonies and carbonate substrate, particularly 
during upwelling season (Salas-Moya et al., 
2021; Wizemann et al., 2018), thus weakening 
the little remaining reef framework. Shifts in 
cryptofauna communities can be promoted by 
changes in food resources and chemical cues 
once coral colonies die (Lecchini et al., 2014; 
Wee et al., 2019). Furthermore, obligate symbi-
otic species found in live coral colonies in the 
early 2000s, such as Trapezia sp. and Alpheus 
sp., are known for their territorial behavior, 
which could have prevented the settlement and 
recruitment of other coral-associated organ-
isms (Tóth & Duffy, 2005; Wee et al., 2019), and 
thus explain the increase of cryptofauna species 
observed after coral death and reef degradation 
in Bahía Culebra (Salas-Moya et al., 2021). In 
the long term, however, species richness will 
abruptly drop after the high erosion of car-
bonate structures (Enochs & Manzello, 2012a; 
Enochs & Manzello, 2012b). Additionally, such 
a shift in cryptofauna composition could com-
promise reef recovery, since they are a key 
component for host colony health, and the 
maintenance and recovery of reef framework 
(Salas-Moya et al., 2021; Stella et al., 2011). 

Diadema mexicanum bioerosion: After 
the population explosion in 2009, D. mexica-
num densities kept increasing for some years 
(Fig. 4), which produced a subsequent increase 
in bioerosion rates, from 0.75 CaCO3 m-2 yr-1 
in 2009 to 6.95 kg CaCO3 m-2 yr-1 in 2013 
(Alvarado et al., 2012; Alvarado et al., unpub-
lished data). Such bioerosion rates exceeded 
the bioaccretion capacity of coral reefs in Bahía 
Culebra (< 0.01 kg CaCO3 m-2 yr-1), which 
resulted in a debilitated structure and collapse 
of the reef (Arias-Godínez et al., 2019; Eakin, 
2001; Sánchez-Noguera, 2012a). For instance, 
in Playa Blanca, where the highest sea urchin 
densities (4.12 ± 0.83 ind. m-2) occurred during 
2010-2011 surveys (Sánchez-Noguera, 2012a; 
Sánchez-Noguera et al., 2018b), carbonate 

structure was destroyed, and no reef framework 
exists nowadays (J.J. Alvarado, personal obser-
vation, November 2023). The same occurred 
in other sites, where nearly vertical 1.8 m 
high coral scarps were grazed away, and reef 
framework crumbled (C.E. Jiménez, personal 
communication, June 2021). Instead, the sub-
strate is now covered in coral rubble and sandy 
bottoms (Arias-Godínez et al., 2019; Sánchez-
Noguera, 2012a). 

When no more carbonate substrate was 
available to erode, D. mexicanum populations 
started to decline (Fig. 4a), and with them their 
bioerosive impact, especially in sites where den-
sities were highest, like Playa Blanca (Alvarado 
et al., unpublished data; Sánchez-Noguera et al., 
2018b), potentially allowing for coral recovery 
(Eakin, 2001; Guzmán & Cortés, 2007). This 
follows what has been established in other 
studies for coral reefs in the ETP (Eakin, 1996; 
Eakin, 2001). Nevertheless, densities of D. mex-
icanum are still high in the bay, particularly 
in reefs where carbonate framework remains, 
such as Güiri-Güiri, where during 2010–2011, 
its densities were 0.03 ± 0.01 ind. m-2 (Sánchez-
Noguera et al., 2018b), and have increased to 
18.1 ± 1.16 ind. m-2 ten years later (Fabregat-
Malé et al., 2023) (Fig. 4b).

Reef fish communities: The loss of structur-
al complexity caused by intense sea urchin bio-
erosion and loss of live coral cover influenced 
reef fish communities in Bahía Culebra (Arias-
Godínez et al., 2019; Arias-Godínez et al., 
2021). During 2014–2016 surveys, 56 reef fish 
species from 24 families were detected, which 
represents a significant reduction from species 
richness in the 1990s (78 species from 32 fami-
lies), and 49 % of species sighted in the 1990s 
were not present in the latter degraded period 
(Arias-Godínez et al., 2021). Habitat composi-
tion and structural complexity are important 
drivers of reef fish abundance and diversity 
(Eisele et al., 2021; Ferrari et al., 2017). Habitats 
with high live coral cover tend to hold a larger 
diversity and abundance of reef fish, since 
they provide shelter and different resources, 
and thus promote species coexistence and key 
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ecological interactions (Coker et al., 2012; Grat-
wicke & Speight, 2005). The severe degradation 
and phase shift to macroalgal-dominated states 
suffered by coral reefs in Bahía Culebra implied 
a reduction of microhabitats and food sources 
for reef fish (Arias-Godínez et al., 2019), par-
ticularly after the invasion of a sole macroal-
gae species, which could explain the observed 

reduction in both species’ diversity and abun-
dance (Arias-Godínez et al., 2019). Coral-
dependent species were particularly affected, 
such as the butterflyfish Chaetodon humeralis 
(Günther, 1860) (Arias-Godínez et al., 2019). 
These are one of the first groups affected by 
loss of live coral cover, as they depend on it for 
feeding and settlement (Graham et al., 2009; 

Fig. 4. Populations of the sea urchin Diadema mexicanum in Bahía Culebra coral reefs over time. (A) Density of D. 
mexicanum (ind. m-2) from April 2013 to August 2015; (B) Mean (±SE) density of D. mexicanum (ind. m-2) in four surveyed 
coral reefs in Bahía Culebra, from 2014 to 2019. 
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Pratchett et al., 2015). Hence, their reduc-
tion can be considered an indicator of early 
coral reef degradation (Flower et al., 2017; 
Pratchett et al., 2006). 

Trophic structure of reef fish assemblages 
from this degraded period suffered a shift 
from those back in the 1990s (1995–1996). 
Even though planktivore fish remained as the 
dominant group, other trophic groups were 
greatly affected by coral reef degradation, such 
as coral-dependent omnivore and mesopreda-
tor species, which were more abundant on 
pre-disturbed coral reefs (Arias-Godínez et 
al., 2021). In fact, over half of the mesopreda-
tory species (57 %) detected in the 1990s were 
not sighted in the 2014–2016 surveys (Arias-
Godínez et al., 2021), including whitetip reef 
shark T. obesus and scalloped hammerhead 
shark S. lewini (Arias-Godínez et al., 2019). 
Their decrease in abundance could be seen 
as an indicator of strong fishing pressure in 
the area, since this group is primarily targeted 
by local fisheries (Beita-Jiménez et al., 2019; 
Villalobos-Rojas et al., 2014), and potentially 
declining reef health (Aburto-Oropeza et al., 
2015). Declines in mesopredators and top pred-
ators could have had cascading effects on the 
whole ecosystem (Heithaus et al., 2008; Roff et 
al., 2016; Sandin et al., 2022), by prey-release 
mechanisms that led to predominance of lower 
trophic level consumers (macroalgae-feeders, 
herbivores-detritivores and invertivores) in the 
now algae-dominated environments in Bahía 
Culebra (Arias-Godínez et al., 2021). 

Is recovery possible for coral reefs 
in Bahía Culebra?:

Historical insights of ecosystem changes 
can shed light on factors influencing ecosys-
tem resilience and causing phase shifts among 
ecological states (Fong et al., 2006). How an 
ecosystem responded to previous environ-
mental disturbances is particularly relevant 
considering future global change, in the face 
of which coral reefs are extremely vulnerable 
(Hoegh-Guldberg et al., 2018; Hughes et al., 
2017; Kittinger et al., 2011; Knowlton & Jack-
son, 2008). Thus, understanding how changing 

environmental conditions and anthropic dis-
turbances shaped current coral reefs is key 
to implement informed management actions 
(Bruno et al., 2014; Zu Ermgassen et al., 2015). 

Bahía Culebra is one of the most inten-
sively studied regions in the Pacific coast of 
Costa Rica (Cortés, 2012). Its marine environ-
ments, particularly coral reefs, have always 
received considerable attention for their eco-
logic and economic resources (Fernández, 
2007; Sánchez-Noguera, 2012a). However, even 
though the first studies focusing on coral eco-
systems occurred previously to intensive coastal 
development (Cortés & Murillo, 1985), human 
settlement in the bay, and thus disturbances to 
marine ecosystems, happened centuries before 
(Sánchez-Noguera, 2012b). Hence, even if such 
studies cannot be considered as historical base-
lines of pristine coral environments, they were 
nevertheless carried out before the major and 
intensive marine degradation that took place 
in the 2000s. 

The extreme and rapid degradation 
observed in Bahía Culebra, with shifts from 
coral to macroalgal-dominated states (Arias-
Godínez et al., 2019; Sánchez-Noguera et al., 
2018b), was most likely caused by numerous 
disturbances acting synergistically and thus 
diminishing reef resilience (Jiménez, 2007a; 
Sánchez-Noguera et al., 2018b). The combined 
action of increased nutrients in the water col-
umn, HABs, invasion by the macroalgae C. 
sertularioides, and increased bioerosion trig-
gered a series of reinforcing feedbacks that led 
to the collapse of coral reefs in less than 15 years 
(Alvarado et al., 2012; Alvarado et al., 2016; 
Fernández, 2007; Fernández & Cortés, 2005;  
Graham et al., 2013; Jiménez, 2001a; Jiménez, 
2007a; Sánchez-Noguera, 2012a). This makes it 
difficult to identify the main drivers of degra-
dation, and which factors have maintained the 
observed phase shifts and prevented natural 
ecological recovery. The change in dominance 
to fleshy macroalgal-states has led to stable 
regime shifts in other regions (Graham et al., 
2015; Johns et al., 2018; Mumby, 2009), which 
made recovery of coral cover to pre-disturbed 
states impossible. 
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But is the recovery of coral reefs in Bahía 
Culebra possible or should we lose all hope? 
Existing evidence points that, after major dis-
turbances, coral recovery can occur in relatively 
short periods when stressors cease or are man-
aged (Emslie et al., 2008; Gilmour et al., 2013; 
Graham et al., 2011; Guzmán & Cortés, 2001). 
However, ecosystem recovery is much less like-
ly if live coral cover is < 5 % and reef framework 
has collapsed (Graham et al., 2011). This is the 
exact case of Bahía Culebra’s coral reefs, where 
coral recruitment, and hence recovery, is lim-
ited by different factors. First, macroalgae and 
turf cover is still high in the bay, inhibiting coral 
larval settlement (Kuffner et al., 2006; Roth 
et al., 2018). The loss of carbonate framework 
due to intense bioerosion further contributes 
to the limitation of available substrate for coral 
larvae to recruit (Alvarado et al., 2012; Graham 
& Nash, 2012). Moreover, sexual reproduction 
rates of the main reef-building coral species 
of the ETP are lower than in other regions, 
which directly impacts natural recovery capac-
ity after disturbances (Bezy, 2009; Guzmán 
& Cortés, 2001). Successful coral recruitment 
is essential for ecosystem recovery, and its 
inhibition or limitation by such factors could 
prevent reversion from phase shifts (Hughes 
& Tanner, 2000; Kuffner & Paul, 2004). It has 
also been observed that reef recovery tends to 
be slowest in the ETP, due to its geographic 
isolation from other oceanographic regions 
(through the 5 000–8 000 km Central Pacific 
Barrier) and low functional diversity of corals 
and reef fish (Graham et al., 2011). Compared 
to other regions, ETP’s coral reefs are formed by 
few coral species (Cortés, 1997; Veron, 2014), 
which translates to low functional redundancy 
(de Bakker et al., 2016). 

Where we can go from here partly depends 
on management actions taken to enhance coral 
populations in Bahía Culebra and increase 
their chances of natural recovery. In Costa 
Rica, most coral reefs and important areas of 
coral development can be found within pro-
tected areas, except for Bahía Culebra (Cortés 
& Jiménez, 2003). This is particularly relevant 
considering the many reef resources used by 

different stakeholders in the bay (Dominici, 
1999; Jiménez, 1997; Jiménez, 1998; Jiménez, 
2001a; Sánchez-Noguera et al., 2012a), which 
can lead to conflict between users (Sánchez-
Noguera et al., 2018b). The bay has no current 
management plan of its resources, and marine 
spatial planning is urgently needed to regulate 
marine activities that could potentially clash 
with coral reef conservation (Naranjo-Arriola, 
2021). Continuing with existing monitoring 
programs for stressors such as nutrient con-
centration, benthic cover of C. sertularioides 
and turf, and sea urchin populations, requires 
special attention, since they can serve as early 
warnings of deterioration (Cooper et al., 2009; 
Flower et al., 2017; Gil et al., 2016). Nonethe-
less, while monitoring local stressors in the bay 
is relevant, upstream, and larger-scale stressors 
that may have caused local coral deterioration 
to require special attention. Integrated manage-
ment actions like improving the region’s waste-
water management and coastal land use are 
key to decrease HABs’ recurrence and inten-
sity (Palmer et al., 2022). However, the current 
situation in the bay calls for the implementation 
of ecological restoration efforts to maintain 
remaining diversity and increase live coral 
cover back to a threshold where ecosystem 
functionality is enhanced, and effects can be 
seen on reef-associated communities. Coral reef 
restoration also allows us to maintain existing 
genetic diversity and coral populations while 
climate change and other local and regional 
anthropic stressors are managed or mitigated 
(Baums et al., 2019). The recovery of coral reefs, 
and thus restoration, can potentially provide 
a wide range of economic benefits due to its 
impact on ecosystem services, such as fisher-
ies, coastal protection, tourism, and enhanced 
recreation opportunities (De Groot et al., 2013). 
Coupled with strong academic research and 
public enforcement, environmental educa-
tion and citizen science programs could also 
increase public awareness and support of coral 
conservation efforts, long needed for coral reefs 
in Bahía Culebra (Dickinson et al., 2012; Hesley 
et al., 2017). This review sets a guide for coral 
restoration activities by providing a baseline 



16 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73(S1): e63624, enero-diciembre 2025 (Publicado Mar. 03, 2025)

and describing how coral reefs in Bahía Culebra 
have responded to past disturbances, and how 
these have shaped the structure and function of 
present-day coral reefs.
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