1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73(S1): e63720, enero-diciembre 2025 (Publicado Mar. 03, 2025)
Marine cyanobacteria of Costa Rica: published records
Laura Brenes-Guillén1*; https://orcid.org/0000-0002-7185-4084
Cindy Fernández-García2,3; https://orcid.org/0000-0003-2808-4093
Jorge Cortés2,3; https://orcid.org/0000-0001-7004-8649
1. Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, 11501-2060 San Pedro
de Montes de Oca, San José, Costa Rica; laura.brenesguillen@ucr.ac.cr (*Correspondence)
2. Centro de Investigación en Ciencias del Mar y Limología (CIMAR), Universidad de Costa Rica.
3. Escuela de Biología, Universidad de Costa Rica; Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET),
Universidad de Costa Rica; 11501-2060 San Pedro de Montes de Oca, San José, Costa Rica;
cindy.fernandezgarcia@ucr.ac.cr, jorge.cortes@ucr.ac.cr
Received 22-X-2024. Corrected 09-I-2025. Accepted 28-I-2025.
ABSTRACT
Introduction: Cyanobacteria, also known as blue-green algae, are photosynthetic bacteria that play a crucial role
in the marine environment, including food and oxygen production, nitrogen fixation, yield antibiotics and other
bioproducts which might be used by other members of the community. Cyanobacteria remain understudied, par-
ticularly in the marine environments of Central America. While research on cyanobacteria has been conducted
in Costa Rica, most studies have focused on freshwater environments, leaving a significant gap in understanding
their diversity in the region.
Objective: This study compiles the diversity of marine cyanobacteria in Costa Rica through a review of scientific
publications and herbarium collections.
Methods: a review of the scientific literature and cyanobacterial specimens from the Pacific and Caribbean
from 1936 to the present was conducted. In November 2023, the Dr Luis A. Fournier Origgi Herbarium at the
University of Costa Rica was visited to examine the available specimens.
Results: We found 50 records of cyanobacteria in the references and herbarium collections, of which 10 belonged
to Sections I and II, 26 to Section III, nine to Section IV and five to the unclassified category. Genomic data from
two studies were found in public databases.
Conclusions: The diversity of marine cyanobacteria in Costa Rica represents a valuable resource for ecological
and evolutionary studies. This work provides a baseline for future research and highlights the importance of
continuing to explore and document the biodiversity of these bacteria.
Key words: marine biodiversity; herbarium; blue-green algae; microalgae; prokaryota.
RESUMEN
Cianobacterias marinas de Costa Rica: registros publicados
Introducción: Las cianobacterias, también conocidas como algas verdeazuladas, son bacterias fotosintéticas que
desempeñan un papel crucial en el ambiente marino, incluyendo la producción de alimento y oxígeno, la fijación
de nitrógeno, la producción de antibióticos y otros bioproductos los cuales pueden ser utilizados por otros miem-
bros de la comunidad. Las cianobacterias siguen siendo poco estudiadas, sobre todo en los ambientes marinos
de América Central. Aunque en Costa Rica se han realizado investigaciones sobre cianobacterias, la mayoría de
https://doi.org/10.15517/rev.biol.trop..v73iS1.63720
SUPPLEMENT
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73(S1): e63720, enero-diciembre 2025 (Publicado Mar. 03, 2025)
INTRODUCTION
Cyanobacteria, also known as blue-green
algae, are a group of photosynthetic bacteria
that play an important role in marine environ-
ments, as a source of food, oxygen production,
nitrogen fixation, antibiotics production, and
other bioproducts that are used by other com-
munity members (Hoffman, 1999). They are
part of complex bacterial communities as bio-
films (Zhonget al., 2024) and have been used
as model organisms to study interactions with
viruses in marine environments (Carlson et
al., 2022). The picocyanobacteria Synechococ-
cus and Prochlorococcus are the most abundant
phototrophs in the global oceans, and account
for a substantial fraction of marine primary
production (Arias-Orozco et al., 2024; Flom-
baum et al., 2013).
There is a wide morphological, genetic,
and functional diversity of marine cyanobac-
teria that is still poorly explored. They can be
classified based on their morphological charac-
teristics, including cell length and cell width of
axenic culture. However, morphology does not
provide sufficient taxonomic resolution and
cyanobacteria with similar or identical mor-
phology may have significantly different physi-
ology (Nübel et al., 1997). Culturing strains is
limited to replicating environmental conditions
in the laboratory. Genetics and high-through-
put sequencing techniques have allowed for
more detailed identification of their abundance
and taxonomy in marine environments. Cur-
rently, there are 431 genera and 1 653 species
valid under ICN and ICNP according to the
CyanoDB database (http://www.cyanodb.cz/)
(Hauer & Komárek, 2022).
Understanding the diversity of marine cya-
nobacteria is crucial for studying key ecological
processes like upwelling and cyanotoxin pro-
duction, which can have significant economic
and health implications (Hallegraeff, 2010).
Cyanobacteria have been successful in coloniz-
ing harsh environmental conditions such as
salty environments and high radiation, using
halophily and halotolerance as survival strate-
gies. These characteristics, along with their
role in oxygen production and the food chain,
their functions in rhodolith beds or corals, and
their symbiotic relationships with invertebrates
such as sponges and ascidians, are interesting
to study from both ecological and evolutionary
perspectives (Cavalcanti et al., 2014; Donia et
al., 2011; Mutalipassi et al., 2021).
In Central America, marine cyanobacteria
have been poorly explored. Most studies of this
group in Costa Rica focus on field observations,
with few specimens in herbaria. Therefore,
the objectives of this work were to compile
cyanobacterial diversity in Costa Rican marine
environments based on scientific publications
and collections in herbaria as a baseline for
future research.
los estudios se han centrado en ambientes de agua dulce, lo que deja un vacío importante en la comprensión de
su diversidad en la región.
Objetivo: Este estudio recopila la diversidad de cianobacterias marinas en Costa Rica a través de una revisión de
publicaciones científicas y colecciones de herbario.
Métodos: Se realizó una revisión de la literatura científica y de especímenes de cianobacterias del Pacífico y el
Caribe desde 1936 hasta la actualidad. En noviembre de 2023, se visitó el Herbario Dr. Luis A. Fournier Origgi de
la Universidad de Costa Rica para examinar los especímenes disponibles.
Resultados: Se encontraron 50 registros de cianobacterias en las referencias y colecciones del herbario, de los
cuales 10 pertenecían a las Secciones I y II, 26 a la Sección III, nueve a la Sección IV y cinco a la categoría no
clasificada. Se encontraron datos genómicos de dos estudios en bases de datos públicas.
Conclusiones: La diversidad de cianobacterias marinas en Costa Rica representa un recurso valioso para estudios
ecológicos y evolutivos. Este trabajo proporciona una línea base para futuras investigaciones y resalta la impor-
tancia de continuar explorando y documentando la biodiversidad de estas bacterias.
Palabras clave: biodiversidad marina; herbario; algas verdeazuladas; microalgas; procariota.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73(S1): e63720, enero-diciembre 2025 (Publicado Mar. 03, 2025)
MATERIALS AND METHODS
Scientific articles and books from 1936
(the first record) to the present were reviewed,
and a list of the genera and in some cases spe-
cies of cyanobacteria reported from the Costa
Rican Pacific and Caribbean Sea was compiled
by location. In November 2023, the Dr. Luis A.
Fournier Origgi Herbarium (USJ) at Escuela de
Biología of the Universidad de Costa Rica was
visited to review the cyanobacteria specimens.
There are no other herbarium collections of
marine cyanobacteria in the country.
The list of cyanobacteria was arranged
according to the subdivisions proposed by Rip-
pka et al. (1979), which are based on differences
in morphological structure and development,
allowing the recognition of five major sections
among cyanobacteria (I, II, III, IV, and V). The
taxonomic classification at the genus level was
based on the system proposed in AlgaeBase
(Guiry & Guiry, 2024). For each report, the
taxonomic classification at the order, family,
and genus levels, the collection site, and the
references are provided.
The search for DNA sequences of marine
cyanobacteria from Costa Rica was conducted
in 2023 and 2024 using the NCBI (The National
Center for Biotechnology Information), and
ENA (European Nucleotide Archive) databases
(Burgin et al., 2023), as well as scientific articles.
We focused on nucleotide sequences, genomes,
MAGs (Metagenome Assembled Genomes),
and bioprojects.
RESULTS
We found 50 records of cyanobacteria in
the references and in the herbarium, 10 belong
to Sections I and II, 26 in Section III, nine to
Section IV and five under unclassified category.
A total of 20 species are reported from the
Pacific and 33 from the Caribbean with three
species/genus in common, Symploca hydnoides,
Schizothrix calcicola and Spirulina spp. Tricho-
desmium erythraeum, Symploca spp. and Lyn-
gbya spp. have the highest number of records,
with Symploca having the most herbarium
accessions.
Unicellular cyanobacteria (Section I and
Section II): We found ten species in these sec-
tions. Among the unicellular cyanobacteria
reported in the literature are the genera Meris-
mopedia, Anacystis, Synechocystis, Synechococ-
cus, and Prochlorococcus (Table 1). Belonging
to Section II, we find Chamaecalyx in the
Orden Pleurocapsales. Chrococcales has the
largest number of reported species, but the
genera Synechococcus and Prochlorocococcus
have been reported from a greater number of
sites. The reports of these groups were based on
culture-independent techniques, while others
were based on optical microscopy.
Filamentous cyanobacteria without het-
erocysts (Section III): This is the group of
cyanobacteria with the most reports, there are
22 species in the Caribbean and seven species
in the Pacific (Table 2). This reflects the higher
sampling effort along the Caribbean coast.
Oscillatoriales is the most reported order, fol-
lowed by Coleofasciculae. These groups are
characterized by being filamentous and are
often the main phototrophic component of
the biofilms. Interestingly, the genus Spirulina,
which is widely used in the food industry, was
reported from both coasts.
Filamentous cyanobacteria with hetero-
cysts and true branching (Section IV): The
genera Isactis, Calothrix, Rivularia, Anabaena,
Bachytrichia, and Nodularia were found within
the Order Nostocales, each belonging to differ-
ent families (Table 3). All these genera possess
heterocysts, which makes them potential nitro-
gen fixers. Nitrogen-fixing cyanobacteria play
an important role in transforming elemental
nitrogen into bioavailable nitrogen, which is of
great importance for food chains.
Unclassified cyanobacteria: Investigations
carried out in the Pacific using light microscopy
or independent culture techniques reported five
samples as unclassified cyanobacteria (Table 4).
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73(S1): e63720, enero-diciembre 2025 (Publicado Mar. 03, 2025)
Table 1
Marine cyanobacteria that belong to the orders Chroococcales, Synechococcales and Pleurocapsales (Sections I and II) and
its geographic distribution in Costa Rica.
Order Family Genus/species Biogeographic distribution References
Chroococcales Chamaesiphonaceae Stichosiphon sansibaricus
(Hieronymus) F. E.Drouet &
W.A.Daily, 1956
Caribbean: Piuta, Isla Uvita,
Puerto Vargas, Puerto Viejo,
Manzanillo
Muñoz-Simon (2012)
Chroococcaceae Chroococcus sp. Nägeli, 1849 Caribbean: Piuta, Isla Uvita,
Puerto Vargas, Puerto Viejo,
Manzanillo
Muñoz-Simon (2012)
Cyanothrichaceae Johannesbaptistia pellucida
(Dickie) W.R.Taylor & Drouet,
1938
Caribbean: Isla Uvita Muñoz-Simon (2012),
Muñoz-Simon et al. (2020)
Microcystaceae Anacystis sp. Meneghini, 1837 Pacific: Golfo de Papagayo Loza-Álvarez et al. (2018)
Merismopedia glauca
(Ehrenberg) Kützing, 1845
Pacific: Bahía Culebra Cortés et al. (2012),
Drouet, (1936)
Merismopedia elegans
A.Braun ex Kützing 1849
Pacific: Gulf of Nicoya Calvo Vargas et al. (2014)
Synechocystis sp. Sauvageau,
1892
Caribbean: Isla Uvita Muñoz-Simon et al. (2020)
Pleurocapsales Hyellaceae Chamaecalyx leibleiniae
(Reinsch) Komárek &
Anagnostidis, 1986
Caribbean: Piuta, Isla Uvita,
Puerto Vargas, Puerto Viejo,
Manzanillo
Muñoz-Simon (2012)
Synechococcales Synechococcaceae Synechococcus sp. Nägeli, 1849 Pacific: Costa Rica Thermal
Dome
Ahlgren et al. (2014), Cox
et al. (2014), Gutiérrez-
Rodríguez et al., (2014),
Saito et al. (2005)
Prochlorococcaceae Prochlorococcus sp. Chisholm,
Frankel, Goericke, Olson,
Palenik, Waterbury, West-
Johnsrud & Zettler ex Komárek
et al., 2020
Pacific: Isla del Coco
National Park; Open ocean,
30 miles from Isla del Coco;
and Costa Rica Thermal
Dome
Ahlgren et al. (2014),
Cortés (2012), Cox et
al. (2014), Gutiérrez-
Rodríguez et al. (2014),
Williamson et al. (2008)
The taxonomic classification is based on Algae Base.
Table 2
Marine cyanobacteria belonging to the orders Oscillatoriales, Leptolyngbyales, Pseudanabaenales, Coleofasciculales,
Geitlerinematales, Spirulinales and Gomontiellales (Section III) and its geographic distribution in Costa Rica.
Order Family Genus/species Biogeographic distribution References
Coleofasciculales Coleofasciculaceae Coleofasciculus
chthonoplastes (Gomont)
M.Siegesmund, J.R.Johansen
& T.Friedl 2008
Caribbean: Piuta, Isla Uvita,
Puerto Vargas, Puerto
Viejo, Manzanillo
Muñoz-Simon (2012)
Symploca sp. Kützing ex
Gomont, 1892
Caribbean: Piuta, Isla Uvita,
Puerto Vargas, Puerto
Viejo, Manzanillo
Muñoz-Simon (2012)
Symploca hydnoides Kützing
ex Gomont, 1892
Caribbean: Vicinity of
Puerto Limón, Portete,
Parque Nacional Cahuita
Pacific: Isla Bolaños, Bahía
Salinas, Playa Sámara,
Cangrejal, Península de
Nicoya, Isla del Caño
Dawson (1962); USJ-73046,
USJ-73108, USJ-73152, USJ-
73305, USJ-73341, USJ-73498,
USJ-73528, USJ-73537, USJ-
73570, USJ-73686
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73(S1): e63720, enero-diciembre 2025 (Publicado Mar. 03, 2025)
Order Family Genus/species Biogeographic distribution References
Symploca hydnoides var.
fasciculata Gomont, 1892
Caribbean: Portete Dawson (1962)
Symploca thermalis Gomont,
1892
Pacific: Isla del Caño USJ-73837
Geitlerinematales Geitlerinemataceae Geitlerinema cf. exile (Skuja)
Anagnostidis, 1989
Caribbean: Piuta, Isla Uvita,
Puerto Vargas, Puerto
Viejo, Manzanillo
Muñoz-Simon (2012)
Gomontiellales Gomontiellaceae Borzia sp. Cohn ex Gomont,
1892
Caribbean: Piuta, Isla Uvita,
Puerto Vargas, Puerto
Viejo, Manzanillo
Muñoz-Simon (2012)
Leptolyngbyales Leptolyngbyaceae Leptolyngbya sp.
Anagnostidis & Komárek,
1988, nom. et typ. cons.
Caribbean: Piuta, Isla Uvita,
Puerto Vargas, Puerto
Viejo, Manzanillo
Muñoz-Simon (2012)
Trichocoleusaceae Schizothrix sp. Kützing ex
Gomont, 1892
Caribbean: Cahuita
National Park
USJ-73851
Schizothrix calcicola var.
symplociformis Hansgirg ex
Elenkin, 1949
Caribbean: Vicinity of
Puerto Limón
Pacific: Playa Manuel
Antonio (reported as Playa
Manuel Garcia)
Dawson (1962)
Oscillatoriales Microcoleaceae Blennothrix cantharidosma
(Gomont)
Anagnostidis & Komárek,
1988 as Hydrocoleum
cantharidosmum
Pacific: Bahía Culebra Cortés et al., 2012; Drouet,
1936
Leibleinia gracilis
(Rabenhorst ex Gomont)
Anagnostidis & Komárek,
1988
Caribbean: Piuta, Isla Uvita,
Puerto Vargas, Puerto
Viejo, Manzanillo
Muñoz-Simon (2012)
Lyngbya sp. C.Agardh ex
Gomont, 1892, nom. et typ.
cons.
Caribbean: Isla Uvita Muñoz-Simon (2012)
Lyngbya majuscula Harvey
ex Gomont, 1892
Caribbean: Vicinity of
Puerto Limón
Dawson (1962)
Lyngbya sordida f.
bostrychicola Gomont, 1892
Caribbean: Portete, Vicinity
of Puerto Limón
Dawson (1962)
Lyngbya subconfervoides
O.Borge, 1918
Caribbean: Cahuita
National Park
Bernecker & Wehrtmann,
(2009)
Microcoleus chthonoplastes
Thuret ex Gomont, 1892
Caribbean: Puerto Vargas Dawson (1962)
Trichodesmium erythraeum
Ehrenberg ex Gomont, 1892
Pacific: Bahía Culebra, Gulf
of Nicoya, Caldera
Calvo Vargas et al. (2014),
Calvo Vargas et al. (2016),
Vargas-Montero (2004),
Vargas-Montero & Freer
(2004)
Oscillatoriaceae Oscillatoria sp. Vaucher ex
Gomont, 1892
Caribbean: Isla Uvita Muñoz-Simon (2012), Muñoz-
Simon et al. (2020)
Oscillatoria corallinae
Gomont, 1890
Caribbean: Vicinity of
Puerto Limón
Dawson (1962)
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73(S1): e63720, enero-diciembre 2025 (Publicado Mar. 03, 2025)
Order Family Genus/species Biogeographic distribution References
Phormidium sp. Kützing ex
Gomont, 1892
Caribbean: Isla Uvita Muñoz-Simon (2012), Muñoz-
Simon et al. (2020)
Phormidium crosbyanum
Tilden, 1909
Caribbean: Undefined site Dawson (1962)
Phormidium monile Setchell
& Gardner, 1930 as
Lyngbya gracilis
Pacific: Bahía Culebra Taylor (1945)
Pseudanabaenales Pseudanabaenaceae Pseudanabaena sp.
Lauterborn, 1915
Caribbean: Piuta, Isla Uvita,
Puerto Vargas, Puerto
Viejo, Manzanillo
Muñoz-Simon (2012)
Spirulinales Spirulinaceae Spirulina sp. Turpin ex
Gomont, 1892
Caribbean: Piuta, Isla Uvita,
Puerto Vargas, Puerto
Viejo, Manzanillo
Pacific: Mangrove
sediments, Golfo Dulce
Medeanic et al. (2008);
Muñoz-Simon (2012)
Spirulina subsalsa Oersted
ex Gomont, 1892
Caribbean: Parque Nacional
Cahuita
Hargraves & Víquez (1981)
The taxonomic classification is based on Algae Base. Codes correspond to USJ-Herbaria Collection number, Universidad
de Costa Rica.
Table 3
Marine cyanobacteria belonging to the Order Nostocales (Section IV) and its geographic distribution in Costa Rica.
Order Family Genus/species Biogeographic distribution References
Nostocales Aphanizomenonaceae Anabaena sp. Bory ex Bornet &
Flahault, 1886, nom. cons.
Pacific: Mangrove sediments, Golfo
Dulce
Medeanic et al. (2008)
Nodulariaceae Nodularia harveyana Thuret ex
Bornet & Flahault, 1886
Caribbean: Piuta, Isla Uvita, Puerto
Vargas, Puerto Viejo, Manzanillo
Muñoz-Simon (2012)
Nostocaceae Nostoc commune (Vaucher ex
Bornet et Flahault 1888)
Caribbean: Punta Manzanillo USJ-28295
Rivulariaceae Calothrix C.Agardh ex Bornet &
Flahault, 1886
Caribbean: Piuta, Isla Uvita, Puerto
Vargas, Puerto Viejo, Manzanillo
Muñoz-Simon (2012)
Calothrix crustacea f. simulans
F.S.Collins, 1907
Caribbean: Vicinity of Puerto
Limón
Dawson (1962)
Calothrix pilosa Harvey ex Bornet
& Flahault, 1886
Caribbean: Vicinity of Puerto
Limón
Dawson (1962)
Isactis plana (Harvey) Thuret ex
Bornet & Flahault, 1886
Pacific: Bahía Culebra Taylor (1945)
Rivularia sp. C.Agardh ex Bornet
& Flahault, 1886, nom. cons.
Pacific: Mangrove sediments, Golfo
Dulce
Medeanic et al. (2008)
Scytonemataceae Brachytrichia quoyi Bornet &
Flahault, 1886
Caribbean: Puerto Vargas Dawson (1962)
The taxonomic classification is based on Algae Base. Codes correspond to USJ-Herbaria Collection number, Universidad
de Costa Rica.
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73(S1): e63720, enero-diciembre 2025 (Publicado Mar. 03, 2025)
We found two studies that focused on
cyanobacterial genome analysis (Table 5).
Zehr et al. (2007) investigated the genomic
diversity of tropical oceanic nitrogen-fixing
cyanobacteria in the Dome Upwellling Zone
in Pacific Costa Rica, obtaining cultures and
amplifying the region encoding the cytochrome
C gene using Sanger sequencing. The sec-
ond study by Niemann et al. (2013) examined
the bacterial communities associated with the
decapod Paralomis.
DISCUSSION
Published reports of cyanobacteria from
the Pacific and the Caribbean of Costa Rica
do not have photographs, and most of these
reports lack data on temperature, salinity, pH,
substrate type, or other metadata, which lim-
its our understanding of the ecology of these
group. Additionally, these cyanobacteria are not
associated with herbarium specimens. There
are only 14 cyanobacterial samples in the her-
baria collection. The improvement of herbar-
ium records and sample conservation would
support the training of future scientists. High-
quality collections serve as invaluable resources
for teaching taxonomy, systematics, ecology,
and fostering the development of new expertise
in these fields. Plus, it increases the knowledge
of the marine biodiversity of the country.
Due to traditional sampling techniques,
where larger micro-organisms are more like-
ly to be studied, unicellular cyanobacteria or
pycocyanobacteria are probably among the least
studied. The classification of cyanobacteria
Table 4
Unclassified marine cyanobacteria of Costa Rica and its geographic distribution.
Order Family Genus/specie Biogeographic distribution References
unc. Cyanobacteria unc. Cyanobacteria unc. Cyanobacteria Pacific: Isla del Coco National Park Fernández (2008)
unc. Cyanobacteria Pacific: Área de Conservación
Guanacaste
Cortés & Joyce (2020)
unc. Cyanobacteria Pacific: Coral reefs and submerged
pinnacles around Isla del Caño
Biological Reserve; coastal rocky reefs
and islets along the Osa Peninsula,
including Corcovado National Park
Friedlander et al. (2022)
unc. Cyanobacteria Pacific: Golfo Dulce Steinsdóttir et al. (2022)
unc. Cyanobacteria Pacific: In front of Punta Copal, Isla
Bolaños, Bahía Salinas, Guanacaste
USJ-73735
The taxonomic classification is based on Algae Base. Codes correspond to USJ-Herbaria Collection number, Universidad
de Costa Rica.
Table 5
DNA sequences of cyanobacteria in the NCBI and ENA databases.
Site/Bioproject Accesion ID Taxonomic classification Reference
Costa Rica Dome Upwelling Zone (8 m depth) EF102542 unclassified Cyanobacteria Zehr et al. (2007)
EF102614 unclassified Cyanobacteria Zehr et al. (2007)
EF102613 unclassified Cyanobacteria Zehr et al. (2007)
EF102612 unclassified Cyanobacteria Zehr et al. (2007)
EF102611 unclassified Cyanobacteria Zehr et al. (2007)
EF102590 unclassified Cyanobacteria Zehr et al. (2007)
EF102573 unclassified Cyanobacteria Zehr et al. (2007)
Stomach content of the crab Paralomis sp. HE974904 Uncultured Cyanobacterium sp. Niemann et al. (2013)
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73(S1): e63720, enero-diciembre 2025 (Publicado Mar. 03, 2025)
is undergoing rapid change due to advances
in 16S rRNA gene and genome sequencing,
independent and dependent culture techniques
can now be used to characterize them, as well
as other groups of cyanobacteria (Chen et al.,
2021; Doré et al., 2023). Taxonomic studies
must be polyphasic, incorporating morpho-
logical data such as cell size and shape, pres-
ence or absence of a mucilaginous sheath, and
shape of apical cells, among others (Hauer &
Komarék, 2022). The integration of genom-
ic data is essential for conclusively defining
the taxonomic clades of many cyanobacterial
genera. The morphological similarity between
some groups, such as the Leptolyngbya clade
in Section III (Brenes-Guillén et al., 2021;
Komarek, 2007), could be studied in marine
environments to understand the coexistence
of phylogenetic closely and ecologically similar
cyanobacterial species.
There are several studies that summarize
the cyanobacteria found in the region. Vargas
et al. (2023) carried out a review of the diversity
in the Caribbean region and reported 76 genera
and 119 species of cyanobacteria associated
with different environments such as coral reefs,
ascidians, mangroves and others. In that study,
Lyngbya confervoides is the only cyanobacteria
mentioned for Costa Rica (based on the report
by Bernecker & Wehrtmann, 2009), unlike our
research where we report 33 species for the
Caribbean. Studies in Honduras and Belize
indicate that new genera similar to the genera
Lyngbya and Symploca may be found in marine
environments (Engene et al., 2015). In Panama,
studies on marine cyanobacteria have focused
on the extraction of metabolites to identify
novel treatments for neglected parasitic diseas-
es such as malaria. The Panama International
Cooperative Biodiversity Group (ICBG) pro-
gramme has investigated secondary metabolites
mainly from Leptolyngbya, Symploca, Lyngbya
and Oscillatoria (Linington et al., 2007; McPhail
et al., 2007; Medina et al., 2008; Simmons et al.,
2006; Vining et al., 2015). Additionally, Diaz et
al. (2007) found Oscillatoria spongeliae associ-
ated with marine sponges in the Caribbean Sea
of Panama.
Some groups of marine cyanobacteria are
symbionts of protozoa, macroalgae, seagrasses,
sponges, ascidians, and other invertebrates,
altering the hosts metabolism (Carpenter &
Foster, 2003; Konstantinou et al., 2018; Mutali-
passi et al., 2021). In addition, they possess cel-
lular and molecular strategies that enable them
to withstand nutrient limitation, temperature
fluctuations, increased UV radiation, and high
salinity (Li et al., 2019; Rastogi et al., 2014;
Reignier et al., 2023). These characteristics
suggest that these bacteria may have promising
biotechnological applications. Current evidence
shows the presence of marine cyanobacteria on
both coasts of Costa Rica, highlighting their
importance, but the morphological and genet-
ic diversity of cyanobacteria in Costa Rican
and Central Americans marine environments
remains largely unknown. In order to improve
our understanding of the taxonomic and func-
tional diversity of cyanobacteria, it is essential
to conduct studies focusing on morphological
and genetic analysis, either using molecular
markers such as 16S gene amplicons or whole
genome sequencing. This will provide infor-
mation on the microscopic characterization of
cyanobacteria, their biogeographic distribu-
tion, temporal variations in abundance and the
genetic reservoir. This publication will serve as
a basis and motivation for future research.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
ACKNOWLEDGMENTS
LB and CF thank Dr. Luis A. Fournier
Origgi Herbarium (USJ), Escuela de Biología,
Universidad de Costa Rica for facilitating access
to specimens. JC thanks the University of Costa
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73(S1): e63720, enero-diciembre 2025 (Publicado Mar. 03, 2025)
Rica for its support of marine biodiversity
research over many decades.
REFERENCES
Ahlgren, N. A., Noble, A., Patton, A. P., Roache-Johnson,
K., Jackson, L., Robinson, D., McKay, C., Moore,
L. R., Saito, M. A., & Rocap, G. (2014). The unique
trace metal and mixed layer conditions of the Costa
Rica upwelling dome support a distinct and dense
community of Synechococcus. Limnology and Ocea-
nography, 59(6), 2166–2184. https://doi.org/10.4319/
lo.2014.59.6.2166
Arias-Orozco, P., Zhou, L., Yi, Y., Cebrián, R., & Kuipers, O.
P. (2024). Uncovering the diversity and distribution
of biosynthetic gene clusters of prochlorosins and
other putative RiPPs in marine Synechococcus strains.
Microbiology Spectrum, 12(1), e03611-23. https://doi.
org/10.1128/spectrum.03611-23
Bernecker, A., & Wehrtmann, I. S. (2009). New records of
benthic marine algae and Cyanobacteria for Costa
Rica, and a comparison with other Central American
countries. Helgoland Marine Research, 63, 219–229.
https://doi.org/10.1007/s10152-009-0151-1
Brenes-Guillén, L., Vidaurre-Barahona, D., Morales, S.,
Mora-López, M., Sittenfeld, A., & Uribe-Lorío, L.
(2021). Novel cyanobacterial diversity found in
Costa Rican thermal springs associated with Rincon
de la Vieja and Miravalles volcanoes: A polypha-
sic approach. Journal of Phycology, 57(1), 183–198.
https://doi.org/10.1111/jpy.13077
Burgin, J., Ahamed, A., Cummins, C., Devraj, R., Gueye, K.,
Gupta, D., Gupta, V., Haseeb, M., Ihsan, M., & Ivanov,
E. (2023). The European nucleotide archive in 2022.
Nucleic Acids Research, 51(D1), D121–D125. https://
doi.org/10.1093/nar/gkac1051
Calvo-Vargas, E., Boza-Abarca, J., & Berrocal-Artavia, K.
(2014). Efectos de El Niño y La Niña sobre el compor-
tamiento del microfitoplancton marino y las variables
fisicoquímicas durante el 2008 a 2010 en el Golfo
de Nicoya, Costa Rica. Revista de Ciencias Mari-
nas y Costeras, 6, 115–133. https://doi.org/10.15359/
revmar.6.8
Calvo-Vargas, E., Berrocal-Artavia, K., & Boza-Abarca, J.
(2016). Floraciones algales nocivas durante el periodo
2008-2010 en el Golfo de Nicoya, Costa Rica. Revista
de Ciencias Marinas y Costeras, 8(1), 129–149. https://
doi.org/10.15359/revmar.8-1.9
Carlson, M. C. G., Ribalet, F., Maidanik, I., Durham, B.
P, Hulata, Y., Ferrón, S., Weissenbach, J., Shamir,
N., Goldin, S., Baran, N., Cael, B. B, Karl, D. M.,
White, A. E., Armbrust, E. V., & Lindell, D. (2022).
Viruses affect picocyanobacterial abundance and
biogeography in the North Pacific Ocean. Nature
Microbiology, 7, 570–580. https://doi.org/10.1038/
s41564-022-01088-x
Carpenter, E., & Foster, R. A. (2002). Marine cyanobacterial
symbioses. In: A. N. Rai, B. Bergman, & U. Rasmussen
(Eds.), Cyanobacteria in Symbiosis (pp. 11–17). Sprin-
ger. https://doi.org/10.1007/0-306-48005-0_2
Cavalcanti, G. S., Gregoracci, G. B., Dos Santos, E. O.,
Silveira, C. B., Meirelles, P. M., Longo, L., Gotoh, K.,
Nakamura, S., Iida, T., & Sawabe, T. (2014). Physio-
logic and metagenomic attributes of the rhodoliths
forming the largest CaCO3 bed in the South Atlantic
Ocean. The ISME Journal, 8(1), 52–62. https://doi.
org/10.1038/ismej.2013.133
Chen, M. Y., Teng, W. K., Zhao, L., Hu, C. X., Zhou, Y.
K., Han, B. P., Song, L. R., & Shu, W. S. (2021).
Comparative genomics reveals insights into cyano-
bacterial evolution and habitat adaptation. The ISME
Journal, 15(1), 211–227. https://doi.org/10.1038/
s41396-020-00775-z
Cortés, J. (2012). Marine biodiversity of an Eastern Tropi-
cal Pacific oceanic island, Isla del Coco, Costa Rica.
Revista de Biología Tropical, 60(Suppl. 3), 131–185.
https://doi.org/10.15517/rbt.v60i3.28356
Cortés, J., & Joyce, F. (2020). BioMar-ACG: A successful
partnership to inventory and promulgate marine
biodiversity. Biotropica, 52(6), 1103–1106. https://doi.
org/10.1111/btp.12841
Cortés, J., Vargas-Castillo, R., & Nivia-Ruiz, J. (2012).
Marine biodiversity of Bahía Culebra, Guanacaste,
Costa Rica: published records. Revista de Biología Tro-
pical, 60(Suppl. 2), 39–71. https://doi.org/10.15517/
rbt.v60i2.19962
Cox, A. D., Noble, A. E., & Saito, M. A. (2014). Cad-
mium enriched stable isotope uptake and addition
experiments with natural phytoplankton assembla-
ges in the Costa Rica Upwelling Dome. Marine
Chemistry, 166, 70–81. https://doi.org/10.1016/j.
marchem.2014.09.009
Dawson, E. (1962). Additions to the marine flora of
Costa Rica and Nicaragua. Pacific Naturalist, 3(13),
375–395.
Diaz, M. C., Thacker, R. W., Rützler, K., & Piantoni Die-
trich, C. (2007). Two new haplosclerid sponges from
Caribbean Panama with symbiotic filamentous cya-
nobacteria, and an overview of sponge-cyanobacteria
associations. In: M. R. Custódio, G. Lôbo-Hajdu, E.
Hajdu, & G. Muricy (Eds.), Porifera Research: Biodi-
versity, Innovation and Sustainability (Serie Livros 28,
pp. 31–39). Smithsonian Libraries and Archives.
Donia, M. S., Fricke, W. F., Partensky, F., Cox, J., Elshahawi,
S. I., White, J. R., Phillippy, A. M., Schatz, M. C., Piel,
J., & Haygood, M. G. (2011). Complex microbiome
underlying secondary and primary metabolism in
the tunicate-Prochloron symbiosis. Proceedings of the
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 73(S1): e63720, enero-diciembre 2025 (Publicado Mar. 03, 2025)
National Academy of Sciences, 108(51), E1423–E1432.
https://doi.org/10.1073/pnas.1111712108
Doré, H., Guyet, U., Leconte, J., Farrant, G. K., Alric,
B., Ratin, M., Ostrowski, M., Ferrieux, M., Brillet-
Guéguen, L., Hoebeke, M., Siltanen, J., Le Corguillé,
G., Corre, E., Wincker, P., Scanlan, D. J., Eveillard,
D., Partensky, F., & Garczarek, L. (2023). Differential
global distribution of marine picocyanobacteria gene
clusters reveals distinct niche-related adaptive strate-
gies. The ISME Journal, 17(5), 720–732. https://doi.
org/10.1038/s41396-023-01386-0
Drouet, F. (1936). Myxophyceae of the G. Allan Hancock
Expedition of 1934, collected by Wm. R. Taylor. Allan
Hancock Pacific Expeditions, 3, 15–32.
Engene, N., Tronholm, A., Salvador-Reyes, L. A., Luesch,
H., & Paul, V. J. (2015). Caldora penicillata gen. Nov.,
comb. Nov. (Cyanobacteria), a pantropical marine
species with biomedical relevance. Journal of Phycolo-
gy, 51(4), 670–681. https://doi.org/10.1111/jpy.12309
Fernández, C. (2008). Flora marina del Parque Nacional
Isla del Coco, Costa Rica, Pacífico Tropical Oriental.
Revista de Biología Tropical, 56(Suppl. 2), 57–69.
Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J.,
Zabala, L. L., Jiao, N., Karl, D. M., Li, W. K., Lomas, M.
W., & Veneziano, D. (2013). Present and future global
distributions of the marine Cyanobacteria Prochloro-
coccus and Synechococcus. Proceedings of the National
Academy of Sciences, 110(24), 9824–9829. https://doi.
org/10.1073/pnas.1307701110
Friedlander, A. M., Ballesteros, E., Breedy, O., Naranjo-
Elizondo, B., Hernández, N., Salinas-de-León, P., Sala,
E., & Cortés, J. (2022). Nearshore marine biodiversity
of Osa Peninsula, Costa Rica: Where the ocean meets
the rainforest. PLoS ONE, 17(7), e0271731. https://
doi.org/10.1371/journal.pone.0271731
Guiry, M. D., & Guiry, G. M. (2024). AlgaeBase [Online
database]. National University of Ireland. https://
www.algaebase.org; searched on 19 April 2024.
Gutiérrez-Rodríguez, A., Slack, G., Daniels, E. F., Selph,
K. E., Palenik, B., & Landry, M. R. (2014). Fine
spatial structure of genetically distinct picocyano-
bacterial populations across environmental gradients
in the Costa Rica Dome. Limnology and Oceano-
graphy, 59(3), 705–723. https://doi.org/10.4319/
lo.2014.59.3.0705
Hallegraeff, G. M. (2010). Ocean climate change, phyto-
plankton community responses, and harmful
algal blooms: A formidable predictive challenge.
Journal of Phycology, 46(2), 220–235. https://doi.
org/10.1111/j.1529-8817.2010.00815.x
Hargraves, P. E., & Víquez, R. (1981). Spirulina subsalsa
Oersted en Costa Rica. Estructura y posible impor-
tancia comercial. Revista de Biología Tropical, 29(2),
304–308.
Hauer, T., & Komárek, J. (2022). CyanoDB 2.0 - On-line
database of cyanobacterial genera [Online database].
Univ. of South Bohemia & Inst. of Botany AS CR.
http://www.cyanodb.cz
Hoffman, L. (1999). Marine cyanobacteria in tropical
regions: Diversity and ecology. European Journal of
Phycology, 34(4), 371–379. https://doi.org/10.1080/09
670269910001736432
Komárek, J. (2007). Phenotype diversity of the cyanobac-
terial genus Leptolyngbya in the maritime Antarctic.
Polish Polar Research, 3, 211–231.
Konstantinou, D., Gerovasileiou, V., Voultsiadou, E., & Gke-
lis, S. (2018). Sponges-Cyanobacteria associations:
Global diversity overview and new data from the
Eastern Mediterranean. PLoS ONE, 13(3), e0195001.
https://doi.org/10.1371/journal.pone.0195001
Li, Y. Y., Chen, X. H., Xue, C., Zhang, H., Sun, G., Xie, Z.
X., Lin, L., & Wang, D. Z. (2019) Proteomic response
to rising temperature in the marine cyanobacte-
riumSynechococcusgrown in different nitrogen sou-
rces. Frontiers in Microbiology, 10, 1976. https://doi.
org/10.3389/fmicb.2019.01976
Linington, R. G., González, J., Ureña, L.-D., Romero, L.
I., Ortega-Barría, E., & Gerwick, W. H. (2007). Ven-
turamides A and B: antimalarial constituents of the
panamanian marine Cyanobacterium Oscillatoria sp.
Journal of Natural Products, 70(3), 397–401. https://
doi.org/10.1021/np0605790
Loza-Álvarez, S., Benavides-Morera, R., Brenes-Rodríguez,
C. L., & Ballestero-Saxon, D. (2018). Estructura del
fitoplancton en las épocas seca y lluviosa en el golfo
de Papagayo, Costa Rica. Revista de Ciencias Mari-
nas y Costeras, 10(2), 9–30. https://doi.org/10.15359/
revmar.10-2.1
McPhail, K. L., Correa, J., Linington, R. G., González, J.,
Ortega-Barría, E., Capson, T. L., & Gerwick, W. H.
(2007). Antimalarial linear lipopeptides from a Pana-
manian strain of the marine cyanobacterium Lyngbya
majuscula. Journal of Natural Products, 70(6), 984–
988. https://doi.org/10.1021/np0700772
Medeanic, S., Zamora, N., & Corrêa, I. C. (2008). Non-
pollen palynomorphs as environmental indicators in
the surface samples from mangrove in Costa Rica.
Revista Geológica de América Central, 39, 27–51.
https://doi.org/10.15517/rgac.v0i39.12246
Medina, R. A., Goeger, D. E., Hills, P., Mooberry, S. L.,
Huang, N., Romero, L. I., Ortega-Barría, E., Gerwick,
W. H., & McPhail, K. L. (2008). Coibamide A, a
potent antiproliferative cyclic depsipeptide from the
Panamanian marine cyanobacterium Leptolyngbya
sp. Journal of the American Chemical Society, 130(20),
6324–6325. https://doi.org/10.1021/ja801383f
Muñoz-Simon, N. (2012). Cianobacterias bentónicas mari-
nas en el Caribe central y sur de Costa Rica. Revista
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 73(S1): e63720, enero-diciembre 2025 (Publicado Mar. 03, 2025)
de Ciencias Marinas y Costeras, 4, 13–32. https://doi.
org/10.15359/revmar.4.1
Muñoz-Simon, N., Piedra-Castro, L. M., Jiménez-Mon-
tealegre, R., Pereira-Chaves, J., Guevara-Mora, M., &
Piedra-Marín, G. (2020). Efecto de las descargas del
emisario submarino de aguas residuales de la ciudad
de Limón sobre la calidad del agua, abundancia y
diversidad del fitoplancton en los alrededores de
isla Uvita, Costa Rica. Revista de Ciencias Marinas
y Costeras, 12(2), 115–141. https://doi.org/10.15359/
revmar.12-2.6
Mutalipassi, M., Riccio, G., Mazzella, V., Galasso, C.,
Somma, E., Chiarore, A., de Pascale, D., & Zupo, V.
(2021). Symbioses of cyanobacteria in marine envi-
ronments: Ecological insights and biotechnological
perspectives. Marine Drugs, 19(4), 227. https://doi.
org/10.3390/md19040227
Niemann, H., Linke, P., Knittel, K., MacPherson, E., Boe-
tius, A., Brueckmann, W., Larvik, G., Wallmann, K.,
Schacht, U., & Omoregie, E. (2013). Methane-carbon
flow into the benthic food web at cold seeps–a case
study from the Costa Rica subduction zone. PLoS
ONE, 8(10), e74894. https://doi.org/10.1371/journal.
pone.0074894
Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR
primers to amplify 16S rRNA genes from cyano-
bacteria. Applied and Environmental Microbio-
logy, 63(8), 3327–3332. https://doi.org/10.1128/
aem.63.8.3327-3332.1997
Rastogi, R. P., Sinha, R. P., Moh, S. H., Lee, T. K., Kottupa-
rambil, S., Kim, Y.-J., Rhee, J.-S., Choi, E.-M., Brown,
M. T., & Häder, D.-P. (2014). Ultraviolet radiation
and cyanobacteria. Journal of Photochemistry and
Photobiology B: Biology, 141, 154–169. https://doi.
org/10.1016/j.jphotobiol.2014.09.020
Reignier, O., Bormans, M., Marchand, L., Sinquin, C.,
Amzil, Z., Zykwinska, A., & Briand, E. (2023). Pro-
duction and composition of extracellular polymeric
substances by a unicellular strain and natural colonies
of Microcystis: Impact of salinity and nutrient stress.
Environmental Microbiology Reports, 15(6), 783–796.
https://doi.org/10.1111/1758-2229.13200
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M.,
& Stanier, R. Y. (1979). Generic assignments, strain
histories and properties of pure cultures of cya-
nobacteria. Microbiology, 111(1), 1–61. https://doi.
org/10.1099/00221287-111-1-1
Saito, M. A., Rocap, G., & Moffett, J. W. (2005). Production
of cobalt binding ligands in a Synechococcus feature at
the Costa Rica upwelling dome. Limnology and Ocea-
nography, 50(1), 279–290. https://doi.org/10.4319/
lo.2005.50.1.0279
Simmons, T. L., McPhail, K. L., Ortega-Barría, E., Moobe-
rry, S. L., & Gerwick, W. H. (2006). Belamide A, a new
antimitotic tetrapeptide from a Panamanian marine
cyanobacterium. Tetrahedron Letters, 47(20), 3387–
3390. https://doi.org/10.1016/j.tetlet.2006.03.082
Steinsdóttir, H. G., Gómez-Ramírez, E., Mhatre, S., Schau-
berger, C., Bertagnolli, A. D., Pratte, Z. A., Stewart, F.
J., Thamdrup, B., & Bristow, L. A. (2022). Anaerobic
methane oxidation in a coastal oxygen minimum
zone: Spatial and temporal dynamics. Environmen-
tal Microbiology, 24(5), 2361–2379. https://doi.
org/10.1111/1462-2920.16003
Taylor, W. R. (1945). Pacific marine algae of the Allan
Hancock Expeditions to the Galapagos Islands. Allan
Hancock Pacific Expeditions, 12, 1–528.
Vargas, A., Hentschke, G. S., Leão, P., & Vasconcelos, V.
(2023). Marine cyanobacteria diversity and biotech-
nological potential in Caribbean waters. Cryptogamie,
Algologie, 44(8), 143–156. https://doi.org/10.5252/
cryptogamie-algologie2023v44a8
Vargas-Montero, M. (2004). Floraciones algales en Costa
Rica, su relación con algunos factores meteorológicos
y consideraciones sobre sus efectos socioeconómicos
[Tesis de maestría], Universidad de Costa Rica, Costa
Rica.
Vargas-Montero, M., & Freer, E. (2004). Proliferaciones
algales nocivas de cianobacterias (Oscillatoriaceae)
y dinoflagelados (Gymnodiniaceae) en el Golfo de
Nicoya, Costa Rica. Revista de Biología Tropical,
52(Suppl. 1), 121–125.
Vining, O. B., Medina, R. A., Mitchell, E. A., Videau,
P., Li, D., Serrill, J. D., Kelly, J. X., Gerwick, W. H.,
Proteau, P. J., & Ishmael, J. E. (2015). Depsipeptide
companeramides from a panamanian marine cyano-
bacterium associated with the coibamide producer.
Journal of Natural Products, 78(3), 413–420. https://
doi.org/10.1021/np5007907
Williamson, S. J., Rusch, D. B., Yooseph, S., Halpern, A. L.,
Heidelberg, K. B., Glass, J. I., Andrews-Pfannkoch,
C., Fadrosh, D., Miller, C. S., Sutton, G., Frazier, M.,
& Venter, J. C. (2008). The Sorcerer II Global Ocean
Sampling Expedition: Metagenomic characterization
of viruses within aquatic microbial samples. PLoS
ONE, 3(1), e1456. https://doi.org/10.1371/journal.
pone.0001456
Zehr, J. P., Bench, S. R., Mondragon, E. A., McCarren, J.,
& DeLong, E. F. (2007). Low genomic diversity in
tropical oceanic N2-fixing cyanobacteria. Proceedings
of the National Academy of Sciences, 104(45), 17807–
17812. https://doi.org/10.1073/pnas.0701017104
Zhong, C., Yamanouchi, S., Li, Y., Chen, J., Wei, T., Wang,
R., Zhou, K., Cheng, A., Hao, W., Liu, H., Konhauser,
K. O., Iwasaki, W., & Qian, P. (2024). Marine bio-
films: cyanobacteria factories for the global oceans.
mSystems, 9, e00317-24. https://doi.org/10.1128/
msystems.00317-24