
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73(S1): e63637, enero-diciembre 2025 (Publicado Mar. 03, 2025)
of the Chlorella (Chlorophyceae) strains of the cul-
ture collection of the University of Texas at Austin.
Journal of Phycology, 28(4), 550–553. https://doi.
org/10.1111/j.0022-3646.1992.00550.x
Kunz, W. F. (1972). Response of the alga Chlorella sorokinia-
na to 60 Co gamma radiation. Nature, 236, 178–179.
https://doi.org/10.1038/236178a0
Lee, J. S., Kim, D. K., Lee, J. P., Park, S. C., Koh, J. H., & Ohh,
S. J. (2001). CO2 fixation by Chlorella KR-1 using flue
gas and its utilization as a feedstuff for chicks. Journal
of Microbiology and Biotechnology, 11(5), 772–775.
Lichtenthaler, H. (1987). Chlorophyll and carotenoids:
pigments of photosynthetic membranes. Methods of
Enzymology, 148, 350–382.
Liu, J., & Hu, Q. (2013). Chlorella: industrial production
of cell mass and chemicals. In A. Richmond, & Q.
Hu (Eds.), Handbook of microalgal culture: applied
phycology and biotechnology (pp. 329–338). John
Wiley y Sons.
Masojídek, J., Torzillo, G., & Koblízek, M. (2013). Pho-
tosynthesis in microalgae. In A. Richmond, & Q.
Hu (Eds.), Handbook of microalgal culture: applied
phycology and biotechnology (pp. 21–36). John Wiley
y Sons.
Masojidek J., Vonshak, A., & Torzillo, G. (2011). Chloro-
phyll fluorescence applications in microalgal mass
cultures. In D. J. Suggett, O. Prašil & M. A. Borowitzka
(Eds.), Chlorophyll a fluorescence in aquatic sciences:
methods and applications developments in applied
phycology (pp. 277–292). Springer Science+Business
Media B.V.
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluo-
rescence- a practical guide. Journal of Experimental
Botany, 51(345), 659–668. https://doi.org/10.1093/
jexbot/51.345.659
Moronta, R., Mora, R., & Morales, E. (2006). Response of
the microalga Chlorella sorokiniana to pH, salinity
and temperature in axenic and non axenic conditions.
Revista de la Facultad de Agronomía, 23, 27–41.
Ras, M., Steyer, J. P., & Bernard, O. (2013). Temperature
effect on microalgae: A crucial factor for outdoor
production. Reviews in Environmental Science and
Biotechnology, 12, 153–164. https://doi.org/10.1007/
s11157-013-9310-6
Rippka, R., Deruelles, J., Waterbury, B., Herdman, M., &
Stanier, R. Y. (1979). Generic assignments, strain
histories and properties of pure cultures of Cyanobac-
teria. Journal of General Microbiology, 111(1), 1–61.
https://doi.org/10.1099/00221287-111-1-1
Seyfabadi, J., Ramezanpour, Z., & Amini-Khoeyi, Z.
(2011). Protein, fatty acid, and pigment content
of Chlorella vulgaris under different light regimes.
Journal of Applied Phycology, 23, 721–726. https://doi.
org/10.1007/s10811-010-9569-8
Sharma, P., Srinivas Gujjala, L. K., Varjani, S., & Kumar, S.
(2022). Emerging microalgae-based technologies in
biorefinery and risk assessment issues: bioeconomy
for sustainable development. Science of the Total
Environoment, 813, 152417. https://doi.org/10.1016/j.
scitotenv.2021.152417
Schubert, E. (2003). Nonmotile coccoid and colonial green
algae. In J. D. Wehr, & R. Sheath (Eds.), Freshwater
algae of North America: ecology and classification
(2nd ed., pp. 253–307). Academic Press. https://doi.
org/10.1016/B978-0-12-385876-4.00007-4
Sleger, P. M., Wijffels, R. H., van Straten, G., & van Boxtel,
A. J. B. (2011). Design scenarios for flat panel pho-
tobioreactors. Applied Energy, 88(10), 3342–3353.
https://doi.org/10.1016/j.apenergy.2010.12.037
Sorokin, C., & Myers, J. (1953). A high-temperature strain
of Chlorella. Science, 117(3039), 330–331. https://doi.
org/10.1126/science.117.3039.330
Torzillo, G., Bernardini, P., & Masojidek, J. (1998). Online
monitoring of chlorophyll fluorescence to assess the
extent of photoinhibition of photosynthesis induced
by high oxygen concentration and low tempera-
ture and its effect on the productivity of outdoor
cultures of Spirulina platensis (Cyanobacteria).
Journal of Phycology, 34(3), 504–510. https://doi.
org/10.1046/j.1529-8817.1998.340504.x
Torzillo, G., Chini Zittelli, G., Silva Benavides, A. M.,
Ranglova, K., & Masojidek, J. (2021). Culturing of
microalgae for food applications. In T. Lafarga &
G. Acién (Eds.), Cultured Microalgae for the Food
Industry (pp. 1–48). Academic Press. https://doi.
org/10.1016/B978-0-12-821080-2.00002-2
Torzillo, G., Sacchi, A., & Materassi, R. (1991). Tempe-
rature as an important factor affecting producti-
vity and night biomass loss in Spirulina platensis
grown outdoors in tubular photobioreactors. Bio-
resource Technology, 38(2–3), 95–100. https://doi.
org/10.1016/0960-8524(91)90137-9
Torzillo, G., & Vonshak, A. (2013). Environmental stress
physiology with references to mass cultures. In A.
Richmond (Ed.), Handbook of microalgal mass cultu-
res (pp. 90–113). Blackwell Science.
Torzillo G., Zittelli, G. C., Cicchi, B., Diano, M., Parente, M.,
Silva-Benavides, A. M., Esposito, E., & Touloupakis,
E. (2022). Effect of plate distance on light conversion
efficiency of a Synechocystis culture grown outdoors
in a multiplate photobioreactor. Science of the Total
Environment, 842, 156840. https://doi.org/10.1016/j.
scitotenv.2022.156840
Tredici, M. R., Bassi, N., Prussi, M., Biondi, N., Rodolfi,
L., Chini Zittelli, G., & Sampietro, G. (2015). Energy
balance of algal biomass production in a 1-ha “Green